Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/34/10/10.1118/1.2779861
1.
1.S. Webb, P. M. Evans, W. Swindell, and J. O. Deasy, “A proof that uniform dose gives the greatest TCP for fixed integral dose in the planning target volume,” Phys. Med. Biol. 39, 20912098 (1994).
http://dx.doi.org/10.1088/0031-9155/39/11/018
2.
2.R. I. Mackay and J. H. Hendry, “The modelled benefits of individualizing radiotherapy patients’ dose using cellular radiosensitivity assays with inherent variability,” Radiother. Oncol. 50, 6775 (1999).
3.
3.S. Levegrun, A. Jackson, M. J. Zelefsky, E. S. Venkatraman, M. W. Skwarchuk, W. Schlegel, Z. Fuks, S. A. Leibel, and C. C. Ling, “Risk group dependence of dose response for biopsy outcome after three-dimensional conformal radiation therapy of prostate cancer,” Radiother. Oncol. 63, 1126 (2002).
http://dx.doi.org/10.1016/S0167-8140(02)00062-2
4.
4.K. S. C. Chao, W. R. Bosch, S. Mutic, J. S. Lewis, F. Dehdashti, M. A. Mintun, J. F. Dempsey, C. A. Perez, J. A. Purdy, and M. J. Welch, “A novel approach to overcome hypoxic tumor resistance: -ATSM-guided intensity-modulated radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 49, 11711182 (2001).
http://dx.doi.org/10.1016/S0360-3016(00)01433-4
5.
5.I. Turesson, J. Carlsson, A. Brahme, B. Glimelius, B. Zackrisson, and B. Stenerlow, “Biological response to radiation therapy,” Acta Oncol. 42, 92106 (2003).
6.
6.A. Brahme, J. Nilsson, and D. Belkic, “Biologically optimized radiation therapy,” Acta Oncol. 40, 725734 (2001).
http://dx.doi.org/10.1080/02841860152619142
7.
7.A. Brahme, “Biologically optimized 3-dimensional in vivo predictive assay-based radiation therapy using positron emission tomography-computerized tomography imaging,” Acta Oncol. 42, 123136 (2003).
http://dx.doi.org/10.1080/02841860310004986
8.
8.S. M. Bentzen, “Radiation therapy: Intensity modulated, image guided, biologically optimized and evidence based,” Radiother. Oncol. 77, 227230 (2005).
9.
9.B. Vanderstraeten, W. Duthoy, W. De Gersem, W. De Neve, and H. Thierens, “[18F]fluoro-deoxy-glucose positron emission tomography ([18F]FDG-PET) voxel intensity-based intensity-modulated radiation therapy (IMRT) for head and neck cancer,” Radiother. Oncol. 79, 249258 (2006).
10.
10.J. O. Deasy, “Partial tumor boosts: Even more attractive than theory predicts?Int. J. Radiat. Oncol., Biol., Phys. 51, 279280 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)01611-X
11.
11.W. A. Tome and J. F. Fowler, “On the inclusion of proliferation in tumour control probability calculations for inhomogeneously irradiated tumours,” Phys. Med. Biol. 48, N261N268 (2003).
http://dx.doi.org/10.1088/0031-9155/48/18/402
12.
12.Y. Cao, C. I. Tsien, V. Y. Nagesh, L. Junck, R. Ten Haken, B. D. Ross, T. L. Chenevert, and T. S. Lawrence, “Clinical investigation survival prediction in high grade gliomas by mri perfusion before and during early stage of RT,” Int. J. Radiat. Oncol., Biol., Phys. 64, 876885 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2005.09.001
13.
13.M. Alber, F. Paulsen, S. M. Eschmann, and H. J. Machulla, “On biologically conformal boost dose optimization,” Phys. Med. Biol. 48, N31N35 (2003).
http://dx.doi.org/10.1088/0031-9155/48/2/404
14.
14.C. C. Ling and X. A. Li, “Over the next decade the success of radiation treatment planning will be judged by the immediate biological response of tumor cells rather than by surrogate measures such as dose maximization and uniformity,” Med. Phys. 32, 21892192 (2005).
http://dx.doi.org/10.1118/1.1930908
15.
15.H. R. Withers, H. D. Thames, and L. J. Peters, “A new isoeffect curve for change in dose per fraction,” Radiother. Oncol. 1, 187191 (1983).
