Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/35/10/10.1118/1.2966595
1.
1.T. M. Allen and P. R. Cullis, “Drug delivery systems: Entering the mainstream,” Sciences (N.Y.) 303(5665), 18181822 (2004).
2.
2.R. H. Muller and C. M. Keck, “Challenges and solutions for the delivery of biotech drugs—a review of drug nanocrystal technology and lipid nanoparticles,” J. Biotechnol., 113(1–3), 151170 (2004).
3.
3.R. M. Kniseley, “Marrow studies with radiocolloids,” Semin Nucl. Med. 2(1), 7185 (1972).
4.
4.P. Dawson, D. O. Cosgrove, and R. G. Grainger, (eds.), Textbook of Contrast Media. (Isis Medical Media, Oxford, 1999).
5.
5.R. Weissleder, “Molecular imaging: Exploring the next frontier,” Radiology 212(3), 609614 (1999).
6.
6.S. R. Cherry, “In vivo molecular and genomic imaging: New challenges for imaging physics,” Phys. Med. Biol. 49(3), R13R48 (2004).
http://dx.doi.org/10.1088/0031-9155/49/3/R01
7.
7.A. S. Dzik-Jurasz, “Molecular imaging in vivo: An introduction,” Br. J. Radiol. 76(Spec. No. 2), S98S109 (2003).
8.
8.R. J. Gillies, “In vivo molecular imaging,” J. Cell Biochem. Suppl. 39, 231238 (2002).
9.
9.H. R. Herschman, “Molecular imaging: Looking at problems, seeing solutions,” Sciences (N.Y.) 302 (5645), 605608 (2003).
10.
10.A. Hengerer, A. Wunder, D. J. Wagenaar, A. H. Vija, M. Shah, and J. Grimm, “From genomics to clinical molecular imaging,” Proc. IEEE 93(4), 819828 (2005).
11.
11.K. C. Li, S. D. Pandit, S. Guccione, and M. D. Bednarski, “Molecular imaging applications in nanomedicine,” Biomed. Microdevices 6(2), 113116 (2004).
12.
12.O. M. Koo, I. Rubinstein, and H. Onyuksel, “Role of nanotechnology in targeted drug delivery and imaging: A concise review,” Nanomedicine 1(3), 193212 (2005).
13.
13.J. R. Heath and M. E. Davis, “Nanotechnology and cancer,” Annu. Rev. Med. 59, 251265 (2008).
14.
14.S. K. Sahoo, S. Parveen, and J. J. Panda, “The present and future of nanotechnology in human health care,” Nanomedicine 3(1), 2031 (2007).
15.
15.V. P. Torchilin, “PEG-based micelles as carriers of contrast agents for different imaging modalities,” Adv. Drug Delivery Rev. 54(2), 235252 (2002).
16.
16.V. P. Torchilin, “Targeted pharmaceutical nanocarriers for cancer therapy and imaging,” AAPS J. 9(2), E128E147 (2007).
http://dx.doi.org/10.1208/aapsj0902015
17.
17.C. Tilcock, “Delivery of contrast agents for magnetic resonance imaging, computed tomography, nuclear medicine and ultrasound,” Adv. Drug Delivery Rev. 37(1–3), 3351 (1999).
18.
18.S. A. Wickline and G. M. Lanza, “Molecular imaging, targeted therapeutics, and nanoscience,” J. Cell Biochem. Suppl. 39, 9097 (2002).
19.
19.S. A. Wickline, A. M. Neubauer, P. M. Winter, S. D. Caruthers, and G. M. Lanza, “Molecular imaging and therapy of atherosclerosis with targeted nanoparticles,” J. Magn. Reson Imaging 25(4), 667680 (2007).
20.
20.W. J. Mulder, G. J. Strijkers, G. A. van Tilborg, A. W. Griffioen, and K. Nicolay, “Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging,” NMR Biomed. 19(1), 142164 (2006).
21.
21.I. Brigger, C. Dubernet, and P. Couvreur, “Nanoparticles in cancer therapy and diagnosis,” Adv. Drug Delivery Rev. 54(5), 631651 (2002).
http://dx.doi.org/10.1016/S0169-409X(02)00044-3
22.
22.P. Dawson, “Functional imaging in CT,” Eur. J. Radiol. 60(3), 331340 (2006).
23.
23.D. Cosgrove, “Ultrasound contrast agents: An overview,” Eur. J. Radiol. 60(3), 324330 (2006).
24.
24.H. Maeda, T. Sawa, and T. Konno, “Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS,” J. Controlled Release 74(1–3), 4761 (2001).
25.
25.N. G. Portney and M. Ozkan, “Nano-oncology: Drug delivery, imaging, and sensing,” Anal. Bioanal. Chem. 384(3), 620630 (2006).
http://dx.doi.org/10.1007/s00216-005-0247-7
26.
