Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/31/3/10.1118/1.1646040
1.
1.R. Nath, L. L. Anderson, G. Luxton, K. A. Weaver, J. F. Williamson, and A. S. Meigooni, “Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43,” Med. Phys. 22, 209234 (1995).
2.
2.Interstitial Collaborative Working Group (ICWG), in Interstitial Brachytherapy: Physical, Biological, and Clinical Considerations, edited by L. L. Anderson, R. Nath, K. A. Weaver, D. Nori, T. L. Phillips, Y. H. Son, S-T. Chiu-Tsao, A. S. Meigooni, J. A. Meli, and V. Smith (Raven Press, New York, 1990).
3.
3.J. F. Williamson, “Physics of brachytherapy,” in Principles and Practice of Radiation Oncology, edited by C. A. Perez and L. W. Brady, 3rd ed. (Lippincott-Raven Press, Philadelphia, 1997) pp. 405–467.
4.
4.A. S. Meigooni and R. Nath, “Response to ‘Comment on Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43’,” Med. Phys. 27, 265 (2000).
5.
5.R. W. Kline, “Comment on ‘Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43’,” Med. Phys. 23, 1579 (1996).
6.
6.A. Y. C. Fung, “Comment on ‘Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43’,” Med. Phys. 25, 2477 (1998).
7.
7.J. F. Williamson, B. M. Coursey, L. A. DeWerd, W. F. Hanson, R. Nath, M. J. Rivard, and G. Ibbott, “Recommendations of the American Association of Physicists in Medicine on interstitial source calibration and dosimetry: Implications for dose specification and prescription (AAPM Report No. 69),” Med. Phys. 27, 634642 (2000).
8.
8.J. F. Williamson, B. M. Coursey, L. A. DeWerd, W. F. Hanson, R. Nath, M. J. Rivard, and G. Ibbott, “On the use of apparent activity for treatment planning of and interstitial brachytherapy sources: Recommendations of the American Association of Physicists in Medicine Radiation Therapy Subcommittee on Low-Energy Brachytherapy Source Dosimetry,” Med. Phys. 26, 25292530 (1999).
9.
9.J. F. Williamson, B. M. Coursey, L. A. DeWerd, W. F. Hanson, and R. Nath, “Dosimetric prerequisites for routine clinical use of new low energy photon interstitial brachytherapy sources,” Med. Phys. 25, 22692270 (1998).
10.
10.Radiological Physics Center, The M.D. Anderson Cancer Center, Houston, TX http://rpc.mdanderson.org/rpc/htm/Home_htm/Low-energy.htm last accessed December 1, 2003.
11.
11.B. S. Hilaris, D. Nori, and L. L. Anderson, Atlas of Brachytherapy (MacMillan Publishing Co., New York, 1988).
12.
12.W. Lee, B. D. T. Daly, T. A. DiPetrillo, D. M. Morelli, A. C. Neuschatz, J. Morr, and M. J. Rivard, “Limited resection for non-small cell lung cancer: Observed local control with implantation of I-125 brachytherapy seeds,” Ann. Thorac. Surg. 75, 237243 (2003).
13.
13.Y. Yu, L. L. Anderson, Z. Li, D. E. Mellenberg, R. Nath, M. Schell, F. M. Waterman, A. Wu, and J. C. Blasko, “Permanent prostate seed implant brachytherapy: Report of the American Association of Physicists in Medicine Task Group Report No. 64,” Med. Phys. 26, 20542076 (1999).
14.
14.C. J. Mettlin, G. P. Murphy, D. S. Rosenthal, and H. R. Menck, “The national cancer data base report on prostate carcinoma after the peak in incidence rates in the U.S.,” Cancer 83, 16791684 (1998).
15.
15.H. Ragde, A-A. A. Elgamal, P. B. Snow, J. Brandt, A. A. Bartolucci, B. S. Nadir, and L. J. Korb, “Ten-year disease free survival after transperineal sonography-guided iodine-125 brachytherapy with or without 45-gray external beam irradiation in the treatment of patients with clinically localized, low to high Gleason grade prostate carcinoma,” Cancer 83, 9891001 (1998).
16.
16.W. F. Whitmore, B. Hilaris, and H. Grabstald, “Retropubic implantation of iodine-125 in the treatment of prostatic cancer,” J. Urol. (Paris) 108, 918920 (1972).
17.
17.R. E. Peschel, C. R. King, and K. Roberts, “Pubic arch interference in permanent prostate implant patients,” J. Brachytherapy. Intl. 14, 241–248 (1998).
18.
18.M. J. Zelefsky and W. F. Whitmore, Jr., “Long-term results of retropubic permanent implantation of the prostate for clinically localized prostatic cancer,” J. Urol. (Paris) 158, 2330 (1997).
19.
