1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
The management of respiratory motion in radiation oncology report of AAPM Task Group 76a)
a) This manuscript is a moderately condensed version of the full report of the Task Group. The full report contains further background material and is available through the AAPM.
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/33/10/10.1118/1.2349696
1.
1.C. A. Perez, M. Bauer, S. Edelstein, B. W. Gillespie, and R. Birch, “Impact of tumor control on survival in carcinoma of the lung treated with irradiation,” Int. J. Radiat. Oncol., Biol., Phys. 12(4), 539547 (1986).
2.
2.N. C. Choi and J. A. Doucette, “Improved survival of patients with unresectable non-small-cell bronchogenic carcinoma by an innovated high-dose en-bloc radiotherapeutic approach,” Cancer 48(1), 101109 (1981).
3.
3.M. K. Martel, R. K. Ten Haken, M. B. Hazuka, M. L. Kessler, M. Strawderman, A. T. Turrisi, T. S. Lawrence, B. A. Fraass, and A. S. Lichter, “Estimation of tumor control probability model parameters from 3-D dose distributions of non-small cell lung cancer patients,” Lung Cancer 24(1), 3137 (1999).
4.
4.P. Okunieff, D. Morgan, A. Niemierko, and H. D. Suit, “Radiation dose-response of human tumors,” Int. J. Radiat. Oncol., Biol., Phys. 32(4), 12271237 (1995).
http://dx.doi.org/10.1088/0031-9155/33/1/001
5.
5.C. A. Perez, K. Stanley, P. Rubin, S. Kramer, L. Brady, R. Perez-Tamayo, G. S. Brown, J. Concannon, M. Rotman, and H. G. Seydel, “A prospective randomized study of various irradiation doses and fractionation schedules in the treatment of inoperable non-oat-cell carcinoma of the lung. Preliminary report by the Radiation Therapy Oncology Group,” Cancer 45(11), 27442753 (1980).
6.
6.C. A. Perez, T. F. Pajak, P. Rubin, J. R. Simpson, M. Mohiuddin, L. W. Brady, R. Perez-Tamayo, and M. Rotman, “Long-term observations of the patterns of failure in patients with unresectable non-oat cell carcinoma of the lung treated with definitive radiotherapy. Report by the Radiation Therapy Oncology Group,” Cancer 59(11), 18741881 (1987).
7.
7.M. Machtay, “Higher BED is associated with improved local-regional control and survival for NSCLC treated with chemoradiotherapy: An RTOG analysis,” Int. J. Radiat. Oncol., Biol., Phys. 63(2), S66 (2005).
8.
8.R. C. McGarry, L. Papiez, M. Williams, T. Whitford, and R. D. Timmerman, “Stereotactic body radiation therapy of early-stage non-small-cell lung carcinoma: Phase I study,” Int. J. Radiat. Oncol., Biol., Phys. 63(4), 10101015 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2005.03.073
9.
9.J. Wulf, K. Baier, G. Mueller, and M. P. Flentje, “Dose-response in stereotactic irradiation of lung tumors,” Radiother. Oncol. 77(1), 8387 (2005).
http://dx.doi.org/10.1016/j.radonc.2005.09.003
10.
10.S. L. Kwa, J. V. Lebesque, J. C. Theuws, L. B. Marks, M. T. Munley, G. Bentel, D. Oetzel, U. Spahn, M. V. Graham, R. E. Drzymala, J. A. Purdy, A. S. Lichter, M. K. Martel, and R. K. Ten Haken, “Radiation pneumonitis as a function of mean lung dose: An analysis of pooled data of 540 patients,” Int. J. Radiat. Oncol., Biol., Phys. 42(1), 19 (1998).
http://dx.doi.org/10.1016/S0360-3016(98)00196-5
11.
11.M. V. Graham, J. A. Purdy, B. Emami, W. Harms, W. Bosch, M. A. Lockett, and C. A. Perez, “Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC),” Int. J. Radiat. Oncol., Biol., Phys. 45(2), 323329 (1999).
http://dx.doi.org/10.1016/S0360-3016(99)00183-2
12.
12.M. L. Hernando, L. B. Marks, G. C. Bentel, S. M. Zhou, D. Hollis, S. K. Das, M. Fan, M. T. Munley, T. D. Shafman, M. S. Anscher, and P. A. Lind, “Radiation-induced pulmonary toxicity: A dose-volume histogram analysis in 201 patients with lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. 51(3), 650659 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)01685-6
13.
13.D. Oetzel, P. Schraube, F. Hensley, G. Sroka-Perez, M. Menke, and M. Flentje, “Estimation of pneumonitis risk in three-dimensional treatment planning using dose-volume histogram analysis,” Int. J. Radiat. Oncol., Biol., Phys. 33(2), 455460 (1995).
http://dx.doi.org/10.1016/0360-3016(95)00009-N
14.
14.Y. Seppenwoolde, J. V. Lebesque, K. de Jaeger, J. S. Belderbos, L. J. Boersma, C. Schilstra, G. T. Henning, J. A. Hayman, M. K. Martel, and R. K. Ten Haken, “Comparing different NTCP models that predict the incidence of radiation pneumonitis,” Int. J. Radiat. Oncol., Biol., Phys. 55(3), 724735 (2003).
http://dx.doi.org/10.1016/S0360-3016(02)03986-X
15.
15.E. D. Yorke, A. Jackson, K. E. Rosenzweig, S. A. Merrick, D. Gabrys, E. S. Venkatraman, C. M. Burman, S. A. Leibel, and C. C. Ling, “Dose-volume factors contributing to the incidence of radiation pneumonitis in non-small-cell lung cancer patients treated with three-dimensional conformal radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 54(2), 329339 (2002).
http://dx.doi.org/10.1016/S0360-3016(02)02929-2
16.
16.J. Van de Steene, N. Linthout, J. de Mey, V. Vinh-Hung, C. Claassens, M. Noppen, A. Bel, and G. Storme, “Definition of gross tumor volume in lung cancer: Inter-observer variability,” Radiother. Oncol. 62(1), 3749 (2002).
http://dx.doi.org/10.1016/S0167-8140(01)00453-4
17.
17.P. Giraud, S. Elles, S. Helfre, Y. De Rycke, V. Servois, M. F. Carette, C. Alzieu, P. Y. Bondiau, B. Dubray, E. Touboul, M. Housset, J. C. Rosenwald, and J. M. Cosset, “Conformal radiotherapy for lung cancer: Different delineation of the gross tumor volume (GTV) by radiologists and radiation oncologists,” Radiother. Oncol. 62(1), 2736 (2002).
18.
18.P. Bowden, R. Fisher, M. Mac Manus, A. Wirth, G. Duchesne, M. Millward, A. McKenzie, J. Andrews, and D. Ball, “Measurement of lung tumor volumes using three-dimensional computer planning software,” Int. J. Radiat. Oncol., Biol., Phys. 53(3), 566573 (2002).
http://dx.doi.org/10.1016/S0360-3016(02)02783-9
19.
19.S. Senan, J. van Sornsen de Koste, M. Samson, H. Tankink, P. Jansen, P. J. Nowak, A. D. Krol, P. Schmitz, and F. J. Lagerwaard, “Evaluation of a target contouring protocol for 3D conformal radiotherapy in non-small cell lung cancer,” Radiother. Oncol. 53(3), 247255 (1999).
http://dx.doi.org/10.1016/S0167-8140(99)00143-7
20.
20.C. W. Hurkmans, J. H. Borger, B. R. Pieters, N. S. Russell, E. P. Jansen, and B. J. Mijnheer, “Variability in target volume delineation on CT scans of the breast,” Int. J. Radiat. Oncol., Biol., Phys. 50(5), 13661372 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)01635-2
21.
21.R. Valdagni, C. Italia, P. Montanaro, M. Ciocca, G. Morandi, and B. Salvadori, “Clinical target volume localization using conventional methods (anatomy and palpation) and ultrasonography in early breast cancer post-operative external irradiation,” Radiother. Oncol. 42(3), 231237 (1997).
22.
22.L. Ekberg, O. Holmberg, L. Wittgren, G. Bjelkengren, and T. Landberg, “What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer?,” Radiother. Oncol. 48, 7177 (1998).
http://dx.doi.org/10.1016/S0167-8140(98)00046-2
23.