16.
16.A. Niemierko, “Reporting and analyzing dose distributions: A concept of equivalent uniform dose,” Med. Phys. 24, 103110 (1997).
http://dx.doi.org/10.1118/1.598063
17.
17.E. L. Travis, “Organizational response of normal tissues to irradiation,” Semin. Radiat. Oncol. 11, 184196 (2001).
18.
18.S. M. Bentzen, “Preventing or reducing late side effects of radiation therapy: Radiobiology meets molecular pathology,” Nat. Rev. Cancer 6, 702713 (2006).
19.
19.J. M. Allan and L. B. Travis, “Mechanisms of therapy-related carcinogenesis,” Nat. Rev. Cancer 5, 943955 (2005).
20.
20.G. W. Barendsen, “Dose-survival curves of human cells in tissue culture irradiated with alpha-, beta-, - and -radiation,” Nature 193, 11531155 (1962).
21.
21.K. H. Chadwick and H. P. Leenhouts, “A molecular theory of cell survival,” Phys. Med. Biol. 18, 7887 (1973).
http://dx.doi.org/10.1088/0031-9155/18/1/007
22.
22.H. D. Thames, “An ‘incomplete-repair’ model for survival after fractionated and continuous irradiations,” Int. J. Radiat. Biol. 47, 319339 (1985).
23.
23.R. K. Sachs, P. Hahnfeld, and D. J. Brenner, “The link between low-LET dose-response and the underlying kinetic of damage production/repair misrepair,” Int. J. Radiat. Biol. 72, 351374 (1997).
http://dx.doi.org/10.1080/095530097143149
24.
24.B. Emami et al., “Tolerance of normal tissue to therapeutic irradiation,” Int. J. Radiat. Oncol., Biol., Phys. 21, 109122 (1991).
25.
25.C. Burman, G. J. Kutcher, B. Emami, and M. Goitein, “Fitting of normal tissue tolerance data to an analytic function,” Int. J. Radiat. Oncol., Biol., Phys. 21, 123135 (1991).
26.
26.J. T. Lyman, “Complication probability as assessed from dose-volume histograms,” Radiat. Res. 104, S13S19 (1985).
http://dx.doi.org/10.2307/3576626
27.
27.G. J. Kutcher and C. Burman, “Calculation of complication probability factors for non-uniform normal tissue irradiation: The effective volume method,” Int. J. Radiat. Oncol., Biol., Phys. 16, 16231630 (1989).
28.
28.R. Mohan, G. S. Mageras, B. Baldwin, L. J. Brewster, G. J. Kutcher, S. Leibel, C. M. Burman, C. C. Ling, and Z. Fuks, “Clinically relevant optimization of 3-D conformal treatments,” Med. Phys. 19, 933944 (1992).
http://dx.doi.org/10.1118/1.596781
29.
29.X. A. Li, J. Z. Wang, R. D. Stewart, and S. D. DiBiase, “Dose escalation in permanent brachytherapy for prostate cancer: Dosimetric and biological considerations,” Phys. Med. Biol. 48, 27532765 (2003).
http://dx.doi.org/10.1088/0031-9155/48/17/302
30.
30.B. Sanchez-Nieto and A. E. Nahum, “BIOPLAN: Software for the biological evaluation of radiotherapy treatment plans,” Med. Dosim. 25, 7176 (2000).
31.
31.M. M. Miften, S. K. Das, M. Su, and L. B. Marks, “A dose-volume-based tool for evaluating and ranking IMRT treatment plans,” J. Appl. Clin. Med. Phys. 5, 114 (2004).
http://dx.doi.org/10.1120/5.1.01
32.
32.B. Warkentin, P. Stavrev, N. Stavreva, C. Field, and B. G. Fallone, “A TCP-NTCP estimation module using DVHs and known radiobiological models and parameter sets,” J. Appl. Clin. Med. Phys. 5, 5063 (2004).
http://dx.doi.org/10.1120/5.1.06
33.
33.C. J. McGinn, R. K. Ten Haken, W. D. Ensminger, S. Walker, S. Wang, and T. S. Lawrence, “Treatment of intrahepatic cancers with radiation doses based on a normal tissue complication probability model,” J. Clin. Oncol. 16, 22462252 (1998).
34.