19.R. Nath, K. Roberts, M. Ng, R. Peschel, and Z. Chen, “Correlation of medical dosimetry quality indicators to the local tumor control in patients with prostate cancer treated with iodine-125 interstitial implants,” Med. Phys. 25, 22932307 (1998).
20.
20.R. G. Stock, N. N. Stone, A. Tabert, C. Iammuzzi, and J. K. DeWyngaert, “A dose-response study for I-125 prostate implants,” Int. J. Radiat. Oncol., Biol., Phys. 41, 101108 (1998).
21.
21.L. Potters, Y. Cao, E. Calugrau, T. Torre, P. Fearn, and X-H. Wang, “A comprehensive review of CT-based dosimetry parameters and biochemical control in patients treated with permanent prostate brachytherapy,” Int. J. Radiat. Oncol., Biol., Phys. 50, 605614 (2001).
22.
22.R. Nath, L. Anderson, D. Jones, C. Ling, R. Loevinger, J. Williamson, and W. Hanson, “Specification of brachytherapy source strength: A report by Task Group 32 of the American Association of Physicists in Medicine,” AAPM Report No. 21 (American Institute of Physics, New York, 1987).
23.
23.ICRU 38 Dose and Volume Specification for Reporting Intracavitary Therapy in Gynecology, International Commission on Radiation Units and Measurements (ICRU 38, Bethesda, MD, 1985).
24.
24.ICRU 60 Fundamental Quantities and Units for Ionizing Radiation, International Commission on Radiation Units and Measurements (ICRU 60, Bethesda, MD, 1998).
25.
25.J. F. Williamson, “Low energy photon source dosimetry,” in Proceedings of 2000 World Congress on Medical Physics and Biomedical Engineering, edited by G. D. Fullerton (IEEE Engineering Medicine and Biology Society, Chicago, IL, 2000), MO A313-01.
26.
26.M. J. Rivard, “Refinements to the geometry factor used in the AAPM Task Group Report No. 43 necessary for brachytherapy dosimetry calculations,” Med. Phys. 26, 24452450 (1999).
27.
27.M. J. Rivard, “Neutron dosimetry for a general brachytherapy source,” Med. Phys. 27, 28032815 (2000).
28.
28.E. Kouwenhoven, R. van der Laars, and D. R. Schaart, “Variation in interpretation of the AAPM TG-43 geometry factor leads to unclearness in brachytherapy dosimetry,” Med. Phys. 28, 19651966 (2001).
29.
29.J. A. Meli, “Let’s abandon geometry factors other than that of a point source in brachytherapy dosimetry,” Med. Phys. 29, 19171918 (2002).
30.
30.M. J. Rivard, B. M. Coursey, L. A. DeWerd, W. F. Hanson, M. S. Huq, G. Ibbott, R. Nath, and J. F. Williamson, “Comment on ‘Let’s abandon geometry factors other than that of a point source in brachytherapy dosimetry’,” Med. Phys. 29, 19191920 (2002).
31.
31.M. J. Rivard, “Comments on ‘Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43’,” Med. Phys. 26, 2514 (1999).
32.
32.D. C. Moss, “Improved analytical fit to the TG-43 radial dose function, Med. Phys. 27, 659661 (2000).
33.
33.P. Lindsay, J. Battista, and J. Van Dyk, “The effect of seed anisotropy on brachytherapy dose distributions using and Med. Phys. 28, 336345 (2001).
34.
34.J. F. Corbett, J. J. Jezioranski, J. Crook, T. Tran, and I. W. T. Yeung, “The effect of seed orientation deviations on the quality of prostate implants,” Phys. Med. Biol. 46, 27852800 (2001).
35.
35.R. Nath, M. J. Rivard, B. M. Coursey, L. A. DeWerd, W. F. Hanson, M. S. Huq, G. Ibbott, and J. F. Williamson, “Status of the American Association of Physicist in Medicine Radiation Therapy Committee Subcommittee’s Low-Energy Interstitial Brachytherapy Source Dosimetry: Procedure for the development of consensus single source dose distributions,” Med. Phys. 29, 1349 (2002).
36.
36.J. F. Williamson, B. M. Coursey, L. A. DeWerd, W. H. Hanson, R. Nath, and G. Ibbott, “Guidance to users of Nycomed Amersham and North American Scientific, Inc., I-125 interstitial sources: Dosimetry and calibration changes: Recommendations of the American Association of Physicists in Medicine Radiation Therapy Committee Ad Hoc Subcommittee on Low-Energy Seed Dosimetry,” Med. Phys. 26, 570573 (1999).
37.
37.J. F. Williamson, “Comparison of measured and calculated dose rates in water near I-125 and Ir-192 seeds,” Med. Phys. 18, 776786 (1991).
38.
38.D. M. Gearheart, A. Drogin, K. Sowards, A. S. Meigooni, and G. S. Ibbott, “Dosimetric characteristics of a new brachytherapy source,” Med. Phys. 27, 22782285 (2000).
