1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
The management of imaging dose during image-guided radiotherapy: Report of the AAPM Task Group 75
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/34/10/10.1118/1.2775667
1.
1.E. G. A. Aird, “Second cancer risk, concomitant exposures, and IRMER(2000),” Br. J. Radiol. 77, 983985 (2004).
http://dx.doi.org/10.1259/bjr/56613233
2.
2.M. J. Murphy, “Tracking moving organs in real time,” Semin. Radiat. Oncol. 14, 91100 (2004).
3.
3.G. S. Mageras, “Management of target localization uncertainties in external-beam therapy,” Semin. Radiat. Oncol. 15, 133135 (2005).
4.
4.D. Jaffray, “Emergent technologies for 3-dimensional image-guided radiation delivery,” Semin. Radiat. Oncol. 15, 208216 (2005).
5.
5.L. Xing, B. Thorndyke, E. Schreibmann, Y. Yang, T.-F. Li, G.-Y. Kim, G. Luxton, and A. Koong, “Overview of image-guided radiation therapy,” Med. Dosim. 31, 91112 (2006).
6.
6.F. J. Lagerwaard et al., “Multiple ‘slow’ CT scans for incorporating lung tumor mobility in radiotherapy planning,” Int. J. Radiat. Oncol., Biol., Phys. 51, 932937 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)01716-3
7.
7.T. R. Mackie, T. Holmes, S. Swerdloff, P. Reckwerdt, J. O. Deassy, J. Yang, B. Paliwal, and T. Kinsella, “Tomotherapy: A new concept for the delivery of dynamic conformal radiotherapy,” Med. Phys. 20, 17091719 (1993).
http://dx.doi.org/10.1118/1.596958
8.
8.T. R. MackieHelical tomotherapy: Image-guided IMRT,” Med. Phys. 29, 13321324 (2002).
9.
9.T. Bortfeld and G. Chen, “High precision radiation therapy of moving targets,” Semin. Radiat. Oncol. 14, 1100 (2004).
10.
10.P. J. Keall, G. S. Mageras, J. M. Balter, R. S. Emery, K. M. Forster, S. B. Jiang, J. M. Kapatoes, D. A. Low, M. J. Murphy, B. R. Murray, C. R. Ramsey, M. B. Van Herk, S. S. Vedam, J. W. Wong, and E. Yorke, “The management of respiratory motion in radiation oncology report of AAPM Task Group 76,” Med. Phys. 33, 38743900 (2006).
http://dx.doi.org/10.1118/1.2349696
11.
11.H. Shirato et al., “Physical aspects of a real-time tumor-tracking system for gated radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 48, 11871195 (2000).
http://dx.doi.org/10.1016/S0360-3016(00)00748-3
12.
12.L. K. Wagner, P. J. Eifel, and R. A. Geise, “Potential biological effects following high x-ray dose interventional procedures,” J. Vasc. Interv. Radiol. 5, 7181 (1994).
13.
13.T. B. Shope, “Radiation-induced skin injuries from fluoroscopy,” Radiographics 16, 11951199 (1996).
14.
14.D. Followill, P. Geis, and A. Boyer, “Estimates of whole-body dose equivalent produced by beam intensity-modulated conformal therapy,” Int. J. Radiat. Oncol., Biol., Phys. 38, 667672 (l997).
http://dx.doi.org/10.1016/S0360-3016(97)00012-6
15.
15.E. J. Hall and C. S. Wuu, “Radiation-induced second cancers: The impact of 3D-CRT and IMRT,” Int. J. Radiat. Oncol., Biol., Phys. 56, 8388 (2003).
http://dx.doi.org/10.1016/S0360-3016(03)00073-7
16.
16.D. Brenner, “Induced cancers after prostate-cancer radiotherapy: No cause for concern?Int. J. Radiat. Oncol., Biol., Phys. 65, 637639 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2006.02.044
17.
17.BEIR, Committee on the Biological Effects of Ionizing Radiations (BEIR V), National, Research Council, “Health effects of exposure to low levels of ionizing radiation: BEIR V(National Academy Press, Washington, DC, 1990).
18.
18.D. J. Brenner, “Estimating cancer risks from pediatric CT: Going from the qualitative to the quantitative,” Pediatr. Radiol. 32, 228231 (2002).
http://dx.doi.org/10.1007/s00247-002-0671-1
19.
19.NCRP, “Medical x-ray, electron beam and gamma-ray protection for energies up to (Equipment design, performance and use),” NCRP Report 102, 1989.
20.
20.L. Beaulieu, L. M. Girouard, S. Aubin, J. F. Aubry, L. Brouard, L. Roy-Lacroix, J. Dumont, D. Trembley, E. Vigneault, and J. Laverdiere, “Performing Daily Prostate Targeting with a Standard V-EPID and an Automated Radio-Opaque Marker Detection Algorithm,” Radiother. Oncol. 73, 6164 (2004).
http://dx.doi.org/10.1016/j.radonc.2004.06.006
21.