34.K. E. Rosenzweig, J. L. Fox, E. Yorke, H. Amols, A. Jackson, V. Rusch, M. G. Kris, C. C. Ling, and S. A. Leibel, “Results of a phase I dose-escalation study using three-dimensional conformal radiotherapy in the treatment of inoperable nonsmall cell lung carcinoma,” Cancer 103, 21182127 (2005).
35.
35.D. Y. Song, S. H. Benedict, R. M. Cardinale, T. D. Chung, M. G. Chang, and R. K. Schmidt-Ullrich, “Stereotactic body radiation therapy of lung tumors: Preliminary experience using normal tissue complication probability-based dose limits,” Am. J. Clin. Oncol. 28, 591596 (2005).
36.
36.L. A. Dawson, M. Biersack, G. Lockwood, A. Eisbruch, T. S. Lawrence, and R. K. Ten Haken, “Use of principal component analysis to evaluate the partial organ tolerance of normal tissues to radiation,” Int. J. Radiat. Oncol., Biol., Phys. 62, 829837 (2005).
37.
37.A. J. Hope, P. E. Lindsay, I. El Naqa, J. R. Alaly, M. Vicic, J. D. Bradley, and J. O. Deasy, “Modeling radiation pneumonitis risk with clinical, dosimetric, and spatial parameters,” Int. J. Radiat. Oncol., Biol., Phys. 65, 112124 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2005.11.046
38.
38.S. Webb and A. E. Nahum, “A model for calculating tumour control probability in radiotherapy including the effects of inhomogeneous distributions of dose and clonogenic cell density,” Phys. Med. Biol. 38, 653666 (1993).
http://dx.doi.org/10.1088/0031-9155/38/6/001
39.
39.W. A. Tomé and J. F. Fowler, “On the inclusion of proliferation in tumour control probability calculations for inhomogeneously irradiated tumours,” Phys. Med. Biol. 48, N261N268 (2003).
http://dx.doi.org/10.1088/0031-9155/48/18/402
40.
40.S. Levegrun, A. Jackson, M. J. Zelefsky, M. W. Skwarchuk, E. S. Venkatraman, W. Schlegel, Z. Fuks, S. A. Leibel, and C. C. Ling, “Fitting tumor control probability models to biopsy outcome after three-dimensional conformal radiation therapy of prostate cancer: Pitfalls in deducing radiobiologic parameters for tumors from clinical data,” Int. J. Radiat. Oncol., Biol., Phys. 51, 10641080 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)01731-X
41.
41.S. L. Tucker, H. D. Thames, and J. M. Taylor, “How well is the probability of tumor cure after fractionated irradiation described by Poisson statistics?Radiat. Res. 124, 273282 (1990).
42.
42.S. L. Tucker and J. M. Taylor, “Improved models of tumour cure,” Int. J. Radiat. Biol. 70, 539553 (1996).
http://dx.doi.org/10.1080/095530096144743
43.
43.Z. Bajzer, “Gompertzian growth as a self-similar and allometric process,” Growth, Dev. Aging 63, 311 (1999).
44.
44.C. P. Calderon and T. A. Kwembe, “Modeling tumor growth,” Math. Biosci. 103, 97114 (1991).
http://dx.doi.org/10.1016/0025-5564(91)90093-X
45.
45.H. McAneney and S. F. O’Rourke, “Investigation of various growth mechanisms of solid tumour growth within the linear-quadratic model for radiotherapy,” Phys. Med. Biol. 52, 10391054 (2007).
http://dx.doi.org/10.1088/0031-9155/52/4/012
46.
46.M. A. Ebert, “Viability of the EUD and TCP concepts as reliable dose indicators,” Phys. Med. Biol. 45, 441457 (2000).
http://dx.doi.org/10.1088/0031-9155/45/2/313
47.
47.J. R. Savage, “A brief survey of aberration origin theories,” Mutat Res. 404, 139147 (1998).
48.
48.L. Hlatky, R. K. Sachs, M. Vazquez, and M. N. Cornforth, “Radiation-induced chromosome aberrations: Insights gained from biophysical modeling,” BioEssays 24, 714723 (2002).
http://dx.doi.org/10.1002/bies.10126
49.
49.M. Frankenberg-Schwager, “Induction, repair and biological relevance of radiation-induced DNA lesions in eukaryotic cells,” Radiol. Technol. 29, 273292 (1990).
50.