39.
39.R. Nath and N. Yue, “Dose distribution along the transverse axis of a new source for interstitial brachytherapy,” Med. Phys. 27, 25362540 (2000).
40.
40.J. I. Monroe and J. F. Williamson, “Monte Carlo-aided dosimetry of the Theragenics TheraSeed® Model 200 interstitial brachytherapy seed,” Med. Phys. 29, 609621 (2002).
41.
41.B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Technical Note 1297 (U.S. Government Printing Office, Washington, DC, 1994).
42.
42.H. Hedtjarn, G. A. Carlsson, and J. F. Williamson, “Monte Carlo-aided dosimetry of the Symmetra model 125.S06 interstitial brachytherapy seed,” Med. Phys. 27, 10761085 (2000).
43.
43.J. H. Hubbell, “Review of photon interaction cross section data in the medical and biological context,” Phys. Med. Biol. 44, R1R2 (1999).
44.
44.J. F. Williamson, “Dosimetric characteristics of the DraxImage Model LS-1 I-125 interstitial brachytherapy source design: A Monte Carlo investigation,” Med. Phys. 29, 509521 (2002).
45.
45.M. J. Rivard, “Monte Carlo calculations of AAPM Task Group Report No. 43 dosimetry parameters for the MED3631-A/M source,” Med. Phys. 28, 629637 (2001).
46.
46.J. F. Williamson, “Monte Carlo modeling of the transverse-axis dose distribution of the Model 200 interstitial brachytherapy source,” Med. Phys. 27, 643654 (2000).
47.
47.M. S. Levenson, D. L. Banks, K. R. Eberhardt, L. M. Gill, W. F. Guthrie, H. K. Liu, M. G. Vangel, J. H. Yen, and N. F. Zhang, “An approach to combining results from multiple methods motivated by the ISO GUM,” J. Res. Natl. Inst. Stand. Technol. 105, 571579 (2000).
48.
48.Z. Li, J. J. Fan, and J. R. Palta, “Experimental measurements of dosimetric parameters on the transverse axis of a new source,” Med. Phys. 27, 12751280 (2000).
49.
49.Z. Li, J. F. Williamson, and H. Perera, “Monte Carlo calculation of kerma-to-a-point in the vicinity of media interfaces,” Phys. Med. Biol. 38, 18251840 (1993).
50.
50.T. Kron, L. DeWerd, P. Mobit, J. Muniz, A. Pradhan, M. Toivonen, and M. Waligorski, “A checklist for reporting of thermoluminescence dosimetry (TLD) measurements,” Phys. Med. Biol. 44, L15L17 (1999).
51.
51.J. F. Williamson, “Monte Carlo evaluation of specific dose constants in water for seeds,” Med. Phys. 15, 686694 (1988).
52.
52.National Nuclear Data Center. Nuclear data from NuDat, a web-based database maintained by the National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY, USA; last database update reported as August 12, 2000; http://www.nndc.bnl.gov/nndc/nudat/ last accessed February 17, 2004.
53.
53.Lund/LBNL Nuclear Data Search (1999). Version 2.0, February 1999, by S. Y. F. Chu, L. P. Ekström, and R. B. Firestone, providing the WWW Table of Radioactive Isotopes, maintained by the Lawrence Berkeley National Laboratory, Berkeley, CA, USA, and the Department of Physics, Lund University, Sweden; http://nucleardata.nuclear.lu.se/nucleardata/toi/ last accessed February 17, 2004.
54.
54.S. M. Seltzer, “Calculation of photon mass energy-transfer and mass energy-absorption coefficients,” Radiat. Res. 136, 147170 (1993).
55.
55.S. M. Seltzer and J. H. Hubbell, “Tables and graphs of mass attenuation coefficients and mass energy-absorption coefficients for photon energies 1 keV to 20 MeV for elements to 92 and some dosimetric materials,” Japanese Society of Radiological Technology, ISSN 1340-7716 (1995).
56.
56.M. J. Rivard, D. S. Waid, and J. G. Wierzbicki, “Mass attenuation coefficients of Clear-Pb® for photons from and Health Phys. 77, 571578 (1999).
57.
57.ICRU 37 Stopping Powers for Electrons and Positrons, International Commission on Radiation Units and Measurements (ICRU 37, Bethesda, MD, 1989).
58.
58.Private communication with Steve Seltzer of NIST, September 13, 2001.
59.
59.N. S. Patel, S-T. Chiu-Tsao, J. F. Williamson, P. Fan, T. Duckworth, D. Shasha, and L. B. Harrison, “Thermoluminescent dosimetry of the Symmetra™ model I25.S06 interstitial brachytherapy seed,” Med. Phys. 28, 17611769 (2001).
60.