21.L. Wolfsberger, R. Tishler, A. Allen, S. James, J. Killoran, and L. Court, “Importance of Daily Portal Imaging for Head and Neck IMRT TreatmentsMed. Phys. 33, 20392039 (2006).
22.
22.M. R. Tremains, G. M. Georgiadis, and M. J. Dennis, “Radiation exposure with use of the inverted C-arm technique in upper-extremity surgery,” J. Bone Jt. Surg. 83A, 674768 (2001).
23.
23.NCRP, “Implementation of the principle of as low as reasonably achievable (ALARA) for medical and dental personnel,” NCRP Report 107, 1990.
24.
24.J. E. Gray et al., “Reference values in diagnostic radiology; application and impact,” Radiology 235, 354358 (2005).
http://dx.doi.org/10.1148/radiol.2352020016
25.
25.C. H. McCollough and B. A. Schueler, “Calculation of effective dose,” Med. Phys. 27, 828837 (2000).
http://dx.doi.org/10.1118/1.598948
26.
26.W. Jacobi, “The concept of effective dose: A proposal for the combination of organ doses,” J. Radiat. Environ. Biophys. 12, 101109 (1975).
27.
27.F. F. Yin (unpublished, private communication).
28.
28.C. L. Perkins, T. Fox, E. Elder, D. A. Kooby, C. A. Staley III, and J. Landry, “Image-guided radiation therapy (IGRT) in gastrointestinal tumors,” JOP: Journal of the Pancreas (online) 7, 372381 (2006).
29.
29.V. S. Khoo, D. P. Dearnaley, D. J. Finnign, A. Padhani, S. F. Tanner, and M. O. Leach, “Magnetic resonance imaging (MRI): Considerations and applications in radiotherapy treatment planning,” Radiother. Oncol. 42, 115 (1997).
http://dx.doi.org/10.1016/S0167-8140(96)01866-X
30.
30.I. J. Kalet and M. M. Austin-Seymour, “The use of medical images in planning and delivery of radiation therapy,” J. Am. Med. Inform Assoc. 4, 327339 (1997).
31.
31.M. L. Kessler and R. K. Ten Haken, “Use of MRl data for treatment planning,” in Imaging in Radiation Therapy, edited by J. D. Hazle and A. L. Boyers (Medical Physics Publishing, Madison, WI, 1998), pp. 313316.
32.
32.G. A. Ezzell et al., “Guidance document on delivery, treatment planning, and implementation of IMRT, Report of the IMRT subcommittee of the AAPM radiation therapy committee,” Med. Phys. 30, 20892115 (2003).
http://dx.doi.org/10.1118/1.1591194
33.
33.Radiation Exposure in Computed Tomography, edited by H. D. Nagel (CTB Publications, Hamburg, Germany, 2002).
34.
34.R. Y. L. Chu, J. Fisher, B. R. Archer, B. J. Conway, M. M. Goodsitt, S. Glaze, J. E. Gray, and K. J. Strauss, “Standardized methods for measuring diagnostic x-ray exposures,” AAPM Report 31, 1990.
35.
35.S. Diederich and H. Lenzen, “Radiation exposure associated with imaging of the chest: Comparison of different radiographic and computed tomography techniques,” Cancer 89, 24572460 (2000).
36.
36.P. J. Keall et al., “Acquiring 4D thoracic CT scans using a multislice helical method,” Phys. Med. Biol. 49, 20532067 (2004).
http://dx.doi.org/10.1088/0031-9155/49/10/015
37.
37.D. A. Low et al., “A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing,’’ Med. Phys. 30, 12541263 (2003).
http://dx.doi.org/10.1118/1.1576230
38.
38.J. Chen, O. Morin, M. Aubin, M. K. Bucci, C. F. Chuang, and J. Pouliot, Dose-guided radiation therapy with megavoltage cone-beam CT,’’ Br. J. Radiol. 79, S87S98 (2006).
http://dx.doi.org/10.1259/bjr/60612178
39.
39.D. Jaffray and J. H. Siewerdsen, “Cone-beam computed tomography with a flat-panel imager: Initial performance characterization,’’ Med. Phys. 27, 13111323 (2000).
http://dx.doi.org/10.1118/1.599009
40.
40.D. Letourneau, J. Wong, M. Oldham, M. Gulam, L. Watt, D. A. Jaffray, J. H. Siewerdson, and A. A. Martinez, “Cone-beam-guided radiation therapy: Technical implementation,” Radiother. Oncol. 75, 279286 (2005).
http://dx.doi.org/10.1016/j.radonc.2005.03.001
41.
41.C. Thilmann et al., “Correction of patient positioning errors based on in-line cone beam CTs: Clinical implementation and first experiences,” Radiat. Oncol. 1, 116 (2006).
42.
42.M. K. Islam, T. G. Purdie, B. D. Norrlinger, H. Alasti, D. J. Moseley, M. B. Sharpe, J. H. Siewerdsen, and D. A. Jaffray, “Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy,” Med. Phys. 33, 15731582 (2006).
http://dx.doi.org/10.1118/1.2198169
43.