26.M. Ferrari, “Cancer nanotechnology: Opportunities and challenges,” Nat. Rev. Cancer 5(3), 161171 (2005).
http://dx.doi.org/10.1038/nrc1566
27.
27.K. Y. Kim, “Nanotechnology platforms and physiological challenges for cancer therapeutics,” Nanomedicine 3(2), 103110 (2007).
28.
28.H. Devalapally, A. Chakilam, and M. M. Amiji, “Role of nanotechnology in pharmaceutical product development,” J. Pharm. Sci. 96(10), 25472565 (2007).
29.
29.R. Sinha, G. J. Kim, S. Nie, and D. M. Shin, “Nanotechnology in cancer therapeutics: Bioconjugated nanoparticles for drug delivery,” Mol. Cancer Ther. 5(8), 19091917 (2006).
30.
30.T. M. Allen, “Ligand-targeted therapeutics in anticancer therapy,” Nat. Rev. Cancer 2(10), 750763 (2002).
31.
31.L. Nobs, F. Buchegger, R. Gurny, and E. Allemann, “Current methods for attaching targeting ligands to liposomes and nanoparticles,” J. Pharm. Sci. 93(8), 19801992 (2004).
32.
32.B. Stella, S. Arpicco, M. T. Peracchia, D. Desmaele, J. Hoebeke, M. Renoir, J. D’Angelo, L. Cattel, and P. Couvreur, “Design of folic acid-conjugated nanoparticles for drug targeting,” J. Pharm. Sci. 89(11), 14521464 (2000).
http://dx.doi.org/10.1002/1520-6017(200011)89:11<1452::AID-JPS8>3.0.CO;2-P
33.
33.D. Horn and J. Rieger, “Organic nanoparticles in the aqueous phase-theory, experiment, and use,” Angew. Chem., Int. Ed. 40(23), 43304361 (2001).
http://dx.doi.org/10.1002/1521-3773(20011203)40:23<4330::AID-ANIE4330>3.0.CO;2-W
34.
34.B. E. Rabinow, “Nanosuspensions in drug delivery,” Nat. Rev. Drug Discovery 3(9), 785796 (2004).
http://dx.doi.org/10.1038/nrd1494
35.
35.S. Nie, Y. Xing, G. J. Kim, and J. W. Simons, “Nanotechnology applications in cancer,” Annu. Rev. Biomed. Eng. 9, 257288 (2007).
http://dx.doi.org/10.1146/annurev.bioeng.9.060906.152025
36.
36.R. K. Jain, “Transport of molecules in the tumor interstitium: A review,” Cancer Res. 47(12), 30393051 (1987).
37.
37.R. K. Jain, “Delivery of molecular and cellular medicine to solid tumors,” Adv. Drug Delivery Rev. 46(1–3), 149168 (2001).
http://dx.doi.org/10.1016/S0169-409X(00)00131-9
38.
38.S. M. Moghimi and J. Szebeni, “Stealth liposomes and long circulating nanoparticles: Critical issues in pharmacokinetics, opsonization and protein-binding properties,” Prog. Lipid Res. 42(6), 463478 (2003).
http://dx.doi.org/10.1016/S0163-7827(03)00033-X
39.
39.S. M. Moghimi, A. C. Hunter, and J. C. Murray, “Long-circulating and target-specific nanoparticles: Theory to practice,” Pharmacol. Rev. 53(2), 283318 (2001).
40.
40.C. S. S. R. Kumar, J. Hormes, and C. Leuschner, Nanofabrication Towards Biomedical Applications: Techniques, Tools, Applications, and Impact (Wiley-VCH, Weinheim, 2005).
41.
41.A. L. Klibanov, K. Maruyama, V. P. Torchilin, and L. Huang, “Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes,” FEBS Lett. 268(1), 235237 (1990).
42.
42.J. M. Harris and R. B. Chess, “Effect of pegylation on pharmaceuticals,” Nat. Rev. Drug Discovery 2(3), 214221 (2003).
http://dx.doi.org/10.1038/nrd1033
43.
43.S. A. Schmitz, M. Taupitz, S. Wagner, K. J. Wolf, D. Beyersdorff, and B. Hamm, “Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles,” J. Magn. Reson Imaging 14(4), 355361 (2001).
44.
44.W. J. Rogers, C. H. Meyer, and C. M. Kramer, “Technology insight: In vivo cell tracking by use of MRI,” Nat. Clin. Pract. Cardiovasc. Med. 3(10), 554562 (2006).
45.
45.E. Sykova and P. Jendelova, “Migration, fate and in vivo imaging of adult stem cells in the CNS,” Cell Death Differ 14(7), 13361342 (2007).