50.K. Rothkamm and M. Löbrich, “Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses,” Proc. Natl. Acad. Sci. U.S.A. 100, 50575062 (2003).
http://dx.doi.org/10.1073/pnas.0830918100
51.
51.D. Frankenberg, H. J. Brede, U. J. Schrewe, C. Steinmetz, M. Frankenberg-Schwager, G. Kasten, and E. Pralle, “Induction of DNA double-strand breaks by 1H and 4He ions in primary human skin fibroblasts in the LET range of 8 to ,” Radiat. Res. 151, 540549 (1999).
52.
52.B. M. Sutherland, P. V. Bennett, H. Schenk, O. Sidorkina, J. Laval, J. Trunk, D. Monteleone, and J. Sutherland, “Clustered DNA damages induced by high and low LET radiation, including heavy ions,” Phys. Medica 17(Suppl 1), 202204 (2001).
53.
53.S. B. Curtis, “Lethal and potentially lethal lesions induced by radiation—A unified repair model,” Radiat. Res. 106, 252270 (1986).
http://dx.doi.org/10.2307/3576798
54.
54.C. A. Tobias, “The repair-misrepair model in radiobiology: Comparison to other models,” Radiat. Res. Suppl. 8, S77S95 (1985).
55.
55.J. S. Bedford, “Sublethal damage, potentially lethal damage, and chromosomal aberrations in mammalian cells exposed to ionizing radiations,” Int. J. Radiat. Oncol., Biol., Phys. 21, 14571469 (1991).
56.
56.S. P. Jackson, “Sensing and repairing DNA double-strand breaks,” Carcinogenesis 23, 687696 (2002).
57.
57.P. A. Jeggo, “The fidelity of repair of radiation damage,” Radiat. Prot. Dosim. 99, 117122 (2002).
58.
58.F. Liang, M. Han, P. J. Romanienko, and M. Jasin, “Homology-directed repair is a major double-strand break repair pathway in mammalian cells,” Proc. Natl. Acad. Sci. U.S.A. 95, 51725177 (1998).
59.
59.V. A. Semenenko and R. D. Stewart, “A fast Monte Carlo algorithm to simulate the spectrum of DNA damages formed by ionizing radiation,” Radiat. Res. 161, 451457 (2004).
60.
60.V. A. Semenenko, R. D. Stewart, and E. J. Ackerman, “Monte Carlo simulation of base and nucleotide excision repair of clustered DNA damage sites. I. Model properties and predicted trends,” Radiat. Res. 164, 180193 (2005).
61.
61.V. A. Semenenko and R. D. Stewart, “Monte Carlo simulation of base and nucleotide excision repair of clustered DNA damage sites. II. Comparisons of model predictions to measured data,” Radiat. Res. 164, 194201 (2005).
62.
62.S. S. Wallace, “Enzymatic processing of radiation-induced free radical damage in DNA,” Radiat. Res. 150(5 Suppl), S60S79 (1998).
63.
63.H. Nagasawa and J. B. Little, “Induction of sister chromatid exchanges by extremely low doses of -particles,” Cancer Res. 52, 63946396 (1992).
64.
64.T. K. Hei, L. J. Wu, S. X. Liu, D. Vannais, C. A. Waldren, and G. Randers-Pehrson, “Mutagenic effects of a single and an exact number of a particles in mammalian cells,” Proc. Natl. Acad. Sci. U.S.A. 94, 37653770 (1997).
http://dx.doi.org/10.1073/pnas.94.8.3765
65.
65.J. M. Nelson, A. L. Brooks, N. F. Metting, M. A. Khan, R. L. Buschbom, A. Duncan, R. Miick, and L. A. Braby, “Clastogenic effects of defined numbers of alpha particles on individual CHO-K1 cells,” Radiat. Res. 145, 568574 (1996).
66.
66.K. M. Prise, O. V. Belyakov, M. Folkard, and B. D. Michael, “Studies on bystander effects in human fibroblasts using a charged particle microbeam,” Int. J. Radiat. Biol. 74, 793798 (1998).
67.
67.C. Mothersill and C. Seymour, “Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of unirradiated cells,” Int. J. Radiat. Biol. 71, 421427 (1997).
68.