43.A. Amer et al., “Doses from cone beam CT integrated to a radiotherapy treatment machine,” United Kingdom Radiation Oncology Conference, April 2005.
44.
44.P. H. Cossmann, A. Stuessl, and C. von Briel, “Cone-beam CT experience in Aarau,” ESTRO Workshop on Image-Guided Radiotheraphy, S9, (2005).
45.
45.M. Endo et al., “Image characteristics and effective dose estimation of a cone-beam CT using a video-fluoroscopic system,” IEEE Trans. Nucl. Sci. 46, 686690 (1999).
http://dx.doi.org/10.1109/23.775599
46.
46.K. Nakagawa, Y. Aoki, M. Tago, A. Terahara, and K. Ohtomo, “Megavoltage CT-assisted stereotactic radiosurgery for thoracic tumors: Original research in the treatment of thoracic neoplasms,’’ Int. J. Radiat. Oncol., Biol., Phys. 48, 449457 (2000).
http://dx.doi.org/10.1016/S0360-3016(00)00617-9
47.
47.C. H. McCollough and F. E. Zink, “Performance evaluation of a multi-slice CT system,” Med. Phys. 26, 22232230 (1999).
http://dx.doi.org/10.1118/1.598777
48.
48.J. Sillanpaa, J. Chang, and G. Mageras, “Developments in megavoltage cone beam CT with an amorphous silicon EPID: Reduction of exposure and synchronization with respiratory gating,” Med. Phys. 32, 819829 (2005).
http://dx.doi.org/10.1118/1.1861522
49.
49.J. P. Winston and D. B. Gilley, “Patient Exposure and Dose Guide 2003,” Conference of Radiation Control Program Directors, CRCPD publication E-03-2 (2003).
50.
50.C. J. Moore et al., “Developments in and experience of kilovoltage x-ray cone beam image-guided radiotherapy,” J. Radiol. 79, S66S78 (2006).
51.
51.S. Shimizu et al., “Use of an implanted marker and real-time tracking of the marker for the positioning of prostate and bladder cancers,” Int. J. Radiat. Oncol., Biol., Phys. 48, 15911597 (2000).
http://dx.doi.org/10.1016/S0360-3016(00)00809-9
52.
52.S. Shimizu et al., “Detection of lung tumor movement in real-time tumor-tracking radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 51 304310 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)01641-8
53.
53.Y. Seppenwoolde, H. Shirato, K. Kitamura, S. Shimizu, M. van Herk, J. V. Lebesque, and K. Miyasada, “Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy,’’ Int. J. Radiat. Oncol., Biol., Phys. 53, 822834 (2002).
http://dx.doi.org/10.1016/S0360-3016(02)02803-1
54.
54.K. Kitamura, H. Shirato, Y. Seppenwoolde, R. Onimaru, M. Oda, K. Fujita, S. Shimizu, N. Shinohara, T. Harabayashi, and K. Miyasaka, “Three-dimensional intrafractional movement of prostate measured during real-time tumor-tracking radiotherapy in supine and prone treatment positions,” Int. J. Radiat. Oncol., Biol., Phys. 43, 11171123 (2002).
http://dx.doi.org/10.1016/S0360-3016(02)02882-1
55.
55.K. Kitamura, H. Shirato, Y. Seppenwoolde, T. Shimizu, Y. Kodama, H. Endo, R. Onimaru, M. Oda, K. Fujita, S. Shimizu, and K. Miyasaka, ‘‘Tumor location, cirrhosis, and operation history contribute to tumor movement in the liver, as measured during stereotactic irradiation using a real-time tumor-tracking radiation therapy system,” Int. J. Radiat. Oncol., Biol., Phys. 56, 221228 (2003).
http://dx.doi.org/10.1016/S0360-3016(03)00082-8
56.
56.H. Shirato, Y. Seppenwoolde, K. Kitamura, R. Onimura, and S. Shimizu, “Intrafractional tumor motion: Lung and liver,” Semin. Radiat. Oncol. 14, 1018 (2004).
57.
57.J. H. Siewerdsen and D. A. Jaffray, “Cone-beam computed tomography with a flat-panel imager: Magnitude and effects of x-ray scatter,” Med. Phys. 28, 220231 (2001).
http://dx.doi.org/10.1118/1.1339879
58.
58.G. S. Mageras, “Interventional strategies for reducing respiratory-induced motion in external beam therapy,” ICCR 2000, Heidelberg, 514516 (2000).
59.
59.K. E. Rosenzweig et al., “The deep inspiration breathe-hold technique in the treatment of inoperable non-small-cell lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. 48, 8187 (2000).
http://dx.doi.org/10.1016/S0360-3016(00)00583-6
60.
60.E. A. Barnes, B. R. Murray, D. M. Robinson, L. J. Underwood, J. Hanson, and W. H. Roa, “Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration,” Int. J. Radiat. Oncol., Biol., Phys. 50, 10911098 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)01592-9
61.