46.
46.N. V. Evgenov, Z. Medarova, G. Dai, S. Bonner-Weir, and A. Moore, “In vivo imaging of islet transplantation,” Nat. Med. 12(1), 144148 (2006).
47.
47.N. C. Phillips, L. Gagne, C. Tsoukas, and J. Dahman, “Immunoliposome targeting to murine leucocytes is dependent on immune status,” J. Immunol. 152(6), 31683174 (1994).
48.
48.H. Soo Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. Itty Ipe, M. G. Bawendi, and J. V. Frangioni, “Renal clearance of quantum dots,” Nat. Biotechnol. 25(10), 11651170 (2007).
http://dx.doi.org/10.1038/nbt1340
49.
49.R. Weissleder, “Scaling down imaging: Molecular mapping of cancer in mice,” Nat. Rev. Cancer 2(1), 1118 (2002).
http://dx.doi.org/10.1038/nrc701
50.
50.M. Rudin and R. Weissleder, “Molecular imaging in drug discovery and development,” Nat. Rev. Drug Discovery 2(2), 123131 (2003).
http://dx.doi.org/10.1038/nrd1007
51.
51.T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: Seeing fundamental biological processes in a new light,” Genes Dev. 17(5), 545580 (2003).
http://dx.doi.org/10.1101/gad.1047403
52.
52.S. K. Lyons, “Advances in imaging mouse tumour models in vivo,” J. Pathol. 205(2), 194205 (2005).
http://dx.doi.org/10.1002/path.1697
53.
53.B. Ross, A. Rehemtulla, Y.-E. L. Koo, R. Reddy, G. Kim, C. Behrend, S. Buck, R. J. Schneider, M. A. Philbert, R. Weissleder, and R. Kopelman, “Photonic and magnetic nanoexplorers for biomedical use: from subcellular imaging to cancer diagnosis and therapy,” Proc. SPIE 5331, 7683 (2004.
http://dx.doi.org/10.1117/12.537653
54.
54.V. P. Zharov, J. W. Kim, D. T. Curiel, and M. Everts, “Self-assembling nanoclusters in living systems: Application for integrated photothermal nanodiagnostics and nanotherapy,” Nanomedicine1(4), 326345 (2005).
55.
55.O. Salata, “Applications of nanoparticles in biology and medicine,” Nanobiotechnol. 2(1) (2004).
56.
56.T. W. Prow, J. H. Salazar, W. A. Rose, J. N. Smith, L. Reece, A. A. Fontenot, N. A. Wang, R. S. Lloyd, and J. F. Leary, “Nanomedicine: Nanoparticles, molecular biosensors, and targeted gene/drug delivery for combined single-cell diagnostics and therapeutics,” Proc. SPIE 5318, 111 (2004).
57.
57.M. C. Roco, “Nanotechnology: Convergence with modern biology and medicine,” Curr. Opin. Biotechnol. 14(3), 337346 (2003).
58.
58.T. M. Fahmy, P. M. Fong, J. Park, T. Constable, and W. M. Saltzman, “Nanosystems for simultaneous imaging and drug delivery to T cells,” AAPS J. 9(2), E171E180 (2007).
59.
59.T. Ishida, D. L. Iden, and T. M. Allen, “A combinatorial approach to producing sterically stabilized (Stealth) immunoliposomal drugs,” FEBS Lett. 460(1), 129133 (1999).
60.
60.V. P. Torchilin, “Recent advances with liposomes as pharmaceutical carriers,” Nat. Rev. Drug Discovery 4(2), 145160 (2005).
61.
61.R. G. Blasberg, “In vivo molecular-genetic imaging: Multi-modality nuclear and optical combinations,” Nucl. Med. Biol. 30(8), 879888 (2003).
http://dx.doi.org/10.1016/S0969-8051(03)00115-X
62.
62.E. A. Schellenberger, D. Sosnovik, R. Weissleder, and L. Josephson, “Magneto/optical annexin V, a multimodal protein,” Bioconjugate Chem.15(5), 10621067 (2004).
http://dx.doi.org/10.1021/bc049905i
63.
63.L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, “Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes,” Bioconjugate Chem.13(3), 554560 (2002).
http://dx.doi.org/10.1021/bc015555d
64.
64.V. S. Talanov, C. A. Regino, H. Kobayashi, M. Bernardo, P. L. Choyke, and M. W. Brechbiel, “Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging,” Nano Lett. 6(7), 14591463 (2006).
65.
65.J. Zheng, G. Perkins, A. Kirilova, C. Allen, and D. A. Jaffray, “Multimodal contrast agent for combined computed tomography and magnetic resonance imaging applications,” Invest. Radiol. 41(3), 339348 (2006).
http://dx.doi.org/10.1097/01.rli.0000186568.50265.64
66.
