1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/34/6/10.1118/1.2736779
1.
1.A. R. Smith and J. A. Purdy, “Three-dimensional photon treatment planning: Report of the collaborative working group on the evaluation of treatment planning for external photon beam radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 21, 1265 (1991).
2.
2.TG-40, “Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40,” Med. Phys. 21, 581618 (1994).
http://dx.doi.org/10.1118/1.597316
3.
3.F. M. Khan, The Physics of Radiation Therapy, 3rd ed. (Lippincott Williams & Wilkins, Philadelphia, PA, 2003).
4.
4.C. Danciu, B. S. Proimos, J. C. Rosenwald, and B. J. Mijnheer, “Variation of sensitometric curves of radiographic films in high energy photon beams,” Med. Phys. 28, 966974 (2001).
http://dx.doi.org/10.1118/1.1376443
5.
5.J. F. Williamson, F. M. Khan, and S. C. Sharma, “Film dosimetry of megavoltage photon beams: a practical method of isodensity-to-isodose curve conversion,” Med. Phys. 8, 9498 (1981).
http://dx.doi.org/10.1118/1.594913
6.
6.J. I. Hale, A. T. Kerr, and P. C. Shragge, “Calibration of film for accurate megavoltage photon dosimetry,” Med. Dosim. 19, 4346 (1994).
7.
7.M. D. Evans and L. J. Schreiner, “A simple technique for film dosimetry,” Radiother. Oncol. 23, 265267 (1992).
8.
8.R. L. Stern, B. A. Fraass, A. Gerhardsson, D. L. McShan, and K. L. Lam, “Generation and use of measurement-based 3-D dose distributions for 3-D dose calculation verification,” Med. Phys. 19, 165173 (1992).
http://dx.doi.org/10.1118/1.596873
9.
9.N. A. van Bree, M. H. Idzes, H. Huizenga, and B. J. Mijnheer, “Film dosimetry for radiotherapy treatment planning verification of a tangential breast irradiation,” Radiother. Oncol. 31, 251255 (1994).
http://dx.doi.org/10.1016/0167-8140(94)90431-6
10.
10.J. R. Sykes and P. C. Williams, “An experimental investigation of the tongue and groove effect for the Philips multileaf collimator,” Phys. Med. Biol. 43, 31573165 (1998).
http://dx.doi.org/10.1088/0031-9155/43/10/034
11.
11.S. E. Burch, K. J. Kearfott, J. H. Trueblood, W. C. Sheils, J. I. Yeo, and C. K. C. Wang, “A new approach to film dosimetry for high energy photon beams: Lateral scattering filtering,” Med. Phys. 24, 775783 (1997).
http://dx.doi.org/10.1118/1.597999
12.
12.J. L. Robar and B. G. Clark, “The use of radiographic film for linear accelerator stereotactic radiosurgical dosimetry,” Med. Phys. 26, 21442150 (1999).
http://dx.doi.org/10.1118/1.598730
13.
13.P. J. Elder, F. M. Coveney, and A. D. Welsh, “An investigation into the comparison between different dosimetric methods of measuring profiles and depth doses for dynamic wedges on a Varian 600C linear accelerator,” Phys. Med. Biol. 40, 683689 (1995).
http://dx.doi.org/10.1088/0031-9155/40/4/013
14.
14.J.-S. Tsai, B. A. Buck, G. K. Svensson, E. Alexander, C.-W. Cheng, E. G. Mannarino, and J. S. Loeffler, “Quality assurance in stereotactic radiosurgery using a standard linear accelerator,” Int. J. Radiat. Oncol., Biol., Phys. 21, 737748 (1991).
15.
15.D. A. Low, R. L. Gerber, S. Mutic, and J. A. Purdy, “Phantoms for IMRT dose distribution measurement and treatment verification,” Int. J. Radiat. Oncol., Biol., Phys. 40, 12311235 (1998).
http://dx.doi.org/10.1016/S0360-3016(97)00910-3
16.
16.C.-S. Chui, S. Spriou, and T. LoSasso, “Testing of dynamic multifleaf collimation,” Med. Phys. 23, 635641 (1996).
http://dx.doi.org/10.1118/1.597699
17.