61.M. J. Murphy, D. Martin, R. Whyte, C. Ozhasoglu, J. Hai, and Q.-T. Le, “The effectiveness of breathholding to stabilize lung and pancreas tumors during radiosurgery,’’ Int. J. Radiat. Oncol., Biol., Phys. 53, 475482 (2002).
http://dx.doi.org/10.1016/S0360-3016(01)02822-X
62.
62.J. W. Wong et al., “The use of active breathing control (ABC) to reduce margin for breathing motion,” Int. J. Radiat. Oncol., Biol., Phys. 44, 911919 (1999).
http://dx.doi.org/10.1016/S0360-3016(99)00056-5
63.
63.K. H. Klaus, D. Jurgen, L. Frank, F. Peter, B. Malte, R. Bernhard, M. Johann, K. Jurgan, S. Wolfgang, and W. Michael, “Extracranial stereotactic conformal radiation treatment of tumors in the liver and the lung,” Int. J. Radiat. Oncol., Biol., Phys. 42, 214 (1998).
64.
64.H. D. Kubo and B. C. Hill, “Respiration gated radiotherapy treatment: A technical study,’’ Phys. Med. Biol. 41, 8391 (1996).
http://dx.doi.org/10.1088/0031-9155/41/1/007
65.
65.A. Schweikard G. Glosser, M. Bodduluri, M. Murphy, and J. R. Adler, “Robotic motion compensation for respiratory movement during radiosurgery,’’ Comput. Aided Surg. 5, 263277 (2000).
66.
66.F. A. Siebert, P. Kohr, and G. Kovacs, “The design and testing of a solid phantom for the verification of a commercial 3D seed reconstruction algorithm,” Radiother. Oncol. 74, 169175 (2005).
http://dx.doi.org/10.1016/j.radonc.2004.10.016
67.
67.M. Herman, “Clinical use of electronic portal imaging,” Semin. Radiat. Oncol. 15, 157167 (2005).
68.
68.S. P. Waddington and A. L. McKensie, “Assessment of effective dose from concomitant exposures required in verification of the target volume in radiotherapy,” Br. J. Radiol. 77, 557561 (2004).
http://dx.doi.org/10.1259/bjr/67235257
69.
69.J. H. Siewerdsen et al., “Volume CT with a flat-panel detector on a mobile, isocentric C-arm: Pre-clinical investigation in guidance of minimally invasive surgery,” Med. Phys. 32, 241254 (2005).
http://dx.doi.org/10.1118/1.1836331
70.
70.M. J. Murphy, S. D. Chang, and I. C. Gibbs, “Patterns of patient movement during frameless image-guided radiosurgery,” Int. J. Radiat. Oncol., Biol., Phys. 55, 1400l408 (2003).
http://dx.doi.org/10.1016/S0360-3016(02)04597-2
71.
71.H. Shirato, M. Oita, K. Fujita, Y. Watanabe, and K. Miyasaka, “Feasibility of synchronization of real-time tumor-tracking radiotherapy and intensity-modulated radiotherapy from viewpoint of excessive dose from fluoroscopy,” Int. J. Radiat. Oncol., Biol., Phys. 60, 335341 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.04.028
72.
72.National Institutes of Health, “Interventional fluoroscopy: Reducing radiation risks for patients and staff,” NIH Publication 05-5286 (March, 2005).
73.
73.J. C. Le Heron, “Estimation of effective dose to the patient during medical x-ray examinations from measurements of the dose-area product,” Phys. Med. Biol. 37, 21172126 (1992).
http://dx.doi.org/10.1088/0031-9155/37/11/008
74.
74.M. Galanski, H. D. Nagel, and G. Stamm, “Expositions-dosis bei CT-untersuchungen: Ergebnisse einer bundesweiten umgfrage,” Fortschr. Rontgenstr. 172, M164M168 (2000).
75.
75.E. G. Fiberg, “Norwegian Radiation Protection Authority, Department of Radiation Protection and Nuclear Safety,” Østerås, Norway, 193196 (2000).
76.
76.ICRP-60, The International Commission on Radiological Protection, Recommendations on Radiation Protection, ICRP Publication 60 (Pergamon Press, Oxford, 1991).
77.
77.S. D. Chang, D. P. Martin, and J. R. Adler, “Treatment of spinal AVMs and vascular tumors with frameless image-based radiosurgery,” J. Neurosurg. 88, 201A (1998).
78.
78.S. D. Chang, M. Marcellus, M. P. Marks, R. P. Levy, H. M. Do, and G. K. Steinberg, “Multimodality treatment of giant intracranial arteriovenous malformations,” Neurosurgery 53, 114 (2003).
79.
79.J. C. Flickinger, D. Kondziolka, A. Niranjan, and L. D. Lunsford, “Results of acoustic neuroma radiosurgery: An analysis of 5 years experience using current methods,” J. Neurosurg. 94, 16 (2001).
80.