66.M. Nahrendorf, H. Zhang, S. Hembrador, P. Panizzi, D. E. Sosnovik, E. Aikawa, P. Libby, F. K. Swirski, and R. Weissleder, “Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis,” Circulation 117(3), 379387 (2008).
67.
67.M. A. McDonald and K. L. Watkin, “Small particulate gadolinium oxide and gadolinium oxide albumin microspheres as multimodal contrast and therapeutic agents,” Invest. Radiol. 38(6), 305310 (2003).
68.
68.S. R. Cherry, “Multimodality in vivo imaging systems: Twice the power or double the trouble?Annu. Rev. Biomed. Eng. 8, 3562 (2006).
http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095728
69.
69.V. Wagner, A. Dullaart, A. K. Bock, and A. Zweck, “The emerging nanomedicine landscape,” Nat. Biotechnol. 24(10), 12111217 (2006).
http://dx.doi.org/10.1038/nbt1006-1211
70.
70.R. Duncan, “The dawning era of polymer therapeutics,” Nat. Rev. Drug Discovery 2(5), 347360 (2003).
http://dx.doi.org/10.1038/nrd1088
71.
71.N. Oku, “Delivery of contrast agents for positron emission tomography imaging by liposomes,” Adv. Drug Delivery Rev. 37(1–3), 5361 (1999).
72.
72.A. Mitra, A. Nan, B. R. Line, and H. Ghandehari, “Nanocarriers for nuclear imaging and radiotherapy of cancer,” Curr. Pharm. Des. 12(36), 47294749 (2006).
73.
73.S. B. Yu and A. D. Watson, “Metal-based x-ray contrast media,” Chem. Rev. (Washington, D.C.) 99(9), 23532378 (1999).
http://dx.doi.org/10.1021/cr980441p
74.
74.R. F. Mattrey, D. M. Long, F. Multer, R. Mitten, and C. B. Higgins, “Perfluoroctylbromide: A reticuloendothelial-specific and tumor-imaging agent for computed tomography,” Radiology 145(3), 755758 (1982).
75.
75.D. M. Long, Jr., E. C. Lasser, C. M. Sharts, F. K. Multer, and M. Nielsen, “Experiments with radiopaque perfluorocarbon emulsions for selective opacification of organs and total body angiography,” Invest. Radiol. 15(3), 242247 (1980).
76.
76.D. M. Long, F. K. Multer, A. G. Greenburg, G. W. Peskin, E. C. Lasser, W. G. Wickham, and C. M. Sharts, “Tumor imaging with x-rays using macrophage uptake of radiopaque fluorocarbon emulsions,” Surgery (St. Louis) 84(1), 104112 (1978).
77.
77.C. W. Hughes, R. W. Williams, M. Bradley, and G. H. Irvine, “Ultrasound monitoring of distraction osteogenesis,” Br. J. Oral Maxillofac Surg. 41(4), 256258 (2003).
78.
78.A. M. Morawski, G. A. Lanza, and S. A. Wickline, “Targeted contrast agents for magnetic resonance imaging and ultrasound,” Curr. Opin. Biotechnol. 16(1), 8992 (2005).
79.
79.G. M. Lanza, R. Lamerichs, S. Caruthers, and S. A. Wickline, “Molecular Imaging in MR with targeted paramagnetic nanoparticles,” Med. Mundi 47(1), 3439 (2003).
80.
80.S. D. Caruthers, A. M. Neubauer, F. D. Hockett, R. Lamerichs, P. M. Winter, M. J. Scott, P. J. Gaffney, S. A. Wickline, and G. M. Lanza, “In vitro demonstration using 19F magnetic resonance to augment molecular imaging with paramagnetic perfluorocarbon nanoparticles at ,” Invest. Radiol. 41(3), 305312 (2006).
http://dx.doi.org/10.1097/01.rli.0000199281.60135.6a
81.
81.Y. B. Yu, “Fluorocarbon nanoparticles as multifunctional drug delivery vehicles,” J. Drug Target. 14(10), 663669 (2006).
82.
82.S. Rockwell, M. Kelley, C. G. Irvin, C. S. Hughes, E. Porter, H. Yabuki, and J. J. Fischer, “Modulation of tumor oxygenation and radiosensitivity by a perfluorooctylbromide emulsion,” Radiother. Oncol. 22(2), 9298 (1991).
83.
83.C. Wilhelm, C. Billotey, J. Roger, J. N. Pons, J. C. Bacri, and F. Gazeau, “Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating,” Biomaterials 24(6), 10011011 (2003).
http://dx.doi.org/10.1016/S0142-9612(02)00440-4
84.