17.J. S. Tsai, D. E. Wazer, M. N. Ling, J. K. Wu, M. Fagundes, T. DiPetrillo, B. Kramer, M. Koistinen, and M. J. Engler, “Dosimetric verification of the dynamic intensity-modulated radiation therapy of 92 patients,” Int. J. Radiat. Oncol., Biol., Phys. 40, 12131230 (1998).
http://dx.doi.org/10.1016/S0360-3016(98)00009-1
18.
18.D. Verellen, N. Linthout, D. van den Berge, A. Bel, and G. Storme, “Initial experience with intensity-modulated conformal radiation therapy for treatment of the head and neck region,” Int. J. Radiat. Oncol., Biol., Phys. 39, 99114 (1997).
http://dx.doi.org/10.1016/S0360-3016(97)00304-0
19.
19.J. Van Dyk, R. B. Barnett, J. E. Cygler, and P. C. Shragge, “Commissioning and quality assurance of treatment planning computers,” Int. J. Radiat. Oncol., Biol., Phys. 26, 261273 (1993).
20.
20.TG-53, “American Association of Physicists in Medicine Radiation therapy committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning,” Med. Phys. 25, 17731829 (1998).
http://dx.doi.org/10.1118/1.598373
21.
21.J. R. Sykes, H. V. James, and P. C. Williams, “How much does film sensitivity increase at depth for larger field sizes?Med. Phys. 26, 329330 (1999).
http://dx.doi.org/10.1118/1.598520
22.
22.N. Suchowerska, P. Hoban, M. Butson, A. Davison, and P. Metcalfe, “Directional dependence in film dosimetry: radiographic and radiochromic film,” Phys. Med. Biol. 46, 13911397 (2001).
http://dx.doi.org/10.1088/0031-9155/46/5/305
23.
23.J. Dutreix and A. Dutreix, “Film dosimetry of high-energy electrons,” Ann. N.Y. Acad. Sci. 161, 3343 (1969).
24.
24.A. G. Haus, Advances in Film Processing Systems Technology and Quality Control in Medical Imaging (Medical Physics, Madison, WI, 2001).
25.
25.R. J. Meeder, D. A. Jaffray, and P. Munro, “Tests for evaluating laser film digitizers,” Med. Phys. 22, 635642 (1995).
http://dx.doi.org/10.1118/1.597550
26.
26.J. F. Dempsey, D. A. Low, A. S. Kirov, and J. F. Williamson, “Quantitative optical densitometry with scanning-laser film digitizers,” Med. Phys. 26, 17211731 (1999).
http://dx.doi.org/10.1118/1.598664
27.
27.L. E. Reinstein and G. R. Gluckman, “Comparison of dose response of radiochromic film measured with He-Ne laser, broadband, and filtered light densitometers,” Med. Phys. 24, 15311533 (1997).
http://dx.doi.org/10.1118/1.598043
28.
28.R. H. Herz, The Photographic Action of Ionizing Radiations (Wiley-Interscience, New York, 1969).
29.
29.R. W. Gurney and N. F. Mott, “The theory of photolysis of silver bromide and the photographic latent image,” Proc. R. Soc. London, Ser. A 164, 151167 (1938).
30.
30.J. C. Dainty and R. Shaw, Image Science: Principle, Analysis and Evaluation of Photographic-Type Imaging Processes (Academic, New York, 1974).
31.
31.F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry (Wiley, New York, 1986).
32.
32.K. Becker, Solid State Dosimetry (CRC, Boca Raton, FL, 1973).
33.
33.C. W. Cheng and I. J. Das, “Dosimetry of high energy photon and electron beams with CEA films,” Med. Phys. 23, 12251231 (1996).
http://dx.doi.org/10.1118/1.597865
34.
34.P. Cadman, “Use of CEA TVS film for measuring high energy photon beam dose distributions,” Med. Phys. 25, 14351437 (1998).
http://dx.doi.org/10.1118/1.598316
35.
35.R. Roberts, “Portal imaging with film-cassette combinations: what film should we use?Br. J. Radiol. 69, 7071 (1996).
36.
36.T. M. Bogucki, W. R. Murphy, C. W. Baker, S. S. Piazza, and A. G. Haus, “Processor quality control in laser imaging systems,” Med. Phys. 24, 581584 (1997).
http://dx.doi.org/10.1118/1.597940
37.