68.C. Mothersill and C. B. Seymour, “Cell-cell contact during gamma irradiation is not required to induce a bystander effect in normal human keratinocytes: Evidence for release during irradiation of a signal controlling survival into the medium,” Radiat. Res. 149, 256262 (1998).
69.
69.E. I. Azzam, S. M. de Toledo, and J. B. Little, “Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha-particle irradiated to nonirradiated cells,” Proc. Natl. Acad. Sci. U.S.A. 98, 473478 (2001).
70.
70.E. I. Azzam, S. M. de Toledo, and J. B. Little, “Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect,” Oncogene 22, 70507057 (2003).
71.
71.C. Mothersill and C. Seymour, “Radiation-induced bystander effects: Past history and future directions,” Radiat. Res. 155, 759767 (2001).
72.
72.E. J. Hall, “The bystander effect,” Health Phys. 85, 3135 (2003).
73.
73.J. Z. Wang, X. A. Li., W. D’Souza, and R. D. Stewart, “Impacts of prolonged dose-delivery time on tumor control: A note of caution for IMRT,” Int. J. Radiat. Oncol., Biol., Phys. 57(2), 543552 (2003).
http://dx.doi.org/10.1016/S0360-3016(03)00499-1
74.
74.R. K. Sachs and D. J. Brenner, “The mechanistic basis of the linear-quadratic formalism,” Med. Phys. 25, 20712073 (1998).
http://dx.doi.org/10.1118/1.598431
75.
75.M. Zaider, “There is no mechanistic basis for the use of the linear-quadratic expression in cellular survival analysis,” Med. Phys. 25, 791792 (1998).
http://dx.doi.org/10.1118/1.598430
76.
76.M. Zaider, “Sequel to the discussion concerning the mechanistic basis of the linear quadratic formalism,” Med. Phys. 25, 20742075 (1998).
http://dx.doi.org/10.1118/1.598394
77.
77.D. J. Brenner and D. E. Herbert, “The use of the linear-quadratic model in clinical radiation oncology can be defended on the basis of empirical evidence and theoretical argument,” Med. Phys. 24, 12451248 (1997).
http://dx.doi.org/10.1118/1.598086
77.See also the comment in D. J. Brenner and D. E. Herbert, Med. Phys. 24, 1329 (1997).
http://dx.doi.org/10.1118/1.598089
78.
78.M. Kühne, E. Riballo, N. Rief, K. Rothkamm, P. A. Jeggo, and M. Lobrich, “A double-strand break repair defect in ATM-deficient cells contributes to radiosensitivity,” Cancer Res. 64, 500508 (2004).
79.
79.N. Chavaudra, J. Bourhis, and N. Foray, “Quantified relationship between cellular radiosensitivity, DNA repair defects and chromatin relaxation: A study of 19 human tumour cell lines from different origin,” Radiother. Oncol. 73, 373382 (2004).
80.
80.M. N. Cornforth and J. S. Bedford, “A quantitative comparison of potentially lethal damage repair and the rejoining of interphase chromosome breaks in low passage normal human fibroblasts,” Radiat. Res. 111, 385405 (1987).
81.
81.B. Marples, B. G. Wouters, S. J. Collis, A. J. Chalmers, and M. C. Joiner, “Low-dose hyper-radiosensitivity: A consequence of ineffective cell cycle arrest of radiation-damaged G2-phase cells,” Radiat. Res. 161, 247255 (2004).
82.
82.M. C. Joiner, “Induced radioresistance: An overview and historical perspective,” Int. J. Radiat. Biol. 65, 7984 (1994).
83.
83.M. C. Joiner, P. Lambin, and B. Marples, “Adaptive response and induced resistance,” C. R. Acad. Sci. III 322, 167175 (1999).
84.
84.S. M. Bentzen, H. D. Thames, and J. Overgaard, “Does variation in the in vitro cellular radiosensitivity explain the shallow clinical dose-control curve for malignant melanoma?Int. J. Radiat. Biol. 57, 117126 (1990).
85.
85.S. M. Bentzen, “Steepness of the clinical dose-control curve and variation in the in vitro radiosensitivity of head and neck squamous cell carcinoma,” Int. J. Radiat. Biol. 61, 417423 (1992).
86.
86.H. Suit, S. Skates, A. Taghian, P. Okunieff, and J. T. Efird, “Clinical implications of heterogeneity of tumor response to radiation therapy,” Radiother. Oncol. 25, 251260 (1992).
http://dx.doi.org/10.1118/1.597047
87.