84.J. Kreuter, “The influence of coatings with surfactants on the body distribution of nanoparticles after intravenous injection to rats,” Clini. Materi. 13(1–4), 131134 (1993).
85.
85.V. Labhasetwar, C. Song, W. Humphrey, R. Shebuski, and R. J. Levy, “Arterial uptake of biodegradable nanoparticles: Effect of surface modifications,” J. Pharm. Sci. 87(10), 12291234 (1998).
http://dx.doi.org/10.1021/js980021f
86.
86.C. B. Carlson, P. Mowery, R. M. Owen, E. C. Dykhuizen, and L. L. Kiessling, “Selective tumor cell targeting using low-affinity, multivalent interactions,” ACS Chem. Biol. 2(2), 119127 (2007).
87.
87.S. Hong, P. R. Leroueil, I. J. Majoros, B. G. Orr, J. R. Baker, Jr., and M. M. Banaszak Holl, “The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform,” Chem. Biol. 14(1), 107115 (2007).
http://dx.doi.org/10.1016/j.chembiol.2006.11.015
88.
88.X. Montet, M. Funovics, K. Montet-Abou, R. Weissleder, and L. Josephson, “Multivalent effects of RGD peptides obtained by nanoparticle display,” J. Med. Chem. 49(20), 60876093 (2006).
89.
89.A. Tanimoto, K. Oshio, M. Suematsu, D. Pouliquen, and D. D. Stark, “Relaxation effects of clustered particles,” J. Magn. Reson Imaging 14(1), 7277 (2001).
90.
90.O. Couture, P. D. Bevan, E. Cherin, K. Cheung, P. N. Burns, and F. S. Foster, “Investigating perfluorohexane particles with high-frequency ultrasound,” Ultrasound Med. Biol. 32(1), 7382 (2006).
91.
91.P. Caravan, “Strategies for increasing the sensitivity of gadolinium based MRI contrast agents,” Chem. Soc. Rev. 35(6), 512523 (2006).
http://dx.doi.org/10.1039/b510982p
92.
92.U. I. Tromsdorf, N. C. Bigall, M. G. Kaul, O. T. Bruns, M. S. Nikolic, B. Mollwitz, R. A. Sperling, R. Reimer, H. Hohenberg, W. J. Parak, S. Forster, U. Beisiegel, G. Adam, and H. Weller, “Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents,” Nano Lett. 7(8), 24222427 (2007).
93.
93.A. Y. Louie, M. M. Huber, E. T. Ahrens, U. Rothbacher, R. Moats, R. E. Jacobs, S. E. Fraser, and T. J. Meade, “In vivo visualization of gene expression using magnetic resonance imaging,” Nat. Biotechnol. 18(3), 321325 (2000).
http://dx.doi.org/10.1038/73780
94.
94.J. Rao, A. Dragulescu-Andrasi, and H. Yao, “Fluorescence imaging in vivo: Recent advances,” Curr. Opin. Biotechnol. 18(1), 1725 (2007).
http://dx.doi.org/10.1016/j.copbio.2007.01.003
95.
95.S. Kumar and R. Richards-Kortum, “Optical molecular imaging agents for cancer diagnostics and therapeutics,” Small 1(1), 2330 (2006).
96.
96.R. H. Muller, K. Mader, and S. Gohla, “Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art,” Eur. J. Pharm. Biopharm. 50(1), 161177 (2000).
http://dx.doi.org/10.1016/S0939-6411(00)00087-4
97.
97.D. A. Wood, “Biodegradable drug delivery systems,” Int. J. Pharm. 7(1), 118 (1980).
http://dx.doi.org/10.1016/0378-5173(80)90094-0
98.
98.Y. Bae, S. Fukushima, A. Harada, and K. Kataoka, “Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular change,” Angew. Chem., Int. Ed. 42(38), 46404643 (2003).
http://dx.doi.org/10.1002/anie.200250653
99.
99.R. Haag, “Supramolecular drug-delivery systems based on polymeric core-shell architectures,” Angew. Chem., Int. Ed. 43(3), 278282 (2004).
http://dx.doi.org/10.1002/anie.200301694
100.
100.E. R. Gillies and J. M. Frechet, “A new approach towards acid sensitive copolymer micelles for drug delivery,” Chem. Commun. (Cambridge) 2003(14), 16401641 (2003).
101.
101.R. Haag and F. Kratz, “Polymer therapeutics: Concepts and applications,” Angew. Chem., Int. Ed. 45(8), 11981215 (2006).
102.
102.R. Duncan, “The dawning era of polymer therapeutics,” Nat. Rev. Drug Discovery 2(5), 347360 (2003).
http://dx.doi.org/10.1038/nrd1088
103.