37.R. C. Granke, K. A. Wright, W. W. Evans, J. E. Nelson, and J. G. Trump, “The film method of tissue dose studies,” Am. J. Roentgenol., Radium Ther. Nucl. Med. 72, 302307 (1954).
38.
38.I. Yeo, C.-K. Wang, and S. Burch, “A new approach to film dosimetry for high-energy photon beams using organic plastic scintillators,” Phys. Med. Biol. 44, 30553069 (1999).
http://dx.doi.org/10.1088/0031-9155/44/12/314
39.
39.I. J. Yeo, C. K. Wang, and S. E. Burch, “A filtration method for improving film dosimetry in photon radiation therapy,” Med. Phys. 24, 19431953 (1997).
http://dx.doi.org/10.1118/1.598108
40.
40.S. Ju, Y. Ahn, S. Huh, and I. Yeo, “Film dosimetry for intensity modulated radiation therapy: dosimetric evaluation,” Med. Phys. 29, 351355 (2002).
http://dx.doi.org/10.1118/1.1449493
41.
41.C. Bramoulle, H. Aget, and P. Louisot, “Study of a new commercial film for high energy photon dosimetry,” Cancer Radiother 6, 300302 (2002).
42.
42.B. Gerbi and D. Dimitroyannis, “The response of Kodak EDR2 film in high-energy electron beams,” Med. Phys. 30, 27032705 (2003).
http://dx.doi.org/10.1118/1.1607505
43.
43.N. L. Childress and I. I. Rosen, “Effect of processing time delay on the dose response of Kodak EDR2 film,” Med. Phys. 31, 22842288 (2004).
http://dx.doi.org/10.1118/1.1774111
44.
44.N. L. Childress, M. Salehpour, L. Dong, C. Bloch, R. A. White, and I. I. Rosen, “Dosimetric accuracy of Kodak EDR2 film for IMRT verifications,” Med. Phys. 32, 539548 (2005).
http://dx.doi.org/10.1118/1.1852791
45.
45.M. Bucciolini, F. B. Buonamici, and M. Casati, “Verification of IMRT fields by film dosimetry,” Med. Phys. 31, 161168 (2004).
http://dx.doi.org/10.1118/1.1631093
46.
46.S. Gillis and C. De Wagter, “Practical and dosimetric implications of a new type of packaging for radiographic film,” Phys. Med. Biol. 50, N63N72 (2005).
http://dx.doi.org/10.1088/0031-9155/50/8/N01
47.
47.R. E. Morrell and A. Rogers, “Calibration of Kodak EDR2 film for patient skin dose assessment in cardiac catheterization procedures,” Phys. Med. Biol. 49, 55595570 (2004).
http://dx.doi.org/10.1088/0031-9155/49/24/011
48.
48.I. J. Yeo, A. Beiki-Ardakani, Y. B. Cho, M. Heydarian, T. Zhang, and M. Islam, “EDR2 film dosimetry for IMRT verification using low-energy photon filters,” Med. Phys. 31, 19601963 (2004).
http://dx.doi.org/10.1118/1.1760190
49.
49.O. A. Zeidan, J. G. Li, D. A. Low, and J. F. Dempsey, “Comparison of small photon beams measured using radiochromic and silver-halide films in solid water phantoms,” Med. Phys. 31, 27302737 (2004).
http://dx.doi.org/10.1118/1.1788931
50.
50.A. Djouguela, R. Kollhoff, A. Rubach, D. Harder, and B. Poppe, “The Schwarzschild effect of the dosimetry film Kodak EDR 2,” Phys. Med. Biol. 50, N317N321 (2005).
http://dx.doi.org/10.1088/0031-9155/50/21/N04
51.
51.P. J. Muench, A. S. Meigooni, R. Nath, and W. L. McLaughlin, “Photon energy dependence of the sensitivity of radiochromic film and comparison with silver halide and LiF TLDs used for brachytherapy dosimetry,” Med. Phys. 18, 767775 (1991).
52.