23.J. T. Booth and S. F. Zavgorodni, “Set-up error and organ motion uncertainty: A review,” Australas. Phys. Eng. Sci. Med. 22(2), 2947 (1999).
24.
24.M. Engelsman, E. M. Damen, K. De Jaeger, K. M. van Ingen, and B. J. Mijnheer, “The effect of breathing and set-up errors on the cumulative dose to a lung tumor,” Radiother. Oncol. 60(1), 95105 (2001).
http://dx.doi.org/10.1016/S0167-8140(01)00349-8
25.
25.S. Essapen, C. Knowles, A. Norman, and D. Tait, “Accuracy of set-up of thoracic radiotherapy: prospective analysis of 24 patients treated with radiotherapy for lung cancer,” Br. J. Radiol. 75(890), 162169 (2002).
26.
26.C. W. Hurkmans, P. Remeijer, J. V. Lebesque, and B. J. Mijnheer, “Set-up verification using portal imaging; review of current clinical practice,” Radiother. Oncol. 58(2), 105120 (2001).
http://dx.doi.org/10.1016/S0167-8140(00)00260-7
27.
27.R. Halperin, W. Roa, M. Field, J. Hanson, and B. Murray, “Setup reproducibility in radiation therapy for lung cancer: a comparison between T-bar and expanded foam immobilization devices,” Int. J. Radiat. Oncol., Biol., Phys. 43(1), 211216 (1999).
http://dx.doi.org/10.1016/S0360-3016(98)00354-X
28.
28.P. Rodrigus, D. Van den Weyngaert, and W. Van den Bogaert, “The value of treatment portal films in radiotherapy for bronchial carcinoma,” Radiother. Oncol. 9(1), 2731 (1987).
29.
29.D. Bohmer, P. Feyer, C. Harder, M. Korner, M. Sternemann, S. Dinges, and V. Budach, “Verification of set-up deviations in patients with breast cancer using portal imaging in clinical practice,” Strahlenther. Onkol. 174 Suppl 2, 3639 (1998).
30.
30.K. M. Langen and D. T. Jones, “Organ motion and its management,” Int. J. Radiat. Oncol., Biol., Phys. 50(1), 265278 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)01453-5
31.
31.G. van Tienhoven, J. H. Lanson, D. Crabeels, S. Heukelom, and B. J. Mijnheer, “Accuracy in tangential breast treatment set-up: A portal imaging study,” Radiother. Oncol. 22(4), 317322 (1991).
32.
32.H. D. Kubo and B. C. Hill, “Respiration gated radiotherapy treatment: A technical study,” Phys. Med. Biol. 41(1), 8391 (1996).
http://dx.doi.org/10.1088/0031-9155/41/1/007
33.
33.C. Hector, S. Webb, and P. M. Evans, “A simulation of the effects of set-up error and changes in breast volume on conventional and intensity-modulated treatments in breast radiotherapy,” Phys. Med. Biol. 46(5), 14511471 (2001).
http://dx.doi.org/10.1088/0031-9155/46/5/309
34.
34.C. L. Hector, S. Webb, and P. M. Evans, “The dosimetric consequences of inter-fractional patient movement on conventional and intensity-modulated breast radiotherapy treatments,” Radiother. Oncol. 54(1), 5764 (2000).
http://dx.doi.org/10.1016/S0167-8140(99)00167-X
35.
35.O. Pradier, H. Schmidberger, E. Weiss, H. Bouscayrol, A. Daban, and C. F. Hess, “Accuracy of alignment in breast irradiation: A retrospective analysis of clinical practice,” Br. J. Radiol. 72(859), 685690 (1999).
36.
36.C. L. Creutzberg, V. G. Althof, H. Huizenga, A. G. Visser, and P. C. Levendag, “Quality assurance using portal imaging: The accuracy of patient positioning in irradiation of breast cancer,” Int. J. Radiat. Oncol., Biol., Phys. 25(3), 529539 (1993).
37.
37.N. R. MacIntyre, “High-frequency ventilation,” Crit. Care Med. 26(12), 19551956 (1998).
38.
38.J. A. Krishnan and R. G. Brower, “High-frequency ventilation for acute lung injury and ARDS,” Chest 118(3), 795807 (2000).
39.
39.E. C. Eichenwald and A. R. Stark, “High-frequency ventilation: Current status,” Pediatr. Rev. 20(12), e127e133 (1999).
40.
40.F. Yin, J. G. Kim, C. Haughton, S. L. Brown, M. Ajlouni, M. Stronati, N. Pamukov, and J. H. Kim, “Extracranial radiosurgery: Immobilizing liver motion in dogs using high-frequency jet ventilation and total intravenous anesthesia,” Int. J. Radiat. Oncol., Biol., Phys. 49(1), 211216 (2001).
41.
41.ICRU, ICRU Report 50. Prescribing, recording and reporting photon beam therapy (International Commission on Radiation Units and Measurements, Bethesda, MD, 1993).
42.
42.ICRU, ICRU Report 62. Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50) (International Commission on Radiation Units and Measurements, Bethesda, MD, 1999).
43.
43.J. Wanger, Pulmonary Function Testing (Williams and Wilkins, Baltimore, 1996).
44.
44.S. A. Nehmeh, Y. E. Erdi, K. E. Rosenzweig, H. Schoder, S. M. Larson, O. D. Squire, and J. L. Humm, “Reduction of respiratory motion artifacts in PET imaging of lung cancer by respiratory correlated dynamic PET: Methodology and comparison with respiratory gated PET,” J. Nucl. Med. 44(10), 16441648 (2003).
45.
45.S. A. Nehmeh, Y. E. Erdi, C. C. Ling, K. E. Rosenzweig, H. Schoder, S. M. Larson, H. A. Macapinlac, O. D. Squire, and J. L. Humm, “Effect of respiratory gating on quantifying PET images of lung cancer,” J. Nucl. Med. 43(7), 876881 (2002).
46.
46.S. A. Nehmeh, Y. E. Erdi, C. C. Ling, K. E. Rosenzweig, O. D. Squire, L. E. Braban, E. Ford, K. Sidhu, G. S. Mageras, S. M. Larson, and J. L. Humm, “Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer,” Med. Phys. 29(3), 366371 (2002).
http://dx.doi.org/10.1118/1.1448824
47.
47.C. B. Caldwell, K. Mah, M. Skinner, and C. E. Danjoux, “Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET,” Int. J. Radiat. Oncol., Biol., Phys. 55(5), 13811393 (2003).
http://dx.doi.org/10.1016/S0360-3016(02)04609-6
48.
48.P. Giraud, M. Antoine, A. Larrouy, B. Milleron, P. Callard, Y. De Rycke, M. F. Carette, J. C. Rosenwald, J. M. Cosset, M. Housset, and E. Touboul, “Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning,” Int. J. Radiat. Oncol., Biol., Phys. 48(4), 10151024 (2000).
http://dx.doi.org/10.1016/S0360-3016(00)00750-1
49.
49.C. W. Stevens, R. F. Munden, K. M. Forster, J. F. Kelly, Z. Liao, G. Starkschall, S. Tucker, and R. Komaki, “Respiratory-driven lung tumor motion is independent of tumor size, tumor location, and pulmonary function,” Int. J. Radiat. Oncol., Biol., Phys. 51(1), 6268 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)01621-2
50.
50.Y. Seppenwoolde, H. Shirato, K. Kitamura, S. Shimizu, M. van Herk, J. V. Lebesque, and K. Miyasaka, “Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 53(4), 822834 (2002).
http://dx.doi.org/10.1016/S0360-3016(02)02803-1
51.
51.C. D. Biancia, E. Yorke, C. S. Chui, P. Giraud, K. Rosenzweig, H. Amols, C. Ling, and G. S. Mageras, “Comparison of end normal inspiration and expiration for gated intensity modulated radiation therapy (IMRT) of lung cancer,” Radiother. Oncol. 75(2), 149156 (2005).
52.
52.R. M. Peters, The mechanical basis of respiration (Little, Brown, and Co., Boston, 1969).
53.
53.S. S. Vedam, V. R. Kini, P. J. Keall, V. Ramakrishnan, H. Mostafavi, and R. Mohan, “Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker,” Med. Phys. 30(4), 505513 (2003).
http://dx.doi.org/10.1118/1.1558675
54.