103.G. B. Sukhorukov, A. L. Rogach, B. Zebli, T. Liedl, A. G. Skirtach, K. Kohler, A. A. Antipov, N. Gaponik, A. S. Susha, M. Winterhalter, and W. J. Parak, “Nanoengineered polymer capsules: Tools for detection, controlled delivery, and site-specific manipulation,” Small 1(2), 194200 (2005).
http://dx.doi.org/10.1002/smll.200400075
104.
104.D. E. Sosnovik and R. Weissleder, “Emerging concepts in molecular MRI,” Curr. Opin. Biotechnol. 18(1), 410 (2007).
105.
105.E. Y. Sun, L. Josephson, K. A. Kelly, and R. Weissleder, “Development of nanoparticle libraries for biosensing,” Bioconjugate Chem. 17(1), 109113 (2006).
106.
106.T. Atanasijevic, M. Shusteff, P. Fam, and A. Jasanoff, “Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin,” Proc. Natl. Acad. Sci. U.S.A. 103(40), 1470714712 (2006).
107.
107.S. Forster and T. Plantenberg, “From self-organizing polymers to nanohybrid and biomaterials,” Angew. Chem., Int. Ed. 41(5), 689714 (2002).
108.
108.G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Sciences (N.Y.) 295(5564), 24182421 (2002).
109.
109.I. W. Hamley, “Nanotechnology with soft materials,” Angew. Chem., Int. Ed. 42(15), 16921712 (2003).
http://dx.doi.org/10.1002/anie.200200546
110.
110.S. E. Sakiyama-Elbert and J. A. Hubbell, “Functional biomaterials: Design of novel biomaterials,” Annu. Rev. Mater. Res. 31, 183201 (2001).
http://dx.doi.org/10.1146/annurev.matsci.31.1.183
111.
111.M. Sarikaya, C. Tamerler, A. K. Jen, K. Schulten, and F. Baneyx, “Molecular biomimetics: Nanotechnology through biology,” Nat. Mater. 2(9), 577585 (2003).
http://dx.doi.org/10.1038/nmat964
112.
112.M. Sarikaya, C. Tamerler, D. T. Schwartz, and F. Baneyx, “Materials assembly and formation using engineered polypeptides,” Annu. Rev. Mater. Res. 34, 373408 (2004).
http://dx.doi.org/10.1146/annurev.matsci.34.040203.121025
113.
113.S. Zhang, D. M. Marini, W. Hwang, and S. Santoso, “Design of nanostructured biological materials through self-assembly of peptides and proteins,” Curr. Opin. Chem. Biol. 6(6), 865871 (2002).
http://dx.doi.org/10.1016/S1367-5931(02)00391-5
114.
114.G. F. Payne, “Biopolymer-based materials: The nanoscale components and their hierarchical assembly,” Curr. Opin. Chem. Biol. 11(2), 214219 (2007).
115.
115.D. W. Wendell, J. Patti, and C. D. Montemagno, “Using biological inspiration to engineer functional nanostructured materials,” Small 2(11), 13241329 (2006).
http://dx.doi.org/10.1002/smll.200600019
116.
116.M. Karlsson, M. Davidson, R. Karlsson, A. Karlsson, J. Bergenholtz, Z. Konkoli, A. Jesorka, T. Lobovkina, J. Hurtig, M. Voinova, and O. Orwar, “Biomimetic nanoscale reactors and networks,” Annu. Rev. Phys. Chem. 55, 613649 (2004).
http://dx.doi.org/10.1146/annurev.physchem.55.091602.094319
117.
117.A. Kawamura, A. Harada, K. Kono, and K. Kataoka, “Self-assembled nano-bioreactor from block ionomers with elevated and stabilized enzymatic function,” Bioconjugate Chem. 18(5), 15551559 (2007).
118.
118.D. M. Vriezema, M. Comellas Aragones , J. A. Elemans, J. J. Cornelissen, A. E. Rowan, and R. J. Nolte, “Self-assembled nanoreactors,” Chem. Rev. (Washington, D.C.) 105(4), 14451489 (2005).
http://dx.doi.org/10.1021/cr0300688
119.
119.N. Rapoport, Z. Gao, and A. Kennedy, “Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy,” J. Natl. Cancer Inst. 99(14), 10951106 (2007).
http://dx.doi.org/10.1093/jnci/djm043
120.
120.J. C. Frias, M. J. Lipinski, S. E. Lipinski, and M. T. Albelda, “Modified lipoproteins as contrast agents for imaging of atherosclerosis,” Contrast Media Mol. Imaging 2(1), 1623 (2007).
121.