52.Å. Palm, A. S. Kirov, and T. LoSasso, “Predicting energy response of radiographic film in a x-ray beam using Monte Carlo calculated fluence spectra and absorbed dose,” Med. Phys. 31, 31683178 (2004).
http://dx.doi.org/10.1118/1.1812911
53.
53.I. J. Yeo and J. O. Kim, A Procedural Guide to Film Dosimetry (Medical Physics, Madison, WI, 2004).
54.
54.I. J. Das, K. R. Kase, J. E. Kelley, and B. L. Werner, “Photon beam dosimetry at a blocked beam edge using diffusion approximation,” Phys. Med. Biol. 37, 937946 (1992).
http://dx.doi.org/10.1088/0031-9155/37/4/008
55.
55.M. Ehrlich, “Reciprocity law for x-rays. Part II: Failure in the reverse region,” J. Opt. Soc. Am. 46, 801804 (1956).
56.
56.A. Djouguela, R. Kollhoff, A. Ruhmann, K. C. Willborn, D. Harder, and B. Poppe, “Physical mechanism of the Schwarzschild effect in film dosimetry-theoretical model and comparison with experiments,” Phys. Med. Biol. 51, 43454356 (2006).
http://dx.doi.org/10.1088/0031-9155/51/17/014
57.
57.S. P. Srivastava and I. J. Das, “Dose rate dependence of film dosimetry in radiation treatment: Study of reciprocity law,” Med. Phys. 33, 2089 (abstract) (2006).
58.
58.C. Liu, T. C. Zhu, and J. R. Palta, “Characterizing output for dynamic wedges,” Med. Phys. 23, 12131218 (1996).
http://dx.doi.org/10.1118/1.597677
59.
59.N. Dogan, L. B. Leybovich, and A. Sethi, “Comparative evaluation of Kodak EDR2 and XV2 films for verification of intensity modulated radiation therapy,” Phys. Med. Biol. 47, 41214130 (2002).
http://dx.doi.org/10.1088/0031-9155/47/22/314
60.
60.C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379423 (1948).
61.
61.F. Baruffaldi, A. L. Angelini, D. Testi, P. Mattioli, and L. Pierotti, “CCD film digitizers in clinical practice: evaluation of the main properties,” Med. Inform. Internet Med. 26, 101114 (2001).
62.
62.F. F. Yin, M. L. Giger, and K. Doi, “Measurement of the presampling modulation transfer function of film digitizers using a curve fitting technique,” Med. Phys. 17, 962966 (1990).
http://dx.doi.org/10.1118/1.596463
63.
63.H. Fujita, D.-Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtuska, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11, 3439 (1992).
http://dx.doi.org/10.1109/42.126908
64.
64.Y. Zhu, A. S. Kirov, V. Mishra, A. S. Meigooni, and J. F. Williamson, “Quantitative evaluation of radiochromic film response for two-dimensional dosimetry,” Med. Phys. 24, 223231 (1997).
http://dx.doi.org/10.1118/1.598068
65.
65.D. A. Low, J. F. Dempsey, J. Markman, S. Mutic, E. E. Klein, J. W. Sohn, and J. A. Purdy, “Toward automated quality assurance for intensity-modulated radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 53, 443452 (2002).
http://dx.doi.org/10.1016/S0360-3016(01)02818-8
66.
66.G. Gluckman and L. Reinstein, “Comparison of three high-resolution digitizers for radiochromic film dosimetry,” Med. Phys. 29, 18391846 (2002).
http://dx.doi.org/10.1118/1.1485056
67.
67.J. Wang and H. K. Huang, “Film digitization aliasing artifacts caused by grid line patterns,” IEEE Trans. Med. Imaging 13, 375385 (1994).
http://dx.doi.org/10.1109/42.293930
68.
68.B. Mersseman and C. De Wagter, “Characteristics of a commercially available film digitizer and their significance for film dosimetry,” Phys. Med. Biol. 43, 18031812 (1998).
http://dx.doi.org/10.1088/0031-9155/43/6/030
69.
69.A. Ambonville and G. Marinello, “The value and limitations of dosimetry by the use of film in cobalt 60 beams (author’s transl.),” J. Radiol. 60, 701706 (1979).
70.