87.A. Dasu, I. Toma-Dasu, and J. F. Fowler, “Should single or distributed parameters be used to explain the steepness of tumour control probability curves?Phys. Med. Biol. 48, 387397 (2003).
http://dx.doi.org/10.1088/0031-9155/48/3/308
88.
88.B. Warkentin, P. Stavrev, N. A. Stavreva, and B. G. Fallone, “Limitations of a TCP model incorporating population heterogeneity,” Phys. Med. Biol. 50, 35713588 (2005).
http://dx.doi.org/10.1088/0031-9155/50/15/006
89.
89.V. Moiseenko, “Effect of heterogeneity in radiosensitivity on LQ based isoeffect formalism for low alpha/beta cancers,” Acta Oncol. 43, 499502 (2004).
90.
90.J. Lian and L. Xing, “Incorporating model parameter uncertainty into inverse treatment planning,” Med. Phys. 31, 27112720 (2004).
http://dx.doi.org/10.1118/1.1785451
91.
91.J. F. Fowler, R. Chappell, and M. Ritter, “Is alpha/beta for prostate tumors really low?Int. J. Radiat. Oncol., Biol., Phys. 50, 10211031 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)01607-8
92.
92.J. Z. Wang, M. Guerrero, and X. A. Li, “How low is the alpha/beta ratio for prostate cancer?Int. J. Radiat. Oncol., Biol., Phys. 55, 194203 (2003).
http://dx.doi.org/10.1016/S0360-3016(02)03828-2
93.
93.B. G. Wouters and J. M. Brown, “Cells at intermediate oxygen levels can be more important than the hypoxic fraction in determining tumor response to fractionated radiotherapy,” Radiat. Res. 147, 541550 (1997).
94.
94.M. Höckel, K. Schlenger, B. Aral, M. Mitze, U. Schaffer, and P. Vaupel, “Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix,” Cancer Res. 56, 45094515 (1996).
95.
95.K. Sundfør, H. Lyng, and E. K. Rofstad, “Tumour hypoxia and vascular density as predictors of metastasis in squamous cell carcinoma of the uterine cervix,” Br. J. Cancer 78, 822827 (1998).
96.
96.D. Thorwarth, S. M. Eschmann, F. Paulsen, and M. Alber, “Hypoxia dose painting by numbers: A planning study,” Int. J. Radiat. Oncol., Biol., Phys. 68(1), 291300 (2007).
97.
97.M. Alber, F. Paulsen, S. M. Eschmann, and H. J. Machulla, “On biologically conformal boost dose optimization,” Phys. Med. Biol. 48(2), N31N35 (2003).
http://dx.doi.org/10.1088/0031-9155/48/2/404
98.
98.S. M. Bentzen, “Theragnostic imaging for radiation oncology: Dose-painting by numbers,” Lancet 6(2), 112117 (2005).
99.
99.D. J. Carlson, R. D. Stewart, and V. A. Semenenko, “Effects of oxygen on intrinsic radiation sensitivity—A test of the relationship between aerobic and hypoxic linear-quadratic (LQ) model parameters,” Med. Phys. 33, 31053115 (2006).
http://dx.doi.org/10.1118/1.2229427
100.
100.J. Z. Wang, X. A. Li, and N. A. Mayr, “Dose escalation to combat hypoxia in prostate cancer, a radiobiological analysis of clinical data,” Br. J. Radiol. 79, 905911 (2006).
101.
101.M. Guerrero and X. A. Li, “Deriving radiobiological parameters from a large number of clinical studies for radiotherapy treatment planning of early-stage breast cancer,” Phys. Med. Biol. 48, 33073326 (2003).
http://dx.doi.org/10.1088/0031-9155/48/20/004
102.
102.X. S. Qi, C. J. Schultz, and X. A. Li, “An estimation of radiobiologic parameters from clinical outcomes for radiation treatment planning of brain tumor,” Int. J. Radiat. Oncol., Biol., Phys. 64, 15701580 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2005.12.022
103.
103.Y. F. Wong, D. S. Sahota, T. H. Cheung, K. W. Lo, S. F. Yim, T. K. Chung, A. M. Chang, and D. I. Smith, “Gene expression pattern associated with radiotherapy sensitivity in cervical cancer,” Cancer J. 12, 189193 (2006).