60.S.-T. Chiu-Tsao and L. L. Anderson, “Thermoluminescent dosimetry for seeds (model 200) in solid water phantom,” Med. Phys. 18, 449–452 (1991).
61.
61.A. S. Meigooni, V. Mishra, H. Panth, and J. F. Williamson, “Instrumentation and dosimeter-size artifacts in quantitative thermoluminescent dosimetry of low-dose fields,” Med. Phys. 22, 555561 (1995).
62.
62.L. da Rosa and H. Nette, “Thermoluminescent dosimeters for exposure assessment in gamma or x radiation fields with unknown spectral distribution,” Appl. Radiat. Isot. 39, 191197 (1988).
63.
63.R. K. Das, Z. Li, H. Perera, and J. F. Williamson, “Accuracy of Monte Carlo photon transport simulation in characterizing brachytherapy dosimeter energy response artifacts,” Phys. Med. Biol. 41, 9951006 (1996).
64.
64.J. F. Williamson, J. F. Dempsey, A. S. Kirov, J. I. Monroe, W. R. Binns, and H. Hedtjärn, “Plastic scintillator response to low-energy photons,” Phys. Med. Biol. 44, 857872 (1999).
65.
65.M. Schell, C. C. Ling, Z. C. Gromadzki, and K. R. Working, “Dose distributions of model 6702 I-125 seeds in water,” Int. J. Radiat. Oncol., Biol., Phys. 13, 795799 (1987).
66.
66.S-T. Chiu-Tsao, L. L. Anderson, K. O’Brien, and R. Sanna, “Dose rate determination for seeds,” Med. Phys. 17, 815825 (1990).
67.
67.A. Piermattei, L. Azario, G. Monaco, A. Soriani, and G. Arcovito, “-type silicon detector for brachytherapy dosimetry,” Med. Phys. 22, 835839 (1995).
68.
68.J. F. Williamson, H. Perera, Z. Li, and W. R. Lutz, “Comparison of calculated and measured heterogeneity correction factors for and brachytherapy sources near localized heterogeneities,” Med. Phys. 20, 209222 (1993).
69.
69.M. Ahmad, D. P. Fontenla, S-T. Chiu-Tsao, C. S. Chui, J. E. Reiff, L. L. Anderson, D. Y. C. Huang, and M. C. Schell, “Diode dosimetry of models 6711 and 6712 seeds in a water phantom,” Med. Phys. 19, 391399 (1992).
70.
70.C. C. Ling, M. C. Schell, and E. D. Yorke, “Two-dimensional dose distribution of seeds,” Med. Phys. 12, 652655 (1985).
71.
71.T. D. Bohm, D. W. Pearson, and R. K. Das, “Measurements and Monte Carlo calculations to determine the absolute detector response of radiochromic film for brachytherapy dosimetry,” Med. Phys. 28, 142146 (2001).
72.
72.A. Niroomand-Rad, C. R. Blackwell, B. M. Coursey, K. P. Gall, J. M. Galvin, W. L. McLaughlin, A. S. Meigooni, R. Nath, J. E. Rogers, and C. G. Soares, “Radiochromic film dosimetry: Recommendations of AAPM Radiation Therapy Committee Task Group 55,” Med. Phys. 25, 20932115 (1998).
73.
73.D. Flühs, M. Heintz, F. Indenkämpen, C. Wieczorek, H. Kolanoski, and U. Quast, “Direct reading measurement of absorbed dose with plastic scintillators—The general concept and applications to ophthalmic plaque dosimetry,” Med. Phys. 23, 427434 (1996).
74.
74.A. S. Kirov, C. Hurlbut, J. F. Dempsey, S. B. Shrinivas, J. W. Epstein, W. R. Binns, P. F. Dowkontt, and J. F. Williamson, “Towards two-dimensional brachytherapy dosimetry using plastic scintillator: New highly efficient water equivalent plastic scintillator materials,” Med. Phys. 26, 15151523 (1999).
75.
75.S-T. Chiu-Tsao, A. de la Zerda, J. Lin, and J. H. Kim, “High-sensitivity GafChromic film dosimetry for seed,” Med. Phys. 21, 651657 (1994).
76.
76.J. F. Dempsey, D. A. Low, A. S. Kirov, and J. F. Williamson, “Quantitative optical densitometry with scanning-laser film digitizers,” Med. Phys. 26, 17211731 (1999).
77.
77.G. H. Chan and W. V. Prestwich, “Dosimetric properties of the new BrachySeed™ model LS-1 source,” Med. Phys. 29, 190200 (2002).
78.
78.M. J. Maryanski, G. S. Ibbott, P. Eastman, R. J. Schulz, and J. C. Gore, “Radiation therapy dosimetry using magnetic resonance imaging of polymer gels,” Med. Phys. 23, 699705 (1996).
79.