70.J. L. Robar and B. G. Clark, “A practical technique for verification of three-dimensional conformal dose distributions in stereotactic radiosurgery,” Med. Phys. 27, 978987 (2000).
http://dx.doi.org/10.1118/1.598962
71.
71.C. Martens, I. Claeys, C. DeWagter, and W. DeNeve, “The value of radiographic film for the characterization of intensity-modulated beams,” Phys. Med. Biol. 47, 22212234 (2002).
http://dx.doi.org/10.1088/0031-9155/47/13/303
72.
72.X. R. Zhu, P. A. Jursinic, D. F. Grimm, F. Lopez, J. J. Rownd, and M. T. Gillin, “Evaluation of Kodak EDR2 film for dose verification of intensity modulated radiation therapy delivered by a static multileaf collimator,” Med. Phys. 29, 16871692 (2002).
http://dx.doi.org/10.1118/1.1493781
73.
73.A. J. Olch, “Dosimetric performance of an enhanced dose range radiographic film for intensity-modulated radiation therapy quality assurance,” Med. Phys. 29, 21592168 (2002).
http://dx.doi.org/10.1118/1.1500398
74.
74.I. Chetty and P. Charland, “Investigation of Kodak extended dose range (EDR) film for megavoltage photon beam dosimetry,” Phys. Med. Biol. 47, 36293641 (2002).
http://dx.doi.org/10.1088/0031-9155/47/20/305
75.
75.N. Suchowerska, P. Hoban, A. Davison, and P. Metcalfe, “Perturbation of radiotherapy beams by radiographic film: measurements and Monte Carlo simulations,” Phys. Med. Biol. 44, 17551765 (1999).
http://dx.doi.org/10.1088/0031-9155/44/7/314
76.
76.L. J. van Battum and B. J. Heijmen, “Film dosimetry in water in a therapeutic photon beam,” Radiother. Oncol. 34, 152159 (1995).
http://dx.doi.org/10.1016/0167-8140(94)01500-3
77.
77.D. W. Anderson and F. St George, “Comparison of film and ion chamber systems for depth-dose measurements for a beam,” Phys. Med. Biol. 24, 636638 (1979).
http://dx.doi.org/10.1088/0031-9155/24/3/015
78.
78.D. Georg, B. Kroupa, P. Winkler, and R. Potter, “Normalized sensitometric curves for the verification of hybrid IMRT treatment plans with multiple energies,” Med. Phys. 30, 11421150 (2003).
http://dx.doi.org/10.1118/1.1576951
79.
79.N. L. Childress, L. Dong, and I. I. Rosen, “Rapid radiographic film calibration for IMRT verification using automated MLC fields,” Med. Phys. 29, 23842390 (2002).
http://dx.doi.org/10.1118/1.1509441
80.
80.P. M. Charland, I. J. Chetty, S. Yokoyama, and B. A. Fraass, “Dosimetric comparison of extended dose range film with ionization measurements in water and lung equivalent heterogeneous media exposed to megavoltage photons,” J. Appl. Clin. Med. Phys. 4, 2539 (2003).
http://dx.doi.org/10.1120/1.1522990
81.
81.J. Esthappan, S. Mutic, W. B. Harms, J. F. Dempsey, and D. A. Low, “Dosimetry of therapeutic photon beams using an extended dose range film,” Med. Phys. 29, 24382445 (2002).
http://dx.doi.org/10.1118/1.1508379
82.
82.T. Fujisaki, H. Saitoh, T. Hiraoka, A. Kuwabara, S. Abe, and T. Inada, “Contribution of Cerenkov radiation in high-energy x-ray and electron beam film dosimetry using water-substitute phantoms,” Phys. Med. Biol. 48, N105N109 (2003).
http://dx.doi.org/10.1088/0031-9155/48/6/403
83.
83.W. Pratt, Digital Image Processing, 2 Ed. (Wiley, New York, 1991).
84.
84.J. C. Russ, The Image Processing Handbook, 2 Ed. (CRC, Boca Raton, FL, 1995).
85.
85.A. S. Shiu, H. M. Kooy, J. R. Ewton, S. S. Tung, J. Wong, K. Antes, and M. H. Maor, “Comparison of miniature multileaf collimation (MMLCC) with circular collimation for stereotactic treatment,” Int. J. Radiat. Oncol., Biol., Phys. 37, 679688 (1997).
http://dx.doi.org/10.1016/S0360-3016(96)00507-X
86.