54.T. Neicu, R. Berbeco, J. Wolfgang, and S. B. Jiang, “Synchronized moving aperture radiation therapy (SMART): Improvement of breathing pattern reproducibility using respiratory coaching,” Phys. Med. Biol. 51(3), 617636 (2006).
http://dx.doi.org/10.1088/0031-9155/51/3/010
55.
55.R. George, S. S. Vedam, T. D. Chung, V. Ramakrishnan, and P. J. Keall, “The application of the sinusoidal model to lung cancer patient respiratory motion,” Med. Phys. 32(9), 28502861 (2005).
http://dx.doi.org/10.1118/1.2001220
56.
56.V. R. Kini, S. S. Vedam, P. J. Keall, S. Patil, C. Chen, and R. Mohan, “Patient training in respiratory-gated radiotherapy,” Med. Dosim 28(1), 711 (2003).
57.
57.I. Suramo, M. Paivansalo, and V. Myllyla, “Cranio-caudal movements of the liver, pancreas and kidneys in respiration,” Acta Radiol. Diagn. (Stockh) 25(2), 129131 (1984).
58.
58.S. C. Davies, A. L. Hill, R. B. Holmes, M. Halliwell, and P. C. Jackson, “Ultrasound quantitation of respiratory organ motion in the upper abdomen,” Br. J. Radiol. 67(803), 10961102 (1994).
59.
59.P. J. Bryan, S. Custar, J. R. Haaga, and V. Balsara, “Respiratory movement of the pancreas: An ultrasonic study,” J. Ultrasound Med. 3(7), 317320 (1984).
60.
60.C. S. Ross, D. H. Hussey, E. C. Pennington, W. Stanford, and J. F. Doornbos, “Analysis of movement of intrathoracic neoplasms using ultrafast computerized tomography,” Int. J. Radiat. Oncol., Biol., Phys. 18(3), 671677 (1990).
61.
61.J. Hanley, M. M. Debois, D. Mah, G. S. Mageras, A. Raben, K. Rosenzweig, B. Mychalczak, L. H. Schwartz, P. J. Gloeggler, W. Lutz, C. C. Ling, S. A. Leibel, Z. Fuks, and G. J. Kutcher, “Deep inspiration breath-hold technique for lung tumors: The potential value of target immobilization and reduced lung density in dose escalation,” Int. J. Radiat. Oncol., Biol., Phys. 45(3), 603611 (1999).
http://dx.doi.org/10.1016/S0360-3016(99)00154-6
62.
62.S. Shimizu, H. Shirato, K. Kagei, T. Nishioka, X. Bo, H. Dosaka-Akita, S. Hashimoto, H. Aoyama, K. Tsuchiya, and K. Miyasaka, “Impact of respiratory movement on the computed tomographic images of small lung tumors in three-dimensional (3D) radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 46(5), 11271133 (2000).
http://dx.doi.org/10.1016/S0360-3016(99)00352-1
63.
63.P. Giraud, Y. De Rycke, B. Dubray, S. Helfre, D. Voican, L. Guo, J. C. Rosenwald, K. Keraudy, M. Housset, E. Touboul, and J. M. Cosset, “Conformal radiotherapy (CRT) planning for lung cancer: Analysis of intrathoracic organ motion during extreme phases of breathing,” Int. J. Radiat. Oncol., Biol., Phys. 51(4), 10811092 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)01766-7
64.
64.H. W. Korin, R. L. Ehman, S. J. Riederer, J. P. Felmlee, and R. C. Grimm, “Respiratory kinematics of the upper abdominal organs: A quantitative study,” Magn. Reson. Med. 23(1), 172178 (1992).
65.
65.C. Plathow, S. Ley, C. Fink, M. Puderbach, W. Hosch, A. Schmahl, J. Debus, and H. U. Kauczor, “Analysis of intrathoracic tumor mobility during whole breathing cycle by dynamic MRI,” Int. J. Radiat. Oncol., Biol., Phys. 59(4), 952959 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2003.12.035
66.
66.P. H. Weiss, J. M. Baker, and E. J. Potchen, “Assessment of hepatic respiratory excursion,” J. Nucl. Med. 13(10), 758759 (1972).
67.
67.G. Harauz and M. J. Bronskill, “Comparison of the liver’s respiratory motion in the supine and upright positions: Concise communication,” J. Nucl. Med. 20(7), 733735 (1979).
68.
68.O. Wade, “Movement of the thoracic cage and diaphragm in respiration,” J. Physiol. (London) 124, 193212 (1954).
69.
69.S. Malone, J. M. Crook, W. S. Kendal, and J. Szanto, “Respiratory-induced prostate motion: Quantification and characterization,” Int. J. Radiat. Oncol., Biol., Phys. 48(1), 105109 (2000).
http://dx.doi.org/10.1016/S0360-3016(00)00603-9
70.
70.H. Shirato, S. Shimizu, T. Kunieda, K. Kitamura, M. van Herk, K. Kagei, T. Nishioka, S. Hashimoto, K. Fujita, H. Aoyama, K. Tsuchiya, K. Kudo, and K. Miyasaka, “Physical aspects of a real-time tumor-tracking system for gated radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 48(4), 11871195 (2000).
http://dx.doi.org/10.1016/S0360-3016(00)00748-3
71.
71.S. Minohara, T. Kanai, M. Endo, K. Noda, and M. Kanazawa, “Respiratory gated irradiation system for heavy-ion radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 47(4), 10971103 (2000).
http://dx.doi.org/10.1016/S0360-3016(00)00524-1
72.
72.M. J. Murphy, J. R. Adler, Jr., M. Bodduluri, J. Dooley, K. Forster, J. Hai, Q. Le, G. Luxton, D. Martin, and J. Poen, “Image-guided radiosurgery for the spine and pancreas,” Comput. Aided Surg. 5(4), 278288 (2000).
73.
73.Q. S. Chen, M. S. Weinhous, F. C. Deibel, J. P. Ciezki, and R. M. Macklis, “Fluoroscopic study of tumor motion due to breathing: Facilitating precise radiation therapy for lung cancer patients,” Med. Phys. 28(9), 18501856 (2001).
http://dx.doi.org/10.1118/1.1398037
74.
74.E. A. Barnes, B. R. Murray, D. M. Robinson, L. J. Underwood, J. Hanson, and W. H. Roa, “Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration,” Int. J. Radiat. Oncol., Biol., Phys. 50(4), 10911098 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)01592-9
75.
75.S. Shimizu, H. Shirato, S. Ogura, H. Akita-Dosaka, K. Kitamura, T. Nishioka, K. Kagei, M. Nishimura, and K. Miyasaka, “Detection of lung tumor movement in real-time tumor-tracking radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 51(2), 304310 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)01641-8
76.
76.E. C. Ford, G. S. Mageras, E. Yorke, K. E. Rosenzweig, R. Wagman, and C. C. Ling, “Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging,” Int. J. Radiat. Oncol., Biol., Phys. 52(2), 522531 (2002).
http://dx.doi.org/10.1016/S0360-3016(01)02681-5
77.
77.M. J. Murphy, D. Martin, R. Whyte, J. Hai, C. Ozhasoglu, and Q. T. Le, “The effectiveness of breath-holding to stabilize lung and pancreas tumors during radiosurgery,” Int. J. Radiat. Oncol., Biol., Phys. 53(2), 475482 (2002).
http://dx.doi.org/10.1016/S0360-3016(01)02822-X
78.
78.C. Ozhasoglu and M. J. Murphy, “Issues in respiratory motion compensation during external-beam radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 52(5), 13891399 (2002).
http://dx.doi.org/10.1016/S0360-3016(01)02789-4
79.
79.K. E. Sixel, M. Ruschin, R. Tirona, and P. C. Cheung, “Digital fluoroscopy to quantify lung tumor motion: potential for patient-specific planning target volumes,” Int. J. Radiat. Oncol., Biol., Phys. 57(3), 717723 (2003).
http://dx.doi.org/10.1016/S0360-3016(03)00713-2
80.
80.I. S. Grills, D. Yan, A. A. Martinez, F. A. Vicini, J. W. Wong, and L. L. Kestin, “Potential for reduced toxicity and dose escalation in the treatment of inoperable non-small-cell lung cancer: A comparison of intensity-modulated radiation therapy (IMRT), 3D conformal radiation, and elective nodal irradiation,” Int. J. Radiat. Oncol., Biol., Phys. 57(3), 875890 (2003).
http://dx.doi.org/10.1016/S0360-3016(03)00743-0
81.
