NOTICE: Scitation Maintenance Sunday, March 1, 2015.

Scitation users may experience brief connectivity issues on Sunday, March 1, 2015 between 12:00 AM and 7:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Anniversary Paper: Image processing and manipulation through the pages of
Rent this article for
Access full text Article
1.A. G. Haus, J. E. Gray, and T. R. Daly, “Evaluation of mammographic viewbox luminance, illuminance, and color,” Med. Phys. 20, 819821 (1993).
2.A. S. Chawla and E. Samei, “Ambient illumination revisited: A new adaptation-based approach for optimizing medical imaging reading environments,” Med. Phys. 34, 8190 (2007).
3.W. D. Renner and J. C. Luke, “Image processing of conventional tomograms,” Med. Phys. 8, 388395 (1981).
4.J. C. Weiser, D. Gur, R. C. Gennari, and M. Deutsch, “Evaluation of analog contrast enhancement and digital unsharp masking in low-contrast portal images,” Med. Phys. 17, 122125 (1990).
5.H. Liu, J. Xu, L. L. Fajardo, S. Yin, and F. T. S. Yu, “Optical processing architecture and its potential application for digital and analog radiography,” Med. Phys. 26, 648652 (1999).
6.A. Panchangam, K. V. L. N. Sastry, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, “Processing of medical images using real-time optical Fourier processing,” Med. Phys. 28, 2227 (2001).
7.T. Villafana, “Modulation transfer function of a finite scanning microdensitometer slit,” Med. Phys. 2, 251254 (1975).
8.F.-F. Yin, M. L. Giger, and K. Doi, “Measurement of the presampling modulation transfer function of film digitizers using a curve fitting technique,” Med. Phys. 17, 962966 (1990).
9.H. Yoshimura, X.-W. Xu, K. Doi, H. MacMahon, K. R. Hoffmann, M. L. Giger, and S. M. Montner, “Development of a high quality film duplication system using a laser digitizer: Comparison with computed radiography,” Med. Phys. 20, 5158 (1993).
10.R. J. J. Meeder, D. A. Jaffray, and P. Munro, “Tests for evaluating laser film digitizers,” Med. Phys. 22, 635642 (1995).
11.N. J. Hangiandreou, T. J. O’Connor, and J. P. Felmlee, “An evaluation of the signal and noise characteristics of four CCD-based film digitizers,” Med. Phys. 25, 20202026 (1998).
12.J. F. Dempsey, D. A. Low, A. S. Kirov, and J. F. Williamson, “Quantitative optical densitometry with scanning-laser film digitizers,” Med. Phys. 26, 17211731 (1999).
13.A. González, J. A. Martínez, and B. Tobarra, “Technical note: Signal resolution increase and noise reduction in a CCD digitizer,” Med. Phys. 31, 525527 (2004).
14.G. R. Gluckman and L. E. Reinstein, “Comparison of three high-resolution digitizers for radiochromic film dosimetry,” Med. Phys. 29, 18391846 (2002).
15.S. Devic, J. Seuntjens, G. Hegyi, E. B. Podgorsak, C. G. Soares, A. S. Kirov, I. Ali, J. F. Williamson, and A. Elizondo, “Dosimetric properties of improved GafChromic films for seven different digitizers,” Med. Phys. 31, 23922401 (2004).
16.E. Wilcox, G. Daskalov, and L. Nedialkova, “Comparison of the Epson Expression 1680 flatbed and the Vidar VXR-16 Dosimetry PRO film scanners for use in IMRT dosimetry using Gafchromic and radiographic film,” Med. Phys. 34, 4148 (2007).
17.P. G. Nagy, “The future of PACS,” Med. Phys. 34, 26762682 (2007).
18.J. H. Trueblood, K. R. Hogstrom, and W. R. Hendee, “Medical physicists should position themselves as institutional resources in expanding areas such as healthcare informatics and information networking,” Med. Phys. 27, 631633 (2000).
19.J. R. Halama, W. Huda, and W. R. Hendee, “Medical physicists should assume PACS responsibilities,” Med. Phys. 29, 19131915 (2002).