86.P. K. Kijewski, L. N. Chin, and B. E. Bjärngard, “Wedged-shaped dose distribution by computer controlled collimator motion,” Med. Phys. 5, 426429 (1978).
http://dx.doi.org/10.1118/1.594440
87.
87.P. L. Petti and R. L. Siddon, “Effective wedge angles with universal wedge,” Phys. Med. Biol. 30, 985991 (1985).
http://dx.doi.org/10.1088/0031-9155/30/9/010
88.
88.D. D. Leavitt, M. Martin, J. H. Moeller, and W. L. Lee, “Dynamic wedge field techniques through computer–controlled collimator motion and dose delivery,” Med. Phys. 17, 8791 (1990).
http://dx.doi.org/10.1118/1.596533
89.
89.E. E. Klein, D. A. Low, A. S. Meigooni, and J. A. Purdy, “Dosimetry and clinical implementation of dynamic wedge,” Int. J. Radiat. Oncol., Biol., Phys. 31, 583592 (1995).
http://dx.doi.org/10.1016/0360-3016(94)00369-V
90.
90.D. D. Leavitt and L. Larsson, “Evaluation of a diode detector array for measurement of dynamic wedge dose distributions,” Med. Phys. 20, 381382 (1993).
http://dx.doi.org/10.1118/1.597165
91.
91.A. M. Bidmead, A. J. Garton, and P. J. Childs, “Beam data measurements for dynamic wedges on Varian 600C and 2100C (6 and ) linear accelerators,” Phys. Med. Biol. 40, 393411 (1995).
http://dx.doi.org/10.1088/0031-9155/40/3/005
92.
92.A. W. Beavis, S. J. Weston, and V. J. Whitton, “Implementation of the Varian EDW into a commercial RTP system,” Phys. Med. Biol. 41, 16911704 (1996).
http://dx.doi.org/10.1088/0031-9155/41/9/009
93.
93.E. E. Klein, R. Gerber, X. R. Zhu, F. Oehmke, and J. A. Purdy, “Multiple machine implementation of enhanced dynamic wedge,” Int. J. Radiat. Oncol., Biol., Phys. 40, 977985 (1998).
http://dx.doi.org/10.1016/S0360-3016(97)00916-4
94.
94.TG-42, American Association of Physicists in Medicine Radiation Therapy Committee Report No. 54. Stereotactic Radiosurgery (AIP, Woodbury, NY, 1995).
95.
95.M. Heydarian, P. W. Hoban, and A. H. Beddoe, “A comparison of dosimetry techniques in stereotactic radiosurgery,” Phys. Med. Biol. 41, 93110 (1996).
http://dx.doi.org/10.1088/0031-9155/41/1/008
96.
96.I. J. Das, M. B. Downes, A. Kassaee, and Z. Tochner, “Choice of radiation detector in dosimetry of stereotactic radiosurgery-radiotherapy,” J. Radiosurge. 3, 177185 (2000).
97.
97.T. LoSasso, C. Chui, and C. Ling, “Comprehensive quality assurance for the delivery of intensity modulated radiotherapy with a multileaf collimator used in the dynamic mode,” Med. Phys. 28, 22092219 (2001).
http://dx.doi.org/10.1118/1.1410123
98.
98.A. Van Esch, T. Depuydt, and D. P. Huyskens, “The use of an aSi-based EPID for routine absolute dosimetric pre-treatment verification of dynamic IMRT fields,” Radiother. Oncol. 71, 223234 (2004).
http://dx.doi.org/10.1016/j.radonc.2004.02.018
99.
99.J. V. Siebers, J. O. Kim, L. Ko, P. J. Keall, and R. Mohan, “Monte Carlo computation of dosimetric amorphous silicon electronic portal images,” Med. Phys. 31, 21352146 (2004).
http://dx.doi.org/10.1118/1.1764392
100.
100.J. Chang and C. C. Ling, “Using the frame averaging of aS500 EPID for IMRT verification,” J. Appl. Clin. Med. Phys. 4, 287299 (2003).
http://dx.doi.org/10.1120/1.1615071
101.