81.E. C. Ford, G. S. Mageras, E. Yorke, and C. C. Ling, “Respiration-correlated spiral CT: A method of measuring respiratory-induced anatomic motion for radiation treatment planning,” Med. Phys. 30(1), 8897 (2003).
http://dx.doi.org/10.1118/1.1531177
82.
82.S. S. Vedam, P. J. Keall, V. R. Kini, H. Mostafavi, H. P. Shukla, and R. Mohan, “Acquiring a four-dimensional computed tomography dataset using an external respiratory signal,” Phys. Med. Biol. 48(1), 4562 (2003).
http://dx.doi.org/10.1088/0031-9155/48/1/304
83.
83.D. A. Low, M. Nystrom, E. Kalinin, P. Parikh, J. F. Dempsey, J. D. Bradley, S. Mutic, S. H. Wahab, T. Islam, G. Christensen, D. G. Politte, and B. R. Whiting, “A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing,” Med. Phys. 30(6), 12541263 (2003).
http://dx.doi.org/10.1118/1.1576230
84.
84.K. Taguchi, “Temporal resolution and the evaluation of candidate algorithms for four-dimensional CT,” Med. Phys. 30(4), 640650 (2003).
http://dx.doi.org/10.1118/1.1561286
85.
85.J. Sonke, L. Zijp, P. Remeijer, and M. Van Herk, “Respiratory correlated cone beam CT,” Med. Phys. 32(4), 11761186 (2005).
http://dx.doi.org/10.1118/1.1869074
86.
86.P. J. Keall, G. Starkschall, H. Shukla, K. M. Forster, V. Ortiz, C. W. Stevens, S. S. Vedam, R. George, T. Guerrero, and R. Mohan, “Acquiring 4D thoracic CT scans using a multislice helical method,” Phys. Med. Biol. 49(10), 20532067 (2004).
http://dx.doi.org/10.1088/0031-9155/49/10/015
87.
87.G. S. Mageras, A. Pevsner, E. D. Yorke, K. E. Rosenzweig, E. C. Ford, A. Hertanto, S. M. Larson, D. M. Lovelock, Y. E. Erdi, S. A. Nehmeh, J. L. Humm, and C. C. Ling, “Measurement of lung tumor motion using respiration-correlated CT,” Int. J. Radiat. Oncol., Biol., Phys. 60(3), 933941 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.06.021
88.
88.E. Rietzel, G. T. Chen, N. C. Choi, and C. G. Willet, “Four-dimensional image-based treatment planning: Target volume segmentation and dose calculation in the presence of respiratory motion,” Int. J. Radiat. Oncol., Biol., Phys. 61(5), 15351550 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2004.11.037
89.
89.S. Ahn, B. Yi, Y. Suh, J. Kim, S. Lee, S. Shin, S. Shin, and E. Choi, “A feasibility study on the prediction of tumor location in the lung from skin motion,” Br. J. Radiol. 77(919), 588596 (2004).
http://dx.doi.org/10.1259/bjr/64800801
90.
90.J. D. Hoisak, K. E. Sixel, R. Tirona, P. C. Cheung, and J. P. Pignol, “Correlation of lung tumor motion with external surrogate indicators of respiration,” Int. J. Radiat. Oncol., Biol., Phys. 60(4), 12981306 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.07.681
91.
91.Y. Tsunashima, T. Sakae, Y. Shioyama, K. Kagei, T. Terunuma, A. Nohtomi, and Y. Akine, “Correlation between the respiratory waveform measured using a respiratory sensor and 3D tumor motion in gated radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 60(3), 951958 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.06.026
92.
92.N. Koch, H. H. Liu, G. Starkschall, M. Jacobson, K. Forster, Z. Liao, R. Komaki, and C. W. Stevens, “Evaluation of internal lung motion for respiratory-gated radiotherapy using MRI: Part I–correlating internal lung motion with skin fiducial motion,” Int. J. Radiat. Oncol., Biol., Phys. 60(5), 14591472 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.05.055
93.
93.H. H. Liu, N. Koch, G. Starkschall, M. Jacobson, K. Forster, Z. Liao, R. Komaki, and C. W. Stevens, “Evaluation of internal lung motion for respiratory-gated radiotherapy using MRI: Part II–margin reduction of internal target volume,” Int. J. Radiat. Oncol., Biol., Phys. 60(5), 14731483 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.05.054
94.
94.S. Senan, O. Chapet, F. J. Lagerwaard, and R. K. Ten Haken, “Defining target volumes for non-small cell lung carcinoma,” Semin. Radiat. Oncol. 14(4), 308314 (2004).
95.
95.S. Senan, D. De Ruysscher, P. Giraud, R. Mirimanoff, V. Budach, R. On Behalf Of The Radiotherapy Group Of The European Organization For, and C. Treatment Of, “Literature-based recommendations for treatment planning and execution in high-dose radiotherapy for lung cancer,” Radiother. Oncol. 71(2), 139146 (2004).
http://dx.doi.org/10.1016/j.radonc.2003.09.007
96.
96.J. Leong, “Implementation of random positioning error in computerised radiation treatment planning systems as a result of fractionation,” Phys. Med. Biol. 32(3), 327334 (1987).
http://dx.doi.org/10.1088/0031-9155/32/3/002
97.
97.A. E. Lujan, E. W. Larsen, J. M. Balter, and R. K. Ten Haken, “A method for incorporating organ motion due to breathing into 3D dose calculations,” Med. Phys. 26(5), 715720 (1999).
http://dx.doi.org/10.1118/1.598577
98.
98.A. L. McKenzie, “How should breathing motion be combined with other errors when drawing margins around clinical target volumes?,” Br. J. Radiol. 73(873), 973977 (2000).
99.
99.W. A. Beckham, P. J. Keall, and J. V. Siebers, “A fluence-convolution method to calculate radiation therapy dose distributions that incorporate random set-up error,” Phys. Med. Biol. 47(19), 34653473 (2002).
http://dx.doi.org/10.1088/0031-9155/47/19/302
100.
100.I. J. Chetty, M. Rosu, N. Tyagi, L. H. Marsh, D. L. McShan, J. M. Balter, B. A. Fraass, and R. K. Ten Haken, “A fluence convolution method to account for respiratory motion in three-dimensional dose calculations of the liver: A Monte Carlo study,” Med. Phys. 30(7), 17761780 (2003).
http://dx.doi.org/10.1118/1.1581412
101.
101.R. George, V. Kini, S. S. Vedam, V. Ramakrishnan, R. Mohan, and P. J. Keall, “Is the diaphragm motion probability density function normally distributed?,” Med. Phys. 32, 396404 (2005).
http://dx.doi.org/10.1118/1.1845031
102.
102.B. C. Cho, M. van Herk, B. J. Mijnheer, and H. Bartelink, “The effect of set-up uncertainties, contour changes, and tissue inhomogeneities on target dose-volume histograms,” Med. Phys. 29(10), 23052318 (2002).
http://dx.doi.org/10.1118/1.1508800
103.
103.R. George, T. D. Chung, S. S. Vedam, V. Ramakrishnan, R. Mohan, E. Weiss, and P. J. Keall, “Audio-visual biofeedback for respiratory-gated radiotherapy: Impact of audio instruction and audio-visual biofeedback on respiratory-gated radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 65(3), 924933 (2006).
104.
104.S. C. Erridge, Y. Seppenwoolde, S. H. Muller, M. van Herk, K. De Jaeger, J. S. Belderbos, L. J. Boersma, and J. V. Lebesque, “Portal imaging to assess set-up errors, tumor motion and tumor shrinkage during conformal radiotherapy of non-small cell lung cancer,” Radiother. Oncol. 66(1), 7585 (2003).
http://dx.doi.org/10.1016/S0167-8140(02)00287-6
105.
105.E. D. Yorke, L. Wang, K. E. Rosenzweig, D. Mah, J. B. Paoli, and C. S. Chui, “Evaluation of deep inspiration breath-hold lung treatment plans with Monte Carlo dose calculation,” Int. J. Radiat. Oncol., Biol., Phys. 53(4), 10581070 (2002).
http://dx.doi.org/10.1016/S0360-3016(02)02778-5
106.