80.M. Lim, A. T. Villavicencio, S. Burneikiene, S. D. Chang, P. Romanell, L. Mcneely, M. McIntyre, J. J. Thramann, and J. R. Adler, “Cyber knife radiosurgery for idiopathic trigeminal neuralgia,” Neurosurg. Focus 18, article E9, 17 (2005).
81.
81.M. Mitsumori, D. C. Shrieve, E. Alexander III, U. B. Kaiser, G. E. Richardson, P. M. Black, and J. S. Loeffler, “Initial clinical results of Linac-based stereotactic radiosurgery and stereotactic radiotherapy for pituitary adenomas,” Int. J. Radiat. Oncol., Biol., Phys. 42, 573580 (1998).
http://dx.doi.org/10.1016/S0360-3016(98)00256-9
82.
82.P. N. Plowman, “Pituitary adenoma radiotherapy—when, who and how,” Clin. Endocrinol. 51, 265271 (1999).
83.
83.J. P. Sheehan, D. Kondziolka, J. Flicklinger, and L. D. Lundsford, “Radiosurgery for residual and recurrent nonfunctioning pituitary adenoma,” J. Neurosurg. 97, 408414 (2002).
84.
84.I. Diallo, A. Lamon, A. Shamsaldin, E. Grimaud, F. de Vathaire, and J. Chavaudra, “Estimation of the radiation dose delivered to any point outside the target volume per patient treated with external beam radiotherapy,” Radiother. Oncol. 38, 269271 (1996).
85.
85.A. A. Cigna, D. Nassisi, D. Masenga, R. Raffo, and P. Rotta, “Dose due to scattered radiation in external radiotherapy: A prostate cancer case history,” Radiat. Prot. Dosim. 108, 2732 (2004).
86.
86.H. Ing, W. R. Nelson, and R. A. Shore, “Unwanted photon and neutron radiation resulting from collimated photon beams interacting with the body of radiotherapy patients,” Med. Phys. 9, 2733 (1982).
http://dx.doi.org/10.1118/1.595137
87.
87.K. Sheng, R. Jeraj, R. Shaw, T. R. Mackie, and B. R. Paliwal, “Imaging dose management using multi-resolution in CT-guided radiation therapy,” Phys. Med. Biol. 50, 12051219 (2005).
http://dx.doi.org/10.1088/0031-9155/50/6/011
88.
88.M. Oldham, D. Letourneau, L. Watt, G. Hugo, D. Yan, D. Lockman, L. H. Kim, P. Y. Chen, A. Martinez, and J. W. Wong, “Cone-beam-T-guided radiation therapy: A model for on-line application,” Radiother. Oncol. 75, 271278 (2005).
http://dx.doi.org/10.1016/j.radonc.2005.03.026
89.
89.C. Ozhasoglu and M. J. Murphy, “Issues in respiratory motion compensation during external-beam radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 52, 13891399 (2002).
http://dx.doi.org/10.1016/S0360-3016(01)02789-4
90.
90.G. C. Sharp, S. B. Jiang, S. Shimizu, and H. Shirato, “Prediction of respiratory tumour motion for real-time image-guided radiotherapy,” Phys. Med. Biol. 49, 425440 (2004).
http://dx.doi.org/10.1088/0031-9155/49/3/006
91.
91.J. M. Balter et al., “Accuracy of a wireless localization system for radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 6l, 933937 (2005).
92.
92.B. W. Raaymakers et al., “Integrating a MRI scanner with a radiotherapy accelerator: A new concept of precise on-line radiotherapy guidance and treatment monitoring,” 14th Proceedings International Conference on the Use of Computers in Radiation Therapy (Seoul, South Korea), pp. 8992 (2004).
93.
93.D. Hart and B. F. Wall, “Radiation exposure of the UK population from medical and dental x-ray examinations,” National Radiological Protection Board NRPb-W4 (2002).
94.
94.L. Bruni, S. Lavalle, J. Troccaz, P. Cinquin, and M. Bolla, “Pre-and intra-irradiation multi-modal image registration: Principles and first experiments,” Radiother. Oncol. 29, 244252 (1993).
http://dx.doi.org/10.1016/0167-8140(93)90254-6
95.
95.H. Geinitz, F. B. Zimmermann, A. Kuzmany, and P. Knechaurek, “Daily CT planning during boost irradiation of prostate cancer: feasibility and time requirements,’’ Strahlenther. Onkol. 176, 429432 (2000).
96.
96.D. L. VandenBerge, M. DeRidder, and G. A. Storme, “Imaging in radiotherapy,” Eur. J. Radiol. 36, 4148 (2000).
http://dx.doi.org/10.1016/S0720-048X(99)00182-5
97.
97.J. R. Adler, M. J. Murphy, S. D. Chang, and S. L. Hancock, “Image-guided robotic radiosurgery,” Neurosurgery 44, 12991307 (1999).
98.
98.J. M. Balter et al., “Daily targeting of intrahepatic tumors for radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 52, 266271 (2002).
http://dx.doi.org/10.1016/S0360-3016(01)01815-6
99.