79.M. F. Chan, A. Y. C. Fung, Y-C. Hu, C-S. Chui, H. Amols, M. Zaider, and D. Abramson, “The measurement of three dimensional dose distribution of a ruthenium-106 ophthalmological applicator using magnetic resonance imaging of BANG polymer gels,” J. Appl. Clin. Med. Phys. 2, 8589 (2001).
80.
80.B. F. Hasson, “Chemical dosimetry in the near-zone of brachytherapy sources,” Med. Phys. 25, 2076 (1998).
81.
81.A. S. Meigooni, Z. Bharucha, M. Yoe-Sein, and K. Sowards, “Dosimetric characteristics of the Best® double-wall brachytherapy source,” Med. Phys. 28, 25682575 (2001).
82.
82.A. S. Meigooni, Z. Li, Vi. Mishra, and J. F. Williamson, “A comparative study of dosimetric properties of Plastic Water and Solid Water in brachytherapy applications,” Med. Phys. 21, 19831987 (1994).
83.
83.J. F. Williamson and A. S. Meigooni, “Quantitative dosimetry methods in brachytherapy,” in Brachytherapy Physics, edited by J. F. Williamson, B. R. Thomadsen, and R. Nath (Medical Physics Publishing, Madison, WI, 1995), pp. 87–133.
84.
84.A. S. Meigooni, J. A. Meli, and R. Nath, “A comparison of solid phantoms with water for dosimetry of model 6702 brachytherapy sources,” Med. Phys. 15, 695701 (1988).
85.
85.K. A. Weaver, “Response of LiF powder to photons,” Med. Phys. 11, 850854 (1984).
86.
86.C. Reft, “The energy response of LiF TLD-100 to low and high energy photons and to high energy electrons for varying dosimeter thickness,” Phys. Med. Biol. 33, 96 (1988).
87.
87.A. S. Meigooni, D. M. Gearheart, and K. Sowards, “Experimental determination of dosimetric characteristics of Best double-walled I-125 brachytherapy source” Data sheet provided by Best Industries, October 2, 2000.
88.
88.S. D. Davis, C. K. Ross, P. N. Mobit, L. Van der Zwan, W. J. Chase, and K. R. Shortt, “The response of LiF thermoluminescent dosemeters to photon beams in the energy range from 30 kV X rays to gamma rays,” Radiat. Prot. Dosim. 106, 3343 (2003).
89.
89.I. Kawrakow and D. W. O. Rogers, The EGSnrc code system: Monte Carlo simulations of electron and photon transport. NRCC Report PITS-701, National Research Council of Canada, Ottawa, 2001.
90.
90.J. F. Briesmeister, MCNP-A General Monte Carlo N-Particle Transport Code System, Version 4C, LA-13709-M, 2000.
91.
91.J. F. Williamson, “Monte Carlo evaluation of kerma at a point for photon transport problems,” Med. Phys. 14, 567576 (1987).
92.
92.G. M. Daskalov, R. S. Baker, D. W. O. Rogers, and J. F. Williamson, “Multigroup discrete ordinates modeling of 6702 seed dose distributions using a broad energy-group cross section representation,” Med. Phys. 29, 113124 (2002).
93.
93.J. F. Williamson, R. Baker, and Z. Li, “A convolution algorithm for brachytherapy dose computations in heterogeneous geometries,” Med. Phys. 18, 12561265 (1991).
94.
94.Z. Chuanyu and F. Inanc, “Integral-transport-based deterministic brachytherapy dose calculations,” Phys. Med. Biol. 48, 7393 (2003).
95.
95.K. Weaver, “Anisotropy functions for and sources,” Med. Phys. 25, 22712278 (1998).
96.
96.J. J. DeMarco, R. E. Wallace, and K. Boedeker, “An analysis of MCNP cross-sections and tally methods for low-energy photon emitters,” Phys. Med. Biol. 47, 13211332 (2002).
97.
97.E. Storm and H. Israel, “Photon cross-sections from 1 keV to 100 MeV for elements to Nucl. Data, Sect. A 7, 566575 (1970).
98.
98.W. Alberti, S. Divoux, B. Pothmann, P. Tabor, K-P. Hermann, and D. Harder, “Autoradiography for Iodine-125 seeds,” Int. J. Radiat. Oncol., Biol., Phys. 25, 881884 (1993).
99.
99.A. S. Meigooni, J. F. Williamson, and R. Nath, “Single source dosimetry for interstitial brachytherapy,” in Brachytherapy Physics, edited by J. F. Williamson, B. R. Thomadsen, and R. Nath (American Institute of Physics, New York, 1995), pp. 209–233.
100.
100.G. J. Kutcher, L. Coia, M. Gillin, W. F. Hanson, S. Liebel, R. J. Morton, J. R. Palta, J. A. Purdy, L. E. Reinstein, G. K. Svensson, M. Weller, and L. Wingfield, “Comprehensive QA for radiation oncology: Report of the AAPM Radiation Therapy Committee Task Group 40,” Med. Phys. 21, 581618 (1994).