101.D. Létourneau, M. Gulam, D. Yan, M. Oldham, and J. Wong, “Evaluation of a 2D diode array for IMRT quality assurance,” Radiother. Oncol. 70, 199206 (2004).
http://dx.doi.org/10.1016/j.radonc.2003.10.014
102.
102.P. A. Jursinic and B. E. Nelms, “A 2-D diode array and analysis software for verification of intensity modulated radiation therapy delivery,” Med. Phys. 30, 870879 (2003).
http://dx.doi.org/10.1118/1.1567831
103.
103.P. B. Greer and C. C. Popescu, “Dosimetric properties of an amorphous silicon electronic portal imaging device for verification of dynamic intensity modulated radiation therapy,” Med. Phys. 30, 16181627 (2003).
http://dx.doi.org/10.1118/1.1582469
104.
104.B. Warkentin, S. Steciw, S. Rathee, and B. Fallone, “Dosimetric IMRT verification with a flat-panel EPID,” Med. Phys. 30, 31433155 (2003).
http://dx.doi.org/10.1118/1.1625440
105.
105.S. C. Vieira, M. L. Dirkx, K. L. Pasma, and B. J. Heijmen, “Dosimetric verification of x-ray fields with steep dose gradients using an electronic portal imaging device,” Phys. Med. Biol. 48, 157166 (2003).
http://dx.doi.org/10.1088/0031-9155/48/2/302
106.
106.Å. Palm and T. LoSasso, “Influence of phantom material and phantom size on radiographic film response in therapy photon beams,” Med. Phys. 32, 24342442 (2005).
http://dx.doi.org/10.1118/1.1949747
107.
107.TG-50, American Association of Physicists in Medicine Radiation Therapy Committee Report No. 72. Basic Application of Multileaf Collimators (Medical Physics, Madison, WI, 2001).
108.
108.T. LoSasso, C. S. Chui, and C. C. Ling, “Physical and dosimetric aspects of a multileaf collimation system used in the dynamic mode for implementing intensity modulated radiotherapy,” Med. Phys. 25, 19191927 (1998).
http://dx.doi.org/10.1118/1.598381
109.
109.D. M. Ritt, U.S. Patent No. 6528803 (2003);
109.U.S. Patent No. 6934653 (2005);
109.U.S. Patent No. 7013228 (2006).
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/34/6/10.1118/1.2736779
Loading
/content/aapm/journal/medphys/34/6/10.1118/1.2736779
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/34/6/10.1118/1.2736779
2007-05-25
2015-08-29

Abstract

TG-69 is a task group report of the AAPM on the use of radiographic film for dosimetry. Radiographic films have been used for radiation dosimetry since the discovery of x-rays and have become an integral part of dose verification for both routine quality assurance and for complex treatments such as soft wedges (dynamic and virtual), intensity modulated radiation therapy (IMRT), image guided radiation therapy (IGRT), and small field dosimetry like stereotactic radiosurgery. Film is convenient to use, spatially accurate, and provides a permanent record of the integrated two dimensional dose distributions. However, there are several challenges to obtaining high quality dosimetric results with film, namely, the dependence of optical density on photon energy, field size, depth, film batch sensitivity differences, film orientation, processing conditions, and scanner performance. Prior to the clinical implementation of a film dosimetry program, the film, processor, and scanner need to be tested to characterize them with respect to these variables. Also, the physicist must understand the basic characteristics of all components of film dosimetry systems. The primary mission of this task group report is to provide guidelines for film selection, irradiation, processing, scanning, and interpretation to allow the physicist to accurately and precisely measure dose with film. Additionally, we present the basic principles and characteristics of film, processors, and scanners. Procedural recommendations are made for each of the steps required for film dosimetry and guidance is given regarding expected levels of accuracy. Finally, some clinical applications of film dosimetry are discussed.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/34/6/1.2736779.html;jsessionid=g6864jctp5r4e.x-aip-live-02?itemId=/content/aapm/journal/medphys/34/6/10.1118/1.2736779&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: TG-69: Radiographic film for megavoltage beam dosimetry
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/34/6/10.1118/1.2736779
10.1118/1.2736779
SEARCH_EXPAND_ITEM