106.M. van Herk, P. Remeijer, C. Rasch, and J. V. Lebesque, “The probability of correct target dosage: Dose-population histograms for deriving treatment margins in radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 47(4), 11211135 (2000).
http://dx.doi.org/10.1016/S0360-3016(00)00518-6
107.
107.J. C. Stroom, H. C. de Boer, H. Huizenga, and A. G. Visser, “Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability,” Int. J. Radiat. Oncol., Biol., Phys. 43(4), 905919 (1999).
http://dx.doi.org/10.1016/S0360-3016(98)00468-4
108.
108.M. van Herk, P. Remeijer, and J. V. Lebesque, “Inclusion of geometric uncertainties in treatment plan evaluation,” Int. J. Radiat. Oncol., Biol., Phys. 52(5), 14071422 (2002).
http://dx.doi.org/10.1016/S0360-3016(01)02805-X
109.
109.M. van Herk, M. Witte, J. van der Geer, C. Schneider, and J. V. Lebesque, “Biologic and physical fractionation effects of random geometric errors,” Int. J. Radiat. Oncol., Biol., Phys. 57(5), 14601471 (2003).
http://dx.doi.org/10.1016/j.ijrobp.2003.08.026
110.
110.G. J. Kutcher et al., “Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40,” Med. Phys. 21(4), 581618 (1994).
http://dx.doi.org/10.1118/1.597316
111.
111.C. X. Yu, D. A. Jaffray, and J. W. Wong, “The effects of intra-fraction organ motion on the delivery of dynamic intensity modulation,” Phys. Med. Biol. 43(1), 91104 (1998).
http://dx.doi.org/10.1088/0031-9155/43/1/006
112.
112.M. W. Kissick, S. A. Boswell, R. Jeraj, and T. R. Mackie, “Confirmation, refinement, and extension of a study in intrafraction motion interplay with sliding jaw motion,” Med. Phys. 32(7), 23462350 (2005).
http://dx.doi.org/10.1118/1.1935774
113.
113.P. Pemler, J. Besserer, N. Lombriser, R. Pescia, and U. Schneider, “Influence of respiration-induced organ motion on dose distributions in treatments using enhanced dynamic wedges,” Med. Phys. 28(11), 22342240 (2001).
http://dx.doi.org/10.1118/1.1410121
114.
114.T. Bortfeld, K. Jokivarsi, M. Goitein, J. Kung, and S. B. Jiang, “Effects of intra-fraction motion on IMRT dose delivery: Statistical analysis and simulation,” Phys. Med. Biol. 47(13), 22032220 (2002).
http://dx.doi.org/10.1088/0031-9155/47/13/302
115.
115.H. D. Kubo and L. Wang, “Compatibility of Varian 2100C gated operations with enhanced dynamic wedge and IMRT dose delivery,” Med. Phys. 27(8), 17321738 (2000).
http://dx.doi.org/10.1118/1.1287110
116.
116.P. J. Keall, V. Kini, S. S. Vedam, and R. Mohan, “Motion adaptive x-ray therapy: A feasibility study,” Phys. Med. Biol. 46(1), 110 (2001).
http://dx.doi.org/10.1088/0031-9155/46/1/301
117.
117.R. George, P. J. Keall, V. R. Kini, S. S. Vedam, J. V. Siebers, Q. Wu, M. H. Lauterbach, D. W. Arthur, and R. Mohan, “Quantifying the effect of intrafraction motion during breast IMRT planning and dose delivery,” Med. Phys. 30(4), 552562 (2003).
http://dx.doi.org/10.1118/1.1543151
118.
118.C. S. Chui, E. Yorke, and L. Hong, “The effects of intra-fraction organ motion on the delivery of intensity-modulated field with a multileaf collimator,” Med. Phys. 30(7), 17361746 (2003).
http://dx.doi.org/10.1118/1.1578771
119.
119.S. B. Jiang, C. Pope, K. M. Al Jarrah, J. H. Kung, T. Bortfeld, and G. T. Chen, “An experimental investigation on intra-fractional organ motion effects in lung IMRT treatments,” Phys. Med. Biol. 48(12), 17731784 (2003).
http://dx.doi.org/10.1088/0031-9155/48/12/307
120.
120.F. J. Lagerwaard, J. R. Van Sornsen de Koste, M. R. Nijssen-Visser, R. H. Schuchhard-Schipper, S. S. Oei, A. Munne, and S. Senan, “Multiple “slow” CT scans for incorporating lung tumor mobility in radiotherapy planning,” Int. J. Radiat. Oncol., Biol., Phys. 51(4), 932937 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)01716-3
121.
121.J. R. van Sornsen de Koste, F. J. Lagerwaard, R. H. Schuchhard-Schipper, M. R. Nijssen-Visser, P. W. Voet, S. S. Oei, and S. Senan, “Dosimetric consequences of tumor mobility in radiotherapy of stage I non-small cell lung cancer–an analysis of data generated using ‘slow’ CT scans,” Radiother. Oncol. 61(1), 9399 (2001).
122.
122.J. R. de Koste, F. J. Lagerwaard, H. C. de Boer, M. R. Nijssen-Visser, and S. Senan, “Are multiple CT scans required for planning curative radiotherapy in lung tumors of the lower lobe?,” Int. J. Radiat. Oncol., Biol., Phys. 55(5), 13941399 (2003).
http://dx.doi.org/10.1016/S0360-3016(02)04602-3
123.
123.R. W. Underberg, F. J. Lagerwaard, B. J. Slotman, J. P. Cuijpers, and S. Senan, “Use of maximum intensity projections (MIP) for target volume generation in 4DCT scans for lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. 63(1), 253260 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2005.05.045
124.
124.W. Lu, P. J. Parikh, I. M. El Naqa, M. M. Nystrom, J. P. Hubenschmidt, S. H. Wahab, S. Mutic, A. K. Singh, G. E. Christensen, J. D. Bradley, and D. A. Low, “Quantitation of the reconstruction quality of a four-dimensional computed tomography process for lung cancer patients,” Med. Phys. 32(4), 890901 (2005).
http://dx.doi.org/10.1118/1.1870152
125.
125.T. Pan, T. Y. Lee, E. Rietzel, and G. T. Chen, “4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT,” Med. Phys. 31(2), 333340 (2004).
http://dx.doi.org/10.1118/1.1639993
126.
126.G. Starkschall, K. M. Forster, K. Kitamura, A. Cardenas, S. L. Tucker, and C. W. Stevens, “Correlation of gross tumor volume excursion with potential benefits of respiratory gating,” Int. J. Radiat. Oncol., Biol., Phys. 60(4), 12911297 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.07.707
127.
127.H. A. Shih, S. B. Jiang, K. M. Aljarrah, K. P. Doppke, and N. C. Choi, “Internal target volume determined with expansion margins beyond composite gross tumor volume in three-dimensional conformal radiotherapy for lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. 60(2), 613622 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.05.031
128.
128.R. W. Underberg, F. J. Lagerwaard, J. P. Cuijpers, B. J. Slotman, J. R. van Sornsen de Koste, and S. Senan, “Four-dimensional CT scans for treatment planning in stereotactic radiotherapy for stage I lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. 60(4), 12831290 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.07.665
129.
129.J. W. Wolthaus, C. Schneider, J. J. Sonke, M. van Herk, J. S. Belderbos, M. M. Rossi, J. V. Lebesque, and E. M. Damen, “Mid-ventilation CT scan construction from four-dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients,” Int. J. Radiat. Oncol., Biol., Phys. 65(5), 15601571 (2006).
130.
130.H. D. Kubo, P. M. Len, S. Minohara, and H. Mostafavi, “Breathing-synchronized radiotherapy program at the University of California Davis Cancer Center,” Med. Phys. 27(2), 346353 (2000).
http://dx.doi.org/10.1118/1.598837
131.
131.S. S. Vedam, P. J. Keall, V. R. Kini, and R. Mohan, “Determining parameters for respiration-gated radiotherapy,” Med. Phys. 28(10), 21392146 (2001).
http://dx.doi.org/10.1118/1.1406524
132.
132.G. S. Mageras, E. Yorke, K. Rosenzweig, L. Braban, E. Keatley, E. Ford, S. A. Leibel, and C. C. Ling, “Fluoroscopic evaluation of diaphragmatic motion reduction with a respiratory gated radiotherapy system,” J. Appl. Clin. Med. Phys. 2, 191200 (2001).
http://dx.doi.org/10.1120/1.1409235
133.