99.M. J. Murphy, J. R. Adler, M. Bodduluri, J. Dooley, K. Forster, J. Hai, Q. Le, G. Luxton, D. Martin, and J. Poen, “Image-guided radiosurgery for the spine and pancreas,” Comput. Aided Surg. 5, 278288 (2000).
100.
100.L. J. Pisani, D. A. Jaffray, D. Lockman, D. Yan, and J. W. Wong, “A mega- and kilo-voltage radiographic guidance system: Calibration and clinical implementation,” EPI98 International Workshop on Electronic Portal Imaging, pp. 8990 (1998).
101.
101.J. E. Schewe, K. L. Lam, J. M. Balter, and R. K. TenHaken, “A room-based diagnostic imaging system for measurement of patient setup,” Med. Phys. 25, 23852387 (1998).
http://dx.doi.org/10.1118/1.598461
102.
102.F. F. Yin et al., “A technique of intensity-modulated radiosurgery (IMRS) for spinal tumor,” Med. Phys. 29, 28152822 (2002).
http://dx.doi.org/10.1118/1.1521722
103.
103.P. J. Keall, V. R. Kini, S. Vedam, and R. Mohan, “Motion adaptive x-ray therapy: A feasibility study,” Phys. Med. Biol. 46, 110 (2000).
http://dx.doi.org/10.1088/0031-9155/46/1/301
104.
104.L. E. Antonuk and Y. El-Mohri, “Active matrix flat-panel imagers for electronic portal imaging,” in Imaging in Radiotherapy, edited by J. D. Hazle and A. L. Boyer, AAPM Summer School, 1998.
105.
105.G. S. Mageras and G. J. Kutcher, “The role of EPIDs in conformal therapy,” in Imaging in Radiotherapy, edited by J. D. Hazle and A. L. Boyer, AAPM Summer School, 1998.
106.
106.K. G. A. Gilhuijs, P. J. H. vandeVen, and M. vanHerk, “Automatic three-dimensional inspection of patient setup in radiation therapy using portal images, simulator images, and computed tomography data,” Med. Phys. 23, 389399 (1996).
http://dx.doi.org/10.1118/1.597801
107.
107.K. G. A. Gilhuijs, K. Drukker, A. Touw, P. J. H. van deVen, and M. van Herk, “Interactive three-dimensional inspection of patient setup in radiation therapy using digital portal images and computed tomography data,” Int. J. Radiat. Oncol., Biol., Phys. 34, 873885 (1996).
http://dx.doi.org/10.1016/0360-3016(95)02183-3
108.
108.H. Meertens, M. van Herk, and J. Weeda, “A liquid ionization detector for digital radiography of therapeutic megavoltage photon beams,” Phys. Med. Biol. 30, 313321 (1985).
http://dx.doi.org/10.1088/0031-9155/30/4/004
109.
109.E. E. Fitchard, J. S. Aldridge, K. Ruchala, G. Fang, J. Balog, D. W. Pearson, G. H. Olivera, E. A. Schloesser, D. Wenman, P. J. Reckwerdt, and T. R. Mackie, “Registration using tomographic projection files,” Phys. Med. Biol. 44, 495507 (1999).
http://dx.doi.org/10.1088/0031-9155/44/2/015
110.
110.E. E. Fitchard, J. S. Aldridge, P. J. Reckwerdt, G. H. Olivera, T. R. Mackie, and A. Iosevich, “Six parameter patient registration directly from projection data,” Nucl. Instrum. Methods Phys. Res. A A421, 342351 (1999).
http://dx.doi.org/10.1016/S0168-9002(98)01236-4
111.
111.B. Hesse, L. Spies, and B. Groh, “Tomotherapeutic portal imaging for radiation treatment verification,” Phys. Med. Biol. 43, 36073616 (1998).
http://dx.doi.org/10.1088/0031-9155/43/12/016
112.
112.K. J. Ruchala, G. H. Olivera, E. A. Schloesser, and T. R. Macki, “Megavoltage CT on a tomotherapy system,” Phys. Med. Biol. 44, 25972621 (1999).
http://dx.doi.org/10.1088/0031-9155/44/10/316
113.
113.K. J. Ruchala, G. H. Olivera, J. M. Kapatoes, E. A. Schloesser, P. J. Reckwerd, and T. R. Mackie, “Megavoltage CT image reconstruction during tomotherapy treatments,” Phys. Med. Biol. 45, 35453562 (2000).
http://dx.doi.org/10.1088/0031-9155/45/12/303
114.
114.K. J. Ruchala, G. H. Olivera, J. M. Kapatoes, E. A. Schloesser, P. J. Reckwerdt, and T. R. Mackie, “Megavoltage CT imaging as a by-product of multileaf collimator leakage,” Phys. Med. Biol. 45, N61N70 (2000).
http://dx.doi.org/10.1088/0031-9155/45/7/401
115.
115.E. Seppi et al., “Megavoltage cone-beam computed tomography using a high quantum efficiency image receptor,” Int. J. Radiat. Oncol., Biol., Phys. 55, 793803 (2003).
http://dx.doi.org/10.1016/S0360-3016(02)04155-X
116.