101.
101.B. Fraass, K. Doppke, M. Hunt, G. Kutcher, G. Starkschall, R. Stern, and J. Van Dyke, “American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning,” Med. Phys. 25, 17731829 (1998).
102.
102.R. Nath, L. L. Anderson, J. A. Meli, A. J. Olch, J. A. Stitt, and J. F. Williamson, “Code of practice for brachytherapy physics: Report of the AAPM Radiation Therapy Committee Task Group No. 56,” Med. Phys. 24, 15571598 (1997).
103.
103.R. Nath, A. S. Meigooni, P. Muench, and A. Melillo, “Anisotropy functions for Pd-103, I-125, and Ir-192 interstitial brachytherapy sources,” Med. Phys. 20, 14651473 (1993).
104.
104.R. S. Sloboda and G. V. Menon, “Experimental determination of the anisotropy function and anisotropy factor for model 6711 I-125 seeds,” Med. Phys. 27, 17891799 (2000).
105.
105.E. E. Furhang and L. L. Anderson, “Functional fitting of interstitial brachytherapy dosimetry data recommended by the AAPM Radiation Therapy Committee Task Group 43,” Med. Phys. 26, 153160 (1999).
106.
106.R. Nath, A. S. Meigooni, and J. A. Meli, “Dosimetry on transverse axes of and interstitial brachytherapy sources,” Med. Phys. 17, 10321040 (1990).
107.
107.K. A. Weaver, V. Smith, D. Huang, C. Barnett, M. C. Schell, and C. Ling, “Dose parameters of and seed sources,” Med. Phys. 16, 636643 (1989).
108.
108.J. F. Williamson, “On the dosimetric influences of air kerma for and brachytherapy sources,” in Proceedings of 2000 World Congress on Medical Physics and Biomedical Engineering, edited by G. D. Fullerton (IEEE Engineering Medicine and Biology Society, Chicago, IL, 2000), MO E309-02.
109.
109.Z. Chen and R. Nath, “Dose rate constant and energy spectrum of interstitial brachytherapy sources,” Med. Phys. 28, 8696 (2001).
110.
110.E. Mainegra, R. Capote, and E. López, “Radial dose functions for and brachytherapy sources: an EGS4 Monte Carlo study,” Phys. Med. Biol. 45, 703717 (2000).
111.
111.R. Capote, E. Mainegra, and E. Lopez, “Anisotropy functions for low energy interstitial brachytherapy sources: an EGS4 Monte Carlo study,” Phys. Med. Biol. 46, 135150 (2001).
112.
112.J. H. Hubbell, J. S. Coursey, J. Hwang, and D. S. Zucker. Bibliography of Photon Total Cross Section (Attenuation Coefficient) Measurements (online version 2.2): http://physics.nist.gov/photoncs last accessed February 17, 2004, National Institute of Standards and Technology, Gaithersburg, MD, 1998.
113.
113.S. N. Rustgi, “Photon spectral characteristics of a new double-walled iodine-125 source,” Med. Phys. 19, 927931 (1992).
114.
114.R. Nath and A. Mellilo, “Dosimetric characteristics of a double wall source for interstitial brachytherapy,” Med. Phys. 20, 14751483 (1993).
115.
115.A. S. Meigooni, D. M. Gearheart, and K. Sowards, “Experimental determination of dosimetric characteristics of Best brachytherapy source,” Med. Phys. 27, 21682173 (2000).
116.
116.R. Nath and N. Yue, “Dosimetric characterization of an encapsulated interstitial brachytherapy source of I-125 on a tungsten substrate,” J. Brachytherapy 1, 102–109 (2002).
117.
117.K. Sowards and A. S. Meigooni, “Monte Carlo evaluation of the dosimetric characteristics of the Best model 2301 I-125 brachytherapy source,” Appl. Radiat. Isot. 57, 327333 (2002).
118.
118.M. J. Rivard, “Comment on ‘Experimental measurements of dosimetric parameters on the transverse axis of a new source’,” Med. Phys. 28, 704 (2001).
119.
119.R. E. Wallace and J. J. Fan, “Report on the dosimetry of a new design brachytherapy source,” Med. Phys. 26, 19251931 (1999).
120.
120.R. E. Wallace and J. J. Fan, “Evaluation of a new brachytherapy iodine-125 source by AAPM TG43 formalism,” Med. Phys. 25, 21902196 (1998).
121.
121.J. G. Wierzbicki, M. J. Rivard, D. S. Waid, and V. E. Arterbery, “Calculated dosimetric parameters of the IoGold source model 3631-A,” Med. Phys. 25, 21972199 (1998).
122.