133.R. Wagman, E. Yorke, P. Giraud, E. Ford, K. Sidhu, G. Mageras, B. Minsky, and K. Rosenzweig, “Reproducibility of organ position with respiratory gating for liver tumors: Use in dose-escalation,” Int. J. Radiat. Oncol., Biol., Phys. 55, 659668 (2003).
http://dx.doi.org/10.1016/S0360-3016(02)03941-X
134.
134.G. S. Mageras and E. Yorke, “Deep inspiration breath hold and respiratory gating strategies for reducing organ motion in radiation treatment,” Semin. Radiat. Oncol. 14(1), 6575 (2004).
135.
135.R. I. Berbeco, S. Nishioka, H. Shirato, G. T. Chen, and S. B. Jiang, “Residual motion of lung tumors in gated radiotherapy with external respiratory surrogates,” Phys. Med. Biol. 50(16), 36553667 (2005).
http://dx.doi.org/10.1088/0031-9155/50/16/001
136.
136.C. Bert, K. G. Metheany, K. Doppke, and G. T. Chen, “A phantom evaluation of a stereo-vision surface imaging system for radiotherapy patient setup,” Med. Phys. 32(9), 27532762 (2005).
http://dx.doi.org/10.1118/1.1984263
137.
137.E. Yorke, K. E. Rosenzweig, R. Wagman, and G. S. Mageras, “Interfractional anatomic variation in patients treated with respiration-gated radiotherapy,” J. Appl. Clin. Med. Phys. 6(2), 1932 (2005).
http://dx.doi.org/10.1120/jacmp.2024.25334
138.
138.R. I. Berbeco, T. Neicu, E. Rietzel, G. T. Chen, and S. B. Jiang, “A technique for respiratory-gated radiotherapy treatment verification with an EPID in cine mode,” Phys. Med. Biol. 50(16), 36693679 (2005).
http://dx.doi.org/10.1088/0031-9155/50/16/002
139.
139.C. R. Ramsey, D. Scaperoth, D. Arwood, and A. L. Oliver, “Clinical efficacy of respiratory gated conformal radiation therapy,” Med. Dosim 24(2), 115119 (1999).
140.
140.P. J. Keall, V. R. Kini, S. S. Vedam, and R. Mohan, “Potential radiotherapy improvements with respiratory gating,” Australas. Phys. Eng. Sci. Med. 25(1), 16 (2002).
141.
141.S. Shen, J. Duan, J. B. Fiveash, I. A. Brezovich, B. A. Plant, S. A. Spencer, R. A. Popple, P. N. Pareek, and J. A. Bonner, “Validation of target volume and position in respiratory gated CT planning and treatment,” Med. Phys. 30(12), 31963205 (2003).
http://dx.doi.org/10.1118/1.1626121
142.
142.J. Duan, S. Shen, J. B. Fiveash, I. A. Brezovich, R. A. Popple, and P. N. Pareek, “Dosimetric effect of respiration-gated beam on IMRT delivery,” Med. Phys. 30(8), 22412252 (2003).
http://dx.doi.org/10.1118/1.1592017
143.
143.E. Nioutsikou, N. S.-T. J. Richard, J. L. Bedford, and S. Webb, “Quantifying the effect of respiratory motion on lung tumor dosimetry with the aid of a breathing phantom with deforming lungs,” Phys. Med. Biol. 51(14), 33593374 (2006).
http://dx.doi.org/10.1088/0031-9155/51/14/005
144.
144.K. Kitamura, H. Shirato, R. Onimaru, T. Shimizu, Y. Kodama, H. Endo, S. Shimizu, and K. Miyasaka, “Feasibility study of hypofractionated gated irradiation using a real-time tumor-tracking radiation therapy system for malignant liver tumors,” Int. J. Radiat. Oncol., Biol., Phys. 54(2), 125126 (2002).
145.
145.K. Kitamura, H. Shirato, Y. Seppenwoolde, R. Onimaru, M. Oda, K. Fujita, S. Shimizu, N. Shinohara, T. Harabayashi, and K. Miyasaka, “Three-dimensional intrafractional movement of prostate measured during real-time tumor-tracking radiotherapy in supine and prone treatment positions,” Int. J. Radiat. Oncol., Biol., Phys. 53(5), 11171123 (2002).
http://dx.doi.org/10.1016/S0360-3016(02)02882-1
146.
146.K. Kitamura, H. Shirato, Y. Seppenwoolde, T. Shimizu, Y. Kodama, H. Endo, R. Onimaru, M. Oda, K. Fujita, S. Shimizu, and K. Miyasaka, “Tumor location, cirrhosis, and surgical history contribute to tumor movement in the liver, as measured during stereotactic irradiation using a real-time tumor-tracking radiotherapy system,” Int. J. Radiat. Oncol., Biol., Phys. 56(1), 221228 (2003).
http://dx.doi.org/10.1016/S0360-3016(03)00082-8
147.
147.K. Kitamura, H. Shirato, S. Shimizu, N. Shinohara, T. Harabayashi, T. Shimizu, Y. Kodama, H. Endo, R. Onimaru, S. Nishioka, H. Aoyama, K. Tsuchiya, and K. Miyasaka, “Registration accuracy and possible migration of internal fiducial gold marker implanted in prostate and liver treated with real-time tumor-tracking radiation therapy (RTRT),” Radiother. Oncol. 62(3), 275281 (2002).
http://dx.doi.org/10.1016/S0167-8140(02)00017-8
148.
148.S. Shimizu, H. Shirato, K. Kitamura, N. Shinohara, T. Harabayashi, T. Tsukamoto, T. Koyanagi, and K. Miyasaka, “Use of an implanted marker and real-time tracking of the marker for the positioning of prostate and bladder cancers,” Int. J. Radiat. Oncol., Biol., Phys. 48(5), 15911597 (2000).
http://dx.doi.org/10.1016/S0360-3016(00)00809-9
149.
149.H. Shirato, T. Harada, T. Harabayashi, K. Hida, H. Endo, K. Kitamura, R. Onimaru, K. Yamazaki, N. Kurauchi, T. Shimizu, N. Shinohara, M. Matsushita, H. Dosaka-Akita, and K. Miyasaka, “Feasibility of insertion/implantation of diameter gold internal fiducial markers for precise setup and real-time tumor tracking in radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 56(1), 240247 (2003).
http://dx.doi.org/10.1016/S0360-3016(03)00076-2
150.
150.H. Shirato, S. Shimizu, T. Shimizu, T. Nishioka, and K. Miyasaka, “Real-time tumor-tracking radiotherapy,” Lancet 353(9161), 13311332 (1999).
http://dx.doi.org/10.1016/S0140-6736(99)00700-X
151.
151.Y. Shibamoto, M. Ito, C. Sugie, H. Ogino, and M. Hara, “Recovery from sublethal damage during intermittent exposures in cultured tumor cells: Implications for dose modification in radiosurgery and IMRT,” Int. J. Radiat. Oncol., Biol., Phys. 59(5), 14841490 (2004).
152.
152.J. F. Fowler, W. A. Tome, J. D. Fenwick, and M. P. Mehta, “A challenge to traditional radiation oncology,” Int. J. Radiat. Oncol., Biol., Phys. 60(4), 12411256 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.07.691
153.
153.R. P. Smith, P. Bloch, E. E. Harris, J. McDonough, A. Sarkar, A. Kassaee, S. Avery, and L. J. Solin, “Analysis of interfraction and intrafraction variation during tangential breast irradiation with an electronic portal imaging device,” Int. J. Radiat. Oncol., Biol., Phys. 62(2), 373378 (2005).
154.
154.S. S. Korreman, A. N. Pedersen, T. J. Nottrup, L. Specht, and H. Nystrom, “Breathing adapted radiotherapy for breast cancer: Comparison of free breathing gating with the breath-hold technique,” Radiother. Oncol. 76(3), 311318 (2005).
155.
155.H. M. Lu, E. Cash, M. H. Chen, L. Chin, W. J. Manning, J. Harris, and B. Bornstein, “Reduction of cardiac volume in left-breast treatment fields by respiratory maneuvers: A CT study,” Int. J. Radiat. Oncol., Biol., Phys. 47(4), 895904 (2000).