121.P. A. Dayton, S. Zhao, S. H. Bloch, P. Schumann, K. Penrose, T. O. Matsunaga, R. Zutshi, A. Doinikov, and K. W. Ferrara, “Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy,” Mol. Imaging 5(3), 160174 (2006).
122.
122.P. A. Dayton, K. E. Morgan, A. L. Klibanov, G. Brandenburger, K. R. Nightingale, and K. W. Ferrara, “A preliminary evaluation of the effects of primary and secondary radiation forces on acoustic contrast agents,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(6), 12641277 (1997).
http://dx.doi.org/10.1109/58.656630
123.
123.S. Martel, J. B. Mathieu, O. Felfoul, A. Chanu, E. Aboussouan, S. Tamaz, P. Pouponneau, L. Yahia, G. Beaudoin, G. Soulez, and M. Mankiewicz, “Medical and technical protocol for automatic navigation of a wireless device in the carotid artery of a living swine using a standard clinical MRI system,” Med. Image Comput. Comput. Assist. Interv. 10(Pt 1), 144152 (2007).
124.
124.R. Jurgons, C. Seliger, A. Hilpert, L. Trahms, S. Odenbach, and C. Alexiou, “Drug loaded magnetic particles for cancer therapy,” J. Phys.: Condens. Matter 18, S2893S2902 (2006).
http://dx.doi.org/10.1088/0953-8984/18/38/S24
125.
125.N. Gaponik, I. L. Radtchenko, G. B. Sukhorukov, and A. L. Rogach, “Luminescent polymer microcapsules addressable by a magnetic field,” Langmuir 20(4), 14491452 (2004).
http://dx.doi.org/10.1021/la035914o
126.
126.Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, “Applications of magnetic nanoparticles in biomedicine,” J. Phys. D: Appl. Phys. 36(13), R167R181 (2003).
http://dx.doi.org/10.1088/0022-3727/36/13/201
127.
127.O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 11771189 (2000).
http://dx.doi.org/10.1016/S0301-5629(00)00262-3
128.
128.I. Hilger, R. Hiergeist, R. Hergt, K. Winnefeld, H. Schubert, and W. A. Kaiser, “Thermal ablation of tumors using magnetic nanoparticles: An in vivo feasibility study,” Invest. Radiol. 37(10), 580586 (2002).
129.
129.R. Ivkov, S. J. DeNardo, W. Daum, A. R. Foreman, R. C. Goldstein, V. S. Nemkov, and G. L. DeNardo, “Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer,” Clin. Cancer Res. 11(19 Pt 2), 7093s7103s (2005).
130.
130.M. Lepage, J. Jiang, J. Babin, B. Qi, L. Tremblay, and Y. Zhao, “MRI observation of the light-induced release of a contrast agent from photo-controllable polymer micelles,” Phys. Med. Biol. 52(10), N249N255 (2007).
131.
131.Q. Y. Cai, S. H. Kim, K. S. Choi, S. Y. Kim, S. J. Byun, K. W. Kim, S. H. Park, S. K. Juhng, and K. H. Yoon, “Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice,” Invest. Radiol. 42(12), 797806 (2007).
132.
132.J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, “Gold nanoparticles: A new X-ray contrast agent,” Br. J. Radiol. 79(939), 248253 (2006).
133.
133.C. J. Gannon, C. R. Patra, R. Bhattacharya, P. Mukherjee, and S. A. Curley, “Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells,” Nanobiotechnol. 6(2) (2008).
134.
134.J. R. McCarthy, F. A. Jaffer, and R. Weissleder, “A macrophage-targeted theranostic nanoparticle for biomedical applications,” Small 2(8–9), 983987 (2006).
http://dx.doi.org/10.1002/smll.200600139
135.
135.R. Deckers, C. Rome, and C. T. Moonen, “The role of ultrasound and magnetic resonance in local drug delivery,” J. Magn. Reson Imaging 27(2), 400409 (2008).
136.
136.N. Y. Rapoport, D. A. Christensen, H. D. Fain, L. Barrows, and Z. Gao, “Ultrasound-triggered drug targeting of tumors in vitro and in vivo,” Ultrasonics 42(1–9), 943950 (2004).
137.
137.W. A. Volkert and T. J. Hoffman, “Therapeutic radiopharmaceuticals,” Chem. Rev. (Washington, D.C.) 99(9), 22692292 (1999).
138.
138.C. F. Shaw III, “Gold-based therapeutic agents,” Chem. Rev. (Washington, D.C.) 99(9), 25892600 (1999).
http://dx.doi.org/10.1021/cr980431o
139.
139.J. Kreuter, “Nanoparticles—a historical perspective,” Int. J. Pharm. 331(1), 110 (2007).
140.
140.R. C. Oppenheim, “Solid colloidal drug delivery systems: Nanoparticles,” Int. J. Pharm. 8(3), 217234 (1981).