122.J. G. Wierzbicki, D. S. Waid, M. J. Rivard, and V. E. Arterbery, “Radiographic characterization and energy spectrum of the IoGold source model 3631-A/S,” Med. Phys. 26, 392294 (1999).
123.
123.J. F. Briesmeister MCNP-A General Monte Carlo N-Particle Transport Code System, Version 4B, LA-12625-M, 1997.
124.
124.M. J. Rivard, J. G. Wierzbicki, F. Van den Heuvel, R. C. Martin, and R. R. McMahon, “Clinical brachytherapy with neutron emitting sources and adherence to AAPM TG-43 dosimetry protocol,” Med. Phys. 26, 8796 (1999).
125.
125.M. J. Rivard, “Dosimetry for neutron emitting brachytherapy sources: Protocol, measurements, and calculations,” Med. Phys. 26, 15031514 (1999).
126.
126.M. J. Rivard, “Measurements and calculations of thermal neutron fluence rate and neutron energy spectra resulting from moderation of fast neutrons: Applications for neutron capture therapy,” Med. Phys. 27, 17611769 (2000).
127.
127.D. S. Waid, M. J. Rivard, and J. G. Wierzbicki, “The 0.897 factor is not used to convert to when performing Monte Carlo calculations to calculate the dose rate constant,” Med. Phys. (accepted).
128.
128.G. S. Ibbott and R. Nath, “Dose-rate constant for Imagyn brachytherapy source,” Med. Phys. 28, 705 (2001).
129.
129.G. S. Ibbott, A. S. Meigooni, and D. M. Gearheart, “Monte Carlo determination of dose rate constant,” Med. Phys. 29, 16371638 (2002).
130.
130.J. F. Williamson, B. M. Coursey, L. A. DeWerd, W. F. Hanson, G. Ibbott, R. Nath, and M. J. Rivard, “Important notice for radiation therapy physicists using or brachytherapy sources,” Radiation Therapy Committee on Low-Energy Interstitial Brachytherapy Dosimetry Subcommittee, Recommendations of the American Association of Physicists in Medicine, http://rpc.mdanderson.org/rpc/htm/Home_htm/Low-energy%20documents/ImpNotice_EndUsers_v12.pdf last accessed February 17, 2004.
131.
131.R. Nath, N. Yue, K. Shahnazi, and P. J. Bongiorni, “Measurement of dose-rate constant for seeds with air kerma strength calibration based upon a primary national standard,” Med. Phys. 27, 655658 (2000).
132.
132.A. S. Meigooni, S. Sabnis, and R. Nath, “Dosimetry of brachytherapy sources for permanent implant,” Endocurietherapy/Hyperthermia Oncology 6, 107–117 (1990).
133.
133.N. Yue and R. Nath, “Experimental determination of the anisotropy function for the Model 200 “light seed” and derivation of the anisotropy constant based upon the linear quadratic model,” Med. Phys. 29, 11201129 (2002).
134.
134.R. E. Wallace and J. J. Fan, “Dosimetric characterization of a new design brachytherapy source,” Med. Phys. 26, 24652470 (1999).
135.
135.G. Luxton, “Comparison of radiation dosimetry in water and solid phantom materials for I-125 and Pd-103 brachytherapy sources: EGS4 Monte Carlo study,” Med. Phys. 21, 631641 (1994).
136.
136.R. E. Wallace, “On the conversion of dosimetric data among phantom materials for and brachytherapy sources using build-up factor methods with spectral conditions,” Med. Phys. 25, A172 (1998).
137.
137.Z. Li, J. R. Palta, and J. J. Fan, “Monte Carlo calculations and experimental measurements of dosimetry parameters of a new source,” Med. Phys. 27, 11081112 (2000).
138.
138.M. J. Rivard, “A discretized approach to determining TG-43 brachytherapy dosimetry parameters: Case study using Monte Carlo calculations for the MED3633 source,” Appl. Radiat. Isot. 55, 775782 (2001).
139.
139.G. Luxton and G. Jozsef, “Radial dose distribution, dose to water and dose rate constant for monoenergetic photon point sources from 10 keV to 2 MeV: EGS4 Monte Carlo calculation,” Med. Phys. 26, 25312538 (1999).
140.
140.Å. K. Carlsson and A. Ahnjesö, “The collapsed cone superposition algorithm applied to scatter dose calculations in brachytherapy,” Med. Phys. 27, 23202332 (2000).
141.
141.T. P. Loftus, “Standardization of cesium-137 gamma-ray sources in terms of exposure units (roentgens),” J. Res. Natl. Bur. Stand., Sect. A 74A, 16 (1970).
142.
142.T. P. Loftus, “Exposure standardization of iodine-125 seeds used for brachytherapy,” J. Res. Natl. Bur. Stand. 89, 295303 (1984).
143.