20.G. C. Nikiforidis, G. C. Kagadis, and C. G. Orton, “It is important that medical physicists be involved in the development and implementation of integrated hospital information systems,” Med. Phys. 33, 44554458 (2006).
21.G. C. Kagadis, P. Nagy, S. Langer, M. Flynn, and G. Starkschall, “Anniversary Paper: Roles of medical physicists and health care applications of informatics,” Med. Phys. 35, 119127 (2008).
22.B. S. Baxter, L. E. Hitchner, and G. Q. Maquire, Jr., AAPM Report No. 10: A Standard Format for Digital Image Exchange (American Institute of Physics, New York, 1982).
23.J. Morishita, S. Katsuragawa, K. Kondo, and K. Doi, “An automated patient recognition method based on an image-matching technique using previous chest radiographs in the picture archiving and communication system environment,” Med. Phys. 28, 10931097 (2001).
24.H. Arimura, S. Katsuragawa, Q. Li, T. Ishida, and K. Doi, “Development of a computerized method for identifying the posteroanterior and lateral views of chest radiographs by use of a template matching technique,” Med. Phys. 29, 15561561 (2002).
25.K. H. Höhne, U. Obermöller, M. Riemer, G. Witte, and M. Böhm, “Data compression in digital angiography using the Fourier transform,” Med. Phys. 10, 899905 (1983).
26.J. Liénard, “Real-time distortionless high-factor compression scheme,” Med. Phys. 16, 845850 (1989).
27.S.-C. B. Lo, E. L. Shen, S. K. Mun, and J. Chen, “A method for splitting digital value in radiological image compression,” Med. Phys. 18, 939946 (1991).
28.L. T. Cook, M. F. Insana, M. A. McFadden, T. J. Hall, and G. G. Cox, “Contrast-detail analysis of image degradation due to lossy compression,” Med. Phys. 22, 715721 (1995).
29.G. G. Cox, L. T. Cook, M. F. Insana, M. A. McFadden, T. J. Hall, L. A. Harrison, D. A. Eckard, and N. L. Martin, “The effects of lossy compression on the detection of subtle pulmonary nodules,” Med. Phys. 23, 127132 (1996).
30.F.-F. Yin and Q. Gao, “Oncologic image compression using both wavelet and masking techniques,” Med. Phys. 24, 20382042 (1997).
31.B. Zhao, L. H. Schwarz, and P. K. Kijewski, “Effects of lossy compression on lesion detection: Predictions of the nonprewhitening matched filter,” Med. Phys. 25, 16211624 (1998).
32.N. C. Phelan and J. T. Ennis, “Medical image compression based on a morphological representation of wavelet coefficient,” Med. Phys. 26, 16071611 (1999).
33.S. K. Thompson, J. D. Hazle, D. F. Schomer, A. A. Elekes, D. A. Johnston, J. Huffman, and C. K. Chui, “Performance analysis of a new semiorthogonal spline wavelet compression algorithm for tonal medical images,” Med. Phys. 27, 276288 (2000).
34.A. Fidler, U. Skaleric, and B. Likar, “The impact of image information on compressibility and degradation in medical image compression,” Med. Phys. 33, 28322838 (2006).
35.P. D. Esser and R. A. Fawwaz, “A spatially calibrated computer display and associated quality assurance,” Med. Phys. 7, 168 (1980).
36.F. G. Sommer, S. C. Orphanoudakis, and K. J. W. Taylor, “Preliminary evaluation of display format effects on perceptibility in a low contrast ultrasound test object,” Med. Phys. 8, 155157 (1981).
37.M. L. Giger, K. Ohara, and K. Doi, “Investigation of basic imaging properties in digital radiography. 9. Effect of displayed grey levels on signal detection,” Med. Phys. 13, 312318 (1986).
38.R. D. Nawfel, K. H. Chan, D. J. Wagenaar, and P. F. Judy, “Evaluation of video gray-scale display,” Med. Phys. 19, 561567 (1992).