104.
104.T. Watanabe, Y. Komuro, T. Kiyomatsu, T. Kanazawa, Y. Kazama, J. Tanaka, T. Tanaka, Y. Yamamoto, M. Shirane, T. Muto, and H. Nagawa, “Prediction of sensitivity of rectal cancer cells in response to preoperative radiotherapy by DNA microarray analysis of gene expression profiles,” Cancer Res. 66, 33703374 (2006).
105.
105.S. Apisarnthanarax and K. S. C. Chao, “Current imaging paradigms in radiation oncology,” Radiat. Res. 163, 125 (2005).
106.
106.S. Bujenovic, “The role of positron emission tomography in radiation treatment planning,” Semin Nucl. Med. 34, 293299 (2004).
107.
107.H. Schoder and S. M. Larson, “Positron emission tomography for prostate, bladder, and renal cancer,” Semin Nucl. Med. 34, 274292 (2004).
108.
108.J. L. Ulmer, C. V. Salvan, W. M. Mueller, H. G. Krouwer, G. O. Stroe, A. Aralasmak, and R. W. Prost, “The role of diffusion tensor imaging in establishing the proximity of tumor borders to functional brain systems: Implications for preoperative risk assessments and postoperative outcomes,” Technol. Cancer Res. Treat. 3, 567576 (2004).
109.
109.F. Z. Yetkin and D. Mendelsohn, “Hypoxia imaging in brain tumors,” Neuroimaging Clin. N. Am. 12, 537552 (2002).
110.
110.R. J. Gillies, N. Raghunand, G. S. Karczmar, and Z. M. Bhujwalla, “MRI of the tumor microenvironment,” J. Magn. Reson Imaging 16, 430450 (2002).
111.
111.J. Kurhanewicz, M. G. Swanson, S. J. Nelson, and D. B. Vigneron, “Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer,” J. Magn. Reson Imaging 16, 451463 (2002).
112.
112.S. J. Nelson, E. Graves, A. Pirzkall, X. Li, A. Chan, D. B. Vigneron, and T. R. McKnight, “In vivo molecular imaging for planning radiation therapy of gliomas: An application of 1H MRSI,” J. Magn. Reson Imaging 16, 464476 (2002).
113.
113.W. R. Hendee, “Biomedical imaging research opportunities workshop II: A summary of findings and recommendations,” Med. Phys. 32, 24842486 (2005).
http://dx.doi.org/10.1118/1.1947196
114.
114.G. P. Chen, E. Ahunbay, C. J. Schultz, and X. A. Li, “Development of an inverse optimization package to plan non-uniform dose distributions based on spatially inhomogeneous radiosensitivity extracted from biological images,” Med. Phys. 34, 11981205 (2007).
http://dx.doi.org/10.1118/1.2710948
115.
115.K. M. Schmainda, S. D. Rand, A. M. Joseph, R. Lund, B. D. Ward, A. P. Pathak, J. L. Ulmer, M. A. Baddrudoja, and H. G. J. Krouwer, “Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis,” AJNR Am. J. Neuroradiol. 25, 15241532 (2004).
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/34/10/10.1118/1.2779861
Loading
/content/aapm/journal/medphys/34/10/10.1118/1.2779861
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/34/10/10.1118/1.2779861
2007-09-11
2016-05-27

Abstract

Rapid advances in functional and biological imaging, predictive assays, and our understanding of the molecular and cellular responses underpinning treatment outcomes herald the coming of the long-sought goal of implementing patient-specific biologically guided radiation therapy (BGRT) in the clinic. Biological imaging and predictive assays have the potential to provide patient-specific, three-dimensional information to characterize the radiation response characteristics of tumor and normal structures. Within the next decade, it will be possible to combine such information with advanced delivery technologies to design and deliver biologically conformed, individualized therapies in the clinic. The full implementation of BGRT in the clinic will require new technologies and additional research. However, even the partial implementation of BGRT treatment planning may have the potential to substantially impact clinical outcomes.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/34/10/1.2779861.html;jsessionid=a3bX0dDK+XYlWx93oeBPn6Yy.x-aip-live-06?itemId=/content/aapm/journal/medphys/34/10/10.1118/1.2779861&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/34/10/10.1118/1.2779861&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/34/10/10.1118/1.2779861'
Right1,Right2,Right3,