141.
141.R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes—the route toward applications,” Sciences (N.Y.) 297 (5582), 787792 (2002).
142.
142.C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. (Washington, D.C.) 105(4), 10251102 (2005).
http://dx.doi.org/10.1021/cr030063a
143.
143.Y. Chen and A. Pepin, “Nanofabrication: Conventional and nonconventional methods,” Electrophoresis 22(2), 187207 (2001).
http://dx.doi.org/10.1002/1522-2683(200101)22:2<187::AID-ELPS187>3.0.CO;2-0
144.
144.P. D. Cozzoli, T. Pellegrino, and L. Manna, “Synthesis, properties and perspectives of hybrid nanocrystal structures,” Chem. Soc. Rev. 35(11), 11951208 (2006).
http://dx.doi.org/10.1039/b517790c
145.
145.S. Yang, X. Chen, S. Motojima, and M. Ichihara, “Morphology and microstructure of spring-like carbon micro-coils/nano-coils prepared by catalytic pyrolysis of acetylene using Fe-containing alloy catalysts,” Carbon 43(4), 827834 (2005).
146.
146.P. Decuzzi, S. Lee, B. Bhushan, and M. Ferrari, “A theoretical model for the margination of particles within blood vessels,” Ann. Biomed. Eng. 33(2), 179190 (2005).
147.
147.P. Decuzzi, S. Lee, M. Decuzzi, and M. Ferrari, “Adhesion of microfabricated particles on vascular endothelium: A parametric analysis,” Ann. Biomed. Eng. 32(6), 793802 (2004).
http://dx.doi.org/10.1023/B:ABME.0000030255.36748.d3
148.
148.J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626634 (2003).
http://dx.doi.org/10.1016/j.cbpa.2003.08.007
149.
149.M. A. Horton and A. Khan, “Medical nanotechnology in the UK: A perspective from the London Centre for Nanotechnology,” Nanomedicine 2(1), 4248 (2006).
150.
150.L. Mazzola, “Commercializing nanotechnology,” Nat. Biotechnol. 21(10), 11371143 (2003).
http://dx.doi.org/10.1038/nbt1003-1137
151.
151.Molecular Imaging and Contrast Agent Database (MICAD) [database online], National Library of Medicine (US), Bethesda MD: NCBI; 2004–2008. Available from http://micad.nih.gov.
152.
152.R. H. Glassman and A. Y. Sun, “Biotechnology: Identifying advances from the hype,” Nat. Rev. Drug Discovery 3(2), 177183 (2004).
153.
153.J. V. Frangioni, “Translating in vivo diagnostics into clinical reality,” Nat. Biotechnol. 24(8), 909913 (2006).
154.
154.V. M. Runge, “Changes in the approval process for contrast media,” J. Magn. Reson Imaging 10(3), 485488 (1999).
155.
155.D. A. Benaron, “The future of cancer imaging,” Cancer Metastasis Rev. 21(1), 4578 (2002).
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/35/10/10.1118/1.2966595
Loading
/content/aapm/journal/medphys/35/10/10.1118/1.2966595
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/35/10/10.1118/1.2966595
2008-09-16
2016-05-31

Abstract

Nanostructures represent a promising new type of contrast agent for clinical medical imaging modalities, including magnetic resonance imaging, x-ray computed tomography,ultrasound, and nuclear imaging. Currently, most nanostructures are simple, single-purpose imaging agents based on spherical constructs (e.g., liposomes, micelles, nanoemulsions, macromolecules, dendrimers, and solid nanoparticle structures). In the next decade, new clinical imagingnanostructures will be designed as multi-functional constructs, to both amplify imaging signals at disease sites and deliver localized therapy. Proposals for nanostructures to fulfill these new functions will be outlined. New functional nanostructures are expected to develop in five main directions: Modular nanostructures with additive functionality; cooperative nanostructures with synergistic functionality; nanostructures activated by their environment; nanostructures activated by sources outside the patient; and novel, nonspherical nanostructures and components. The development and clinical translation of next-generation nanostructures will be facilitated by a combination of improved clarity of the imaging and biological challenges and the requirements to successfully overcome them; development of standardized characterization and validation systems tailored for the preclinical assessment of nanostructure agents; and development of streamlined commercialization strategies and pipelines tailored for nanostructure-based agents for their efficient translation to the clinic.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/35/10/1.2966595.html;jsessionid=39YuSjP8s7Nag6FW4tVwiBuX.x-aip-live-03?itemId=/content/aapm/journal/medphys/35/10/10.1118/1.2966595&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/35/10/10.1118/1.2966595&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/35/10/10.1118/1.2966595'
Right1,Right2,Right3,