156.
156.A. N. Pedersen, S. Korreman, H. Nystrom, and L. Specht, “Breathing adapted radiotherapy of breast cancer: Reduction of cardiac and pulmonary doses using voluntary inspiration breath-hold,” Radiother. Oncol. 72(1), 5360 (2004).
http://dx.doi.org/10.1016/j.radonc.2004.03.012
157.
157.V. M. Remouchamps, N. Letts, F. A. Vicini, M. B. Sharpe, L. L. Kestin, P. Y. Chen, A. A. Martinez, and J. W. Wong, “Initial clinical experience with moderate deep-inspiration breath hold using an active breathing control device in the treatment of patients with left-sided breast cancer using external beam radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 56(3), 704715 (2003).
http://dx.doi.org/10.1016/S0360-3016(03)00010-5
158.
158.V. M. Remouchamps, F. A. Vicini, M. B. Sharpe, L. L. Kestin, A. A. Martinez, and J. W. Wong, “Significant reductions in heart and lung doses using deep inspiration breath hold with active breathing control and intensity-modulated radiation therapy for patients treated with locoregional breast irradiation,” Int. J. Radiat. Oncol., Biol., Phys. 55(2), 392406 (2003).
http://dx.doi.org/10.1016/S0360-3016(02)04143-3
159.
159.K. E. Sixel, M. C. Aznar, and Y. C. Ung, “Deep inspiration breath hold to reduce irradiated heart volume in breast cancer patients,” Int. J. Radiat. Oncol., Biol., Phys. 49(1), 199204 (2001).
http://dx.doi.org/10.1016/S0360-3016(00)01455-3
160.
160.D. Mah, J. Hanley, K. E. Rosenzweig, E. Yorke, L. Braban, C. C. Ling, and G. Mageras, “Technical aspects of the deep inspiration breath hold technique in the treatment of thoracic cancer,” Int. J. Radiat. Oncol., Biol., Phys. 48, 11751185 (2000).
http://dx.doi.org/10.1016/S0360-3016(00)00747-1
161.
161.K. E. Rosenzweig, J. Hanley, D. Mah, G. Mageras, M. Hunt, S. Toner, C. Burman, C. C. Ling, B. Mychalczak, Z. Fuks, and S. A. Leibel, “The deep inspiration breath-hold technique in the treatment of inoperable non-small-cell lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. 48(1), 8187 (2000).
http://dx.doi.org/10.1016/S0360-3016(00)00583-6
162.
162.J. W. Wong, M. B. Sharpe, D. A. Jaffray, V. R. Kini, J. M. Robertson, J. S. Stromberg, and A. A. Martinez, “The use of active breathing control (ABC) to reduce margin for breathing motion,” Int. J. Radiat. Oncol., Biol., Phys. 44(4), 911919 (1999).
http://dx.doi.org/10.1016/S0360-3016(99)00056-5
163.
163.J. S. Stromberg, M. B. Sharpe, L. H. Kim, V. R. Kini, D. A. Jaffray, A. A. Martinez, and J. W. Wong, “Active breathing control (ABC) for Hodgkin’s disease: Reduction in normal tissue irradiation with deep inspiration and implications for treatment,” Int. J. Radiat. Oncol., Biol., Phys. 48(3), 797806 (2000).
http://dx.doi.org/10.1016/S0360-3016(00)00681-7
164.
164.D. J. Kim, B. R. Murray, R. Halperin, and W. H. Roa, “Held-breath self-gating technique for radiotherapy of non-small-cell lung cancer: A feasibility study,” Int. J. Radiat. Oncol., Biol., Phys. 49(1), 4349 (2001).
http://dx.doi.org/10.1016/S0360-3016(00)01372-9
165.
165.Y. Xiao, J. Galvin, M. Hossain, and R. Valicenti, “An optimized forward-planning technique for intensity modulated radiation therapy,” Med. Phys. 27(9), 20932099 (2000).
http://dx.doi.org/10.1118/1.1289255
166.
166.A. M. Berson, R. Emery, L. Rodriguez, G. M. Richards, T. Ng, S. Sanghavi, and J. Barsa, “Clinical experience using respiratory gated radiation therapy: Comparison of free breathing and breath-hold techniques,” Int. J. Radiat. Oncol., Biol., Phys. 60(2), 419426 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.03.037
167.
167.I. Lax, H. Blomgren, I. Naslund, and R. Svanstrom, “Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects,” Acta Oncol. 33(6), 677683 (1994).
168.
168.H. Blomgren, I. Lax, I. Naslund, and R. Svanstrom, “Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirty-one patients,” Acta Oncol. 34(6), 861870 (1995).
169.
169.I. Lax, “Target dose versus extratarget dose in stereotactic radiosurgery,” Acta Oncol. 32(4), 453457 (1993).
170.
170.Y. Negoro, Y. Nagata, T. Aoki, T. Mizowaki, N. Araki, K. Takayama, M. Kokubo, S. Yano, S. Koga, K. Sasai, Y. Shibamoto, and M. Hiraoka, “The effectiveness of an immobilization device in conformal radiotherapy for lung tumor: Reduction of respiratory tumor movement and evaluation of the daily setup accuracy,” Int. J. Radiat. Oncol., Biol., Phys. 50(4), 889898 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)01516-4
171.
171.J. Wulf, U. Hadinger, U. Oppitz, B. Olshausen, and M. Flentje, “Stereotactic radiotherapy of extracranial targets: CT-simulation and accuracy of treatment in the stereotactic body frame,” Radiother. Oncol. 57(2), 225236 (2000).
http://dx.doi.org/10.1016/S0167-8140(00)00226-7
172.
172.R. Timmerman, L. Papiez, R. McGarry, L. Likes, C. DesRosiers, S. Frost, and M. Williams, “Extracranial stereotactic radioablation: Results of a phase I study in medically inoperable stage I nonsmall cell lung cancer,” Chest 124(5), 19461955 (2003).
http://dx.doi.org/10.1378/chest.124.5.1946
173.
173.L. Papiez, R. Timmerman, C. DesRosiers, and M. Randall, “Extracranial stereotactic radioablation: Physical principles,” Acta Oncol. 42(8), 882894 (2003).
174.
174.K. K. Herfarth, J. Debus, F. Lohr, M. L. Bahner, P. Fritz, A. Hoss, W. Schlegel, and M. F. Wannenmacher, “Extracranial stereotactic radiation therapy: Set-up accuracy of patients treated for liver metastases,” Int. J. Radiat. Oncol., Biol., Phys. 46(2), 329335 (2000).
http://dx.doi.org/10.1016/S0360-3016(99)00413-7
175.
175.F. Lohr, J. Debus, C. Frank, K. Herfarth, O. Pastyr, B. Rhein, M. L. Bahner, W. Schlegel, and M. Wannenmacher, “Noninvasive patient fixation for extracranial stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 45(2), 521527 (1999).
http://dx.doi.org/10.1016/S0360-3016(99)00190-X
176.
176.R. Timmerman, L. Papiez, and M. Suntharalingam, “Extracranial stereotactic radiation delivery: Expansion of technology beyond the brain,” Technol. Cancer Res. Treat. 2(2), 153160 (2003).
177.
177.M. J. Murphy, “Tracking moving organs in real time,” Semin. Radiat. Oncol. 14(1), 91100 (2004).
178.
178.M. J. Murphy, J. Jalden, and M. Isaksson, “Adaptive filtering to predict lung tumor breathing motion during image-guided radiation therapy,” Proceedings of the 16th International Congress on Computer-assisted Radiology and Surgery, pp. 539544 (2002).
179.
179.A. Schweikard, G. Glosser, M. Bodduluri, M. J. Murphy, and J. R. Adler, “Robotic motion compensation for respiratory movement during radiosurgery,” Comput. Aided Surg. 5(4), 263277 (2000).
180.
180.G. C. Sharp, S. B. Jiang, S. Shimizu, and H. Shirato, “Prediction of respiratory tumor motion for real-time image-guided radiotherapy,” Phys. Med. Biol. 49(3), 425440 (2004).
http://dx.doi.org/10.1088/0031-9155/49/3/006
181.
181.A. Schweikard, H. Shiomi, and J. Adler, “Respiration tracking in radiosurgery,” Med. Phys. 31(10), 27382741 (2004).
http://dx.doi.org/10.1118/1.1774132
182.