143.V. H. Ritz, “Standard free-air chamber for the measurement of low energy x rays (20-100 kilovolts-constant-potential),” J. Res. Natl. Bur. Stand., Sect. C 64C, 4953 (1960).
144.
144.J. T. Weaver, T. P. Loftus, and R. Loevinger, “Calibration of gamma-ray-emitting brachytherapy sources,” NBS Special Publication 250-19 1988.
145.
145.H. D. Kubo, B. M. Coursey, W. F. Hanson, R. W. Kline, S. M. Seltzer, R. E. Shuping, and J. F. Williamson, “Report of the ad hoc committee of the AAPM Radiation Therapy Committee on sealed source dosimetry,” Int. J. Radiat. Oncol., Biol., Phys. 40, 697702 (1998).
146.
146.H. Kubo, “Exposure contribution from Ti K x rays produced in the titanium capsule of the clinical seed,” Med. Phys. 12, 215220 (1985).
147.
147.R. Loevinger, “Wide-angle free-air chamber for calibration of low-energy brachytherapy sources,” Med. Phys. 20, 907 (1993).
148.
148.International Organization for Standardization Guide to the Expression of Uncertainty in Measurement, ISO, Geneva, Switzerland (1993). Jointly published by the International Bureau of Weights and Measures (BIPM), International Electrotechnical Commission (IEC), International Federation of Clinical Chemistry (IFCC), ISO, International Union of Pure and Applied Chemistry (IUPAC), International Union of Pure and Applied Physics (IUPAP), and the International Organization for Legal Metrology (IOLM).
149.
149.A. S. Kirov and J. F. Williamson, “Monte Carlo-aided dosimetry of the Source Tech Medical Model STM1251 I-125 interstitial brachytherapy source,” Med. Phys. 28, 764772 (2001);
149.A. S. Kirov and J. F. Williamson, Med. Phys. 29, 262263 (2002).
150.
150.S. M. Seltzer, P. J. Lamperti, R. Loevinger, M. G. Mitch, J. T. Weaver, and B. M. Coursey, “New national air-kerma-strength standards for I and Pd brachytherapy seeds,” J. Res. Natl. Inst. Stand. Technol. 108, 337358 (2003), online version http://nvl.nist.gov/pub/nistpubs/jres/108/5/j85sell.pdf last accessed February 17, 2004.
151.
151.L. A. DeWerd, M. S. Huq, I. J. Das, G. S. Ibbott, W. F. Hanson, T. W. Slowey, J. F. Williamson, and B. M. Coursey, “Procedures for establishing and maintaining consistent air-kerma strength standards for low-energy, photon-emitting brachytherapy sources: Recommendations of the Calibration Laboratory Accreditation Subcommittee of the American Association of Physicists in Medicine,” Med. Phys. 31, 675681 (2004).
152.
152.J. F. Williamson and Z. Li, “Monte Carlo aided dosimetry of the microSelectron pulsed and high dose rate sources,” Med. Phys. 22, 809819 (1995).
153.
153.M. J. Rivard, “Comprehensive Monte Carlo calculations of AAPM Task Group Report No. 43 dosimetry parameters for the Model 3500 I-Plant brachytherapy source,” Appl. Radiat. Isot. 57, 381389 (2002).
154.
154.G. M. Daskalov, E. Löffler, and J. F. Williamson, “Monte Carlo-aided dosimetry of a new high dose-rate brachytherapy source,” Med. Phys. 25, 22002208 (1998).
155.
155.J. Earle, R. W. Kline, and D. M. Robertson, “Selection of iodine 125 for the Collaborative Ocular Melanoma study,” Arch. Opthalmol. 105, 763764 (1987).
156.
156.M. A. Astrahan, G. Luxton, G. Jozsef, P. E. Liggett, and A. Petrovich, “Optimization of opthalmic plaque brachytherapy,” Med. Phys. 17, 10531057 (1990).
157.
157.S. Nag, J. M. Quivey, J. D. Earle, D. Followill, J. Fontanesi, and P. T. Finger, “The American Brachytherapy Society recommendations for brachytherapy of uveal melanomas,” Int. J. Radiat. Oncol., Biol., Phys. 56, 544555 (2003).
158.
158.A. L. Krintz, W. F. Hanson, G. S. Ibbott, and D. S. Followill, “A reanalysis of the Collaborative Ocular Melanoma study medium tumor trial eye plaque dosimetry,” Int. J. Radiat. Oncol., Biol., Phys. 56, 889898 (2003).
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/31/3/10.1118/1.1646040
Loading
/content/aapm/journal/medphys/31/3/10.1118/1.1646040
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/31/3/10.1118/1.1646040
2004-02-27
2016-06-27
Loading

Full text loading...

true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/31/3/10.1118/1.1646040&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/31/3/10.1118/1.1646040'
Right1,Right2,Right3,