1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
A technical solution to avoid partial scan artifacts in cardiac MDCT
Rent:
Rent this article for
USD
10.1118/1.2805476
/content/aapm/journal/medphys/34/12/10.1118/1.2805476
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/34/12/10.1118/1.2805476
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

A phantom used for daily water calibrations of the scanner. The water-filled, 20 cm diameter section of this phantom was used. The cantilevered design ensures no table attenuation is present in the scan plane.

Image of FIG. 2.
FIG. 2.

An anthropomorphic cardiac phantom (QRM, Möhrendorf, Germany) with its central portion replaced with a water-filled tank. The syringe centered in the middle of the tank was filled with water and iodine solutions.

Image of FIG. 3.
FIG. 3.

Signals recorded during synchronous operation of the scanner with cardiac pacing at 90.9 bpm. Time scale is 60 ms/division. The rising edge of the x-ray detector signal (top trace) triggers the Exact Output signal, generating the 600 ms pulse which “covers up” the second set of x-ray pulses. The rising edge of the Exact Output signal triggers the S8800 Pacer & ECGTrig. The resulting pacing of the pig’s heart is shown in the ECG line. The bottom trace is the signal sent to the scanner’s ECG input.

Image of FIG. 4.
FIG. 4.

Photograph of the x-ray tube position detector installed on the scanner. The infrared source and detector are mounted on Plexiglas “fingers” that swivel to provide alignment of the source and detector so that reflection from the counterweight is reliably detected, but reflections off of the gantry surface are ignored.

Image of FIG. 5.
FIG. 5.

(a) The water phantom aligned exactly at the isocenter without table attenuation. (b) In this perfectly symmetric setting, both full and partial scan reconstruction images have the same range of the CT number variations. (c) The water phantom located 10 cm off the isocenter. (d) Moving the phantom off the isocenter creates enough anisotropy to cause partial scan artifacts. The partial scan has a 7.6 times larger range of CT number variations compared to the full scan.

Image of FIG. 6.
FIG. 6.

(a) The cardiac phantom with the water-filled syringe aligned at scanner isocenter. (b) The phantom geometry has enough anisotropy to cause mild to moderate partial scan artifacts, depending on the ROI location. (c) The cardiac phantom with the iodine-filled (2000 HU) syringe located 10 cm off the isocenter. (d) This geometry has large anisotropy, resulting in moderate to severe partial scan artifacts, depending on the ROI location.

Image of FIG. 7.
FIG. 7.

The maximum range of the image-to-image variations in a mean CT number for any evaluated ROI for full and partial scans of the cardiac phantom located at isocenter and 10 cm off the isocenter, as a function of the iodine attenuation inside the phantom.

Image of FIG. 8.
FIG. 8.

The maximum range of the image-to-image variations in a mean CT number for any evaluated ROI for synchronized and nonsynchronized partial scans of the cardiac phantom, as a function of the heart rate. The phantom was centered at the isocenter. The synchronized scans were performed for heart rate of 60.6 and 90.9 bpm.

Image of FIG. 9.
FIG. 9.

(a) Maximum intensity projection (MIP) image from the animal study in the absence of iodine contrast. (b) Noncontrast data show a drastic reduction in the CT number variations for the synchronized mode (square). (c) MIP image with the contrast enhancement of the myocardium (d) Myocardial perfusion data for the nonsynchronized mode (triangle) are degraded by partial scan artifacts.

Image of FIG. 10.
FIG. 10.

Diagram showing the principle of the partial scan artifact and how it can be eliminated by synchronizing the heart rate with the gantry rotation rate. The nonsynchronized sequence is shown for the HR of 70 bpm, while the synchronized sequence corresponds to the HR of 60.6 bpm. The gantry rotation period is 330 ms.

Loading

Article metrics loading...

/content/aapm/journal/medphys/34/12/10.1118/1.2805476
2007-11-19
2014-04-17
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A technical solution to avoid partial scan artifacts in cardiac MDCT
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/34/12/10.1118/1.2805476
10.1118/1.2805476
SEARCH_EXPAND_ITEM