116.J. Pouliot et al., “Low-dose megavoltage cone-beam CT for radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 61, 552560 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2004.10.011
117.
117.E. C. Ford et al., “Cone-beam CT with megavoltage beams and an amorphous silicon electronic portal imaging device: Potential for verification of radiotherapy of lung cancer,” Med. Phys. 29, 29132924 (2002).
http://dx.doi.org/10.1118/1.1517614
118.
118.G. Pang and J. A. Rowlands, “Development of high quantum efficiency, flat panel, thick detectors for megavoltage x-ray imaging: A novel direct-conversion design and its feasibility,” Med. Phys. 31, 30043016 (2004).
http://dx.doi.org/10.1118/1.1803771
119.
119.B. A. Groh, J. H. Siewerdsen, D. G. Drake, J. W. Wong, and D. A. Jaffray, “MV and kV cone-beam CT on a medical linear accelerator,” in ICCR: The use of computers in radiation therapy, edited by W. Schlegel and T. Bortfeld (Springer Verlag, Heidelberg, 2000), pp. 561563.
120.
120.B. A. Groh, J. H. Siewerdsen, D. G. Drake, J. W. Wong, and D. A. Jaffray, “A performance comparison of flat-panel imager-based MV and KV cone-beam CT,” Med. Phys. 29, 967975 (2002).
http://dx.doi.org/10.1118/1.1477234
121.
121.S. Loose and K. W. Leszczynski, “On few-view tomographic reconstruction with megavoltage photon beams,” Med. Phys. 28, 16791688 (2001).
http://dx.doi.org/10.1118/1.1387273
122.
122.J. Siewerdsen and D. Jaffray, “NEQ description of 3D imaging performance in flat-panel cone-beam CT,” Med. Phys. 29, 13211321 (2002).
123.
123.Y. Aoki, A. Akanuma, P. M. Evans, D. G. Lewis, E. J. Morton, and W. Swindell, “A dose distribution evaluation utilizing megavoltage CT imaging system,” Radiat. Med. 8, 107110 (1990).
124.
124.A. Brahme, B. Lind, and P. Nafstadius, “Radiotherapeutic computed tomography with scanned photon beams,” Int. J. Radiat. Oncol., Biol., Phys. 13, 95101 (1987).
125.
125.H. Guan and Y. Zhu, “Feasibility of megavoltage portal CT using an electronic portal imaging device (EPID) and a multi-level scheme algebraic reconstruction technique,” Phys. Med. Biol. 43, 29252937 (1998).
http://dx.doi.org/10.1088/0031-9155/43/10/018
126.
126.D. G. Lewis, W. Swindell, E. J. Morton, P. M. Evans, and Z. R. Xiao, “A megavoltage CT scanner for radiotherapy verification,” Phys. Med. Biol. 37, 19851999 (1992).
http://dx.doi.org/10.1088/0031-9155/37/10/013
127.
127.S. Midgley, R. Millar, and J. Dudson, “A feasibility study for megavoltage cone beam CT using a commercial EPID,” Phys. Med. Biol. 43, 155169 (1998).
http://dx.doi.org/10.1088/0031-9155/43/1/010
128.
128.M. Mosleh-Shirazi, P. Evans, W. Swindell, S. Webb, and M. Partridge, “A cone-beam megavoltage CT scanner for treatment verification in conformed radiotherapy,” Radiother. Oncol. 48, 319328 (1998).
http://dx.doi.org/10.1016/S0167-8140(98)00042-5
129.
129.M. Partridge, P. M. Evans, and M. A. Mosley-Shirazi, “Linear accelerator output variations and their consequences for megavoltage imaging,” Med. Phys. 25, 14431452 (1998).
http://dx.doi.org/10.1118/1.598318
130.
130.R. G. T. Simpson, C. T. Chen, E. A. Grubbs, and W. Swindell, “A 4-MV CT scanner for radiation therapy: The prototype system,” Med. Phys. 9, 574579 (1982).
http://dx.doi.org/10.1118/1.595102
131.
131.L. Spies, M. Ebert, B. Groh, B. Hesse, and T. Bortfeld, “Correction of scatter in megavoltage cone-beam CT,” Phys. Med. Biol. 46, 821833 (2001).
http://dx.doi.org/10.1088/0031-9155/46/3/316
132.
132.W. Swindell, “A 4-MV CT scanner for radiation therapy: Spectral properties of the therapy beam,” Med. Phys. 10, 347351 (1983).
http://dx.doi.org/10.1118/1.595280
133.
133.W. Swindell, R. G. Simpson, and J. R. Oleson, “Computed tomography with a linear accelerator with radiotherapy applications,” Med. Phys. 10, 416420 (1983).
http://dx.doi.org/10.1118/1.595391
134.
134.S. Mutic and D. A. Low, “Whole-body dose from tomotherapy delivery,” Int. J. Radiat. Oncol., Biol., Phys. 42, 229232 (1998).
http://dx.doi.org/10.1016/S0360-3016(98)00199-0
135.