182.P. Liang, J. J. Pandit, and P. A. Robbins, “Nonstationarity of breath-by-breath ventilation and approaches to modeling the phenomenon,” in Modeling and control of ventilation, edited by S. J. G. Semple, L. Adams, and B. J. Whipp (Plenum, New York, 1995), pp. 117121.
183.
183.E. N. Bruce, “Temporal variations in the pattern of breathing,” J. Appl. Physiol. 80(4), 10791087 (1996).
184.
184.P. G. Seiler, H. Blattmann, S. Kirsch, R. K. Muench, and C. Schilling, “A novel tracking technique for the continuous precise measurement of tumor positions in conformal radiotherapy,” Phys. Med. Biol. 45(9), N103N110 (2000).
http://dx.doi.org/10.1088/0031-9155/45/9/402
185.
185.J. M. Balter, J. N. Wright, L. J. Newell, B. Friemel, S. Dimmer, Y. Cheng, J. Wong, E. Vertatschitsch, and T. P. Mate, “Accuracy of a wireless localization system for radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 61(3), 933937 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2004.11.009
186.
186.G. Benchetrit, “Breathing pattern in humans: Diversity and individuality,” Respir. Physiol. 122(2–3), 123129 (2000).
http://dx.doi.org/10.1016/S0034-5687(00)00154-7
187.
187.S. S. Vedam, P. J. Keall, A. Docef, D. A. Todor, V. R. Kini, and R. Mohan, “Predicting respiratory motion for four-dimensional radiotherapy,” Med. Phys. 31(8), 22742283 (2004).
http://dx.doi.org/10.1118/1.1771931
188.
188.T. Neicu, H. Shirato, Y. Seppenwoolde, and S. B. Jiang, “Synchronized moving aperture radiation therapy (SMART): Average tumor trajectory for lung patients,” Phys. Med. Biol. 48(5), 587598 (2003).
http://dx.doi.org/10.1088/0031-9155/48/5/303
189.
189.L. Papiez, “The leaf sweep algorithm for an immobile and moving target as an optimal control problem in radiotherapy delivery,” Math. Comput. Modell. 37, 735745 (2003).
http://dx.doi.org/10.1016/S0895-7177(03)00081-5
190.
190.L. Papiez, “DMLC leaf-pair optimal control of IMRT delivery for a moving rigid target,” Med. Phys. 31(10), 27422754 (2004).
http://dx.doi.org/10.1118/1.1779358
191.
191.Y. Suh, B. Yi, S. Ahn, J. Kim, S. Lee, S. Shin, S. Shin, and E. Choi, “Aperture maneuver with compelled breath (AMC) for moving tumors: A feasibility study with a moving phantom,” Med. Phys. 31(4), 760766 (2004).
http://dx.doi.org/10.1118/1.1650565
192.
192.S. Webb, “Limitations of a simple technique for movement compensation via movement-modified fluence profiles,” Phys. Med. Biol. 50(14), N155N161 (2005).
http://dx.doi.org/10.1088/0031-9155/50/14/N02
193.
193.S. Webb, “The effect on IMRT conformality of elastic tissue movement and a practical suggestion for movement compensation via the modified dynamic multileaf collimator (dMLC) technique,” Phys. Med. Biol. 50(6), 11631190 (2005).
http://dx.doi.org/10.1088/0031-9155/50/6/009
194.
194.S. Webb, “Does elastic tissue intrafraction motion with density changes forbid motion-compensated radiotherapy?,” Phys. Med. Biol. 51(6), 14491462 (2006).
http://dx.doi.org/10.1088/0031-9155/51/6/006
195.
195.S. Webb, “Quantification of the fluence error in the motion-compensated dynamic MLC (DMLC) technique for delivering intensity-modulated radiotherapy (IMRT),” Phys. Med. Biol. 51, L17L21 (2006).
http://dx.doi.org/10.1088/0031-9155/51/7/L01
196.
196.W. D. D’Souza, S. A. Naqvi, and C. X. Yu, “Real-time intra-fraction-motion tracking using the treatment couch: A feasibility study,” Phys. Med. Biol. 50(17), 40214033 (2005).
http://dx.doi.org/10.1088/0031-9155/50/17/007
197.
197.M. Uematsu, “CT-guided focal high dose radiotherapy,” presented at the 4th S Takahashi International Workshop on Three Dimensional Conformal Radiotherapy, Nagoya, Japan, 2004.
198.
198.T. Bortfeld, S. B. Jiang, and E. Rietzel, “Effects of motion on the total dose distribution,” Semin. Radiat. Oncol. 14, 4150 (2004).
199.
199.T. Zhang, R. Jeraj, H. Keller, W. Lu, G. H. Olivera, T. R. McNutt, T. R. Mackie, and B. Paliwal, “Treatment plan optimization incorporating respiratory motion,” Med. Phys. 31(6), 15761586 (2004).
http://dx.doi.org/10.1118/1.1739672
200.
200.G. S. Mageras, E. Yorke, and S. Jiang, “4D IMRT Delivery,” in Image-guided IMRT, edited by T. Bortfeld, R. K. Schmidt-Ullrich, W. DeNeve et al. (Springer-Verlag, Heidelberg, 2005), pp. 269285.
201.
201.P. C. Cheung, K. E. Sixel, R. Tirona, and Y. C. Ung, “Reproducibility of lung tumor position and reduction of lung mass within the planning target volume using active breathing control (ABC),” Int. J. Radiat. Oncol., Biol., Phys. 57(5), 14371442 (2003).
http://dx.doi.org/10.1016/j.ijrobp.2003.08.006
202.
202.L. A. Dawson, K. K. Brock, S. Kazanjian, D. Fitch, C. J. McGinn, T. S. Lawrence, R. K. Ten Haken, and J. Balter, “The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 51(5), 14101421 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)02653-0
203.
203.V. M. Remouchamps, N. Letts, D. Yan, F. A. Vicini, M. Moreau, J. A. Zielinski, J. Liang, L. L. Kestin, A. A. Martinez, and J. W. Wong, “Three-dimensional evaluation of intra- and interfraction immobilization of lung and chest wall using active breathing control: A reproducibility study with breast cancer patients,” Int. J. Radiat. Oncol., Biol., Phys. 57(4), 968978 (2003).
http://dx.doi.org/10.1016/S0360-3016(03)00710-7
204.
204.C. R. Ramsey, D. Scaperoth, and D. Arwood, “Clinical experience with a commercial respiratory gating system,” Int. J. Radiat. Oncol., Biol., Phys. 48(3), 164165 (2000).
http://dx.doi.org/10.1016/S0360-3016(00)00917-2
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/33/10/10.1118/1.2349696
Loading
/content/aapm/journal/medphys/33/10/10.1118/1.2349696
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/33/10/10.1118/1.2349696
2006-09-26
2015-09-04

Abstract

This document is the report of a task group of the AAPM and has been prepared primarily to advise medical physicists involved in the external-beam radiation therapy of patients with thoracic, abdominal, and pelvic tumors affected by respiratory motion. This report describes the magnitude of respiratory motion, discusses radiotherapy specific problems caused by respiratory motion, explains techniques that explicitly manage respiratory motion during radiotherapy and gives recommendations in the application of these techniques for patient care, including quality assurance (QA) guidelines for these devices and their use with conformal and intensity modulated radiotherapy. The technologies covered by this report are motion-encompassing methods, respiratory gated techniques, breath-hold techniques, forced shallow-breathing methods, and respiration-synchronized techniques. The main outcome of this report is a clinical process guide for managing respiratory motion. Included in this guide is the recommendation that tumor motion should be measured (when possible) for each patient for whom respiratory motion is a concern. If target motion is greater than , a method of respiratory motion management is available, and if the patient can tolerate the procedure, respiratory motion management technology is appropriate. Respiratory motion management is also appropriate when the procedure will increase normal tissue sparing. Respiratory motion management involves further resources, education and the development of and adherence to QA procedures.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/33/10/1.2349696.html;jsessionid=51bee1e6wwmi3.x-aip-live-06?itemId=/content/aapm/journal/medphys/33/10/10.1118/1.2349696&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The management of respiratory motion in radiation oncology report of AAPM Task Group 76a)
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/33/10/10.1118/1.2349696
10.1118/1.2349696
SEARCH_EXPAND_ITEM