135.European Guidelines on Quality Criteria for Computed Tomography (http://www.drs.dk).
136.
136.A. Suzuki and M. N. Susuki, “Use of a pencil-shaped ionization chamber for measurement of exposure resulting from a computed tomography scan,” Med. Phys. 5, 536539 (1978).
http://dx.doi.org/10.1118/1.594445
137.
137.P. C. Shrimpton et al., “Survey of CT practice in the UK: Part 2; Dosimetric aspects,” National Radiological Protection Board Report R-249, London: HMSO (1991).
138.
138.M. F. McNitt-Gray, “Radiation Dose in CT,” Radiographics 22, 15411553 (2002).
139.
139.E. C. Ford et al., “Respiration-correlated spiral CT: A method of measuring respiratory-induced anatomic motion for radiation treatment planning,” Med. Phys. 30, 8897 (2003).
http://dx.doi.org/10.1118/1.1531177
140.
140.L. Court et al., “Evaluation of mechanical precision and alignment uncertainties for an integrated CT/LINAC system,” Med. Phys. 30, 11981209 (2003).
http://dx.doi.org/10.1118/1.1573792
141.
141.C. W. Cheng, J. R. Wong, L. Grimm, M. Chow, and M. Uematsu, “Commissioning and clinical implementation of a CT scanner installed in an existing treatment room for precise tumor localization and early clinical experience,” Am. J. Clin. Oncol. 26, e28e36 (2003).
142.
142.J. Wong et al., “Image-guided radiotherapy for prostate cancer by CT-linear accelerator combination: Prostate movements and dosimetric considerations,” Int. J. Radiat. Oncol., Biol., Phys. 61, 561569 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2004.06.010
143.
143.R. D. Nawfel, P. F. Judy, A. R. Schleipman, and S. G. Silverman, “Patient radiation dose at CT urography and conventional urography,” Radiology 232, 126132 (2004).
144.
144.R. L. Morin, T. C. Gerber, and C. H. McCollough, “Radiation dose in computed tomography of the heart,” Circulation 107, 917922 (2003).
http://dx.doi.org/10.1161/01.CIR.0000048965.56529.C2
145.
145.C. S. Reft, R. Runkel-Muller, and L. Myrianthopoulos, “In vivo and phantom measurements of the secondary photon and neutron doses for prostate patients undergoing IMRT,” Med. Phys. 33, 37343742 (2006).
http://dx.doi.org/10.1118/1.2349699
146.
146.P. Lin et al., “Protocols for the radiation safety surveys of diagnostic radiological equipment,” AAPM Report No. 21988.
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/34/10/10.1118/1.2775667
Loading
/content/aapm/journal/medphys/34/10/10.1118/1.2775667
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/34/10/10.1118/1.2775667
2007-09-26
2015-08-01

Abstract

Radiographic image guidance has emerged as the new paradigm for patient positioning, target localization, and external beam alignment in radiotherapy. Although widely varied in modality and method, all radiographic guidance techniques have one thing in common—they can give a significant radiation dose to the patient. As with all medical uses of ionizing radiation, the general view is that this exposure should be carefully managed. The philosophy for dose management adopted by the diagnostic imaging community is summarized by the acronym ALARA, i.e., as low as reasonably achievable. But unlike the general situation with diagnostic imaging and image-guided surgery, image-guided radiotherapy (IGRT) adds the imaging dose to an already high level of therapeutic radiation. There is furthermore an interplay between increased imaging and improved therapeutic dose conformity that suggests the possibility of optimizing rather than simply minimizing the imaging dose. For this reason, the management of imaging dose during radiotherapy is a different problem than its management during routine diagnostic or image-guided surgical procedures. The imaging dose received as part of a radiotherapy treatment has long been regarded as negligible and thus has been quantified in a fairly loose manner. On the other hand, radiation oncologists examine the therapy dose distribution in minute detail. The introduction of more intensive imaging procedures for IGRT now obligates the clinician to evaluate therapeutic and imaging doses in a more balanced manner. This task group is charged with addressing the issue of radiation dose delivered via image guidance techniques during radiotherapy. The group has developed this charge into three objectives: (1) Compile an overview of image-guidance techniques and their associated radiation dose levels, to provide the clinician using a particular set of image guidance techniques with enough data to estimate the total diagnostic dose for a specific treatment scenario, (2) identify ways to reduce the total imaging dose without sacrificing essential imaging information, and (3) recommend optimization strategies to trade off imaging dose with improvements in therapeutic dose delivery. The end goal is to enable the design of image guidance regimens that are as effective and efficient as possible.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/34/10/1.2775667.html;jsessionid=23qnfral7fl9d.x-aip-live-02?itemId=/content/aapm/journal/medphys/34/10/10.1118/1.2775667&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The management of imaging dose during image-guided radiotherapy: Report of the AAPM Task Group 75
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/34/10/10.1118/1.2775667
10.1118/1.2775667
SEARCH_EXPAND_ITEM