39.J. Moseley and P. Munro, “Display equalization: A new display method for portal images,” Med. Phys. 20, 99102 (1993).
40.L. T. Cook, G. G. Cox, M. F. Insana, M. A. McFadden, T. J. Hall, R. S. Gaborski, and F. Y. M. Lure, “Comparison of a cathode-ray-tube and film for display of computed radiographic images,” Med. Phys. 25, 11321138 (1998).
41.B. M. Hemminger, A. W. Dillon, R. E. Johnston, K. E. Muller, M. C. Deluca, C. S. Coffey, and E. D. Pisano, “Effect of display luminance on the feature detection rates of masses in mammograms,” Med. Phys. 26, 22662272 (1999).
42.A. Badano, M. J. Flynn, S. Martin, and J. Kanicki, “Angular dependence of the luminance and contrast in medical monochrome liquid crystal displays,” Med. Phys. 30, 26022613 (2003).
43.A. Badano and D. H. Fifadara, “Goniometric and conoscopic measurements of angular display contrast for one-, three-, five-, and nine-million-pixel medical liquid crystal displays,” Med. Phys. 31, 34523460 (2004).
44.A. Badano, R. M. Gagne, R. J. Jennings, S. E. Drilling, B. R. Imhoff, and E. Muka, “Noise in flat-panel displays with subpixel structure,” Med. Phys. 31, 715723 (2004).
45.H. Jung, H.-J. Kim, W.-S. Kang, S. K. Yoo, K. Fujioka, M. Hasegawa, and E. Samei, “Assessment of flat panel LCD primary class display performance based on AAPM TG 18 acceptance protocol,” Med. Phys. 31, 21552164 (2004).
46.E. Samei, A. Badano, D. Chakraborty, K. Compton, C. Cornelius, K. Corrigan, M. J. Flynn, B. Hemminger, N. Hangiandreou, J. Johnson, D. M. Moxley-Stevens, W. Pavlicek, H. Roehrig, L. Rutz, S. J. Shepard, R. A. Uzenoff, J. Wang, and C. E. Willis, “Assessment of display performance for medical imaging systems: Executive summary of AAPM TG18 report,” Med. Phys. 32, 12051225 (2005).
47.E. Samei, A. Badano, D. Chakraborty, K. Compton, C. Cornelius, K. Corrigan, M. J. Flynn, B. Hemminger, N. Hangiandreou, J. Johnson, D. M. Moxley-Stevens, W. Pavlicek, H. Roehrig, L. Rutz, S. J. Shepard, R. A. Uzenoff, J. Wang, and C. E. Willis, AAPM On-Line Report No. 03: Assessment of Display Performance for Medical Imaging Systems, 2005.
48.E. Samei and S. L. Wright, “Viewing angle performance of medical liquid crystal displays,” Med. Phys. 33, 645654 (2006).
49.R. S. Saunders, Jr. and E. Samei, “Resolution and noise measurements of five CRT and LCD medical displays,” Med. Phys. 33, 308319 (2006).
50.J. Jacobs, F. Rogge, J. Kotre, G. Marchal, and H. Bosmans, “Preliminary validation of a new variable pattern for daily quality assurance of medical image display devices,” Med. Phys. 34, 27442758 (2007).
51.H. Liang and A. Badano, “Temporal response of medical liquid crystal displays,” Med. Phys. 34, 639646 (2007).
52.E. Samei, N. T. Ranger, and D. M. Delong, “A comparative contrast-detail study of five medical displays,” Med. Phys. 35, 13581364 (2008).
53.AAPM Report No. 42. The Role of the Clinical Medical Physicist in Diagnostic Radiology, Report of the AAPM Task Group No. 2 (American Institute of Physics, Woodbury, NY, 1994).
54.J. A. Seibert, O. Nalcioglu, and W. Roeck, “Removal of image intensifier veiling glare by mathematical deconvolution techniques,” Med. Phys. 12, 281288 (1985).
55.S. Webb, A. P. Long, R. J. Ott, M. O. Leach, and M. A. Flower, “Constrained deconvolution of SPECT liver tomograms by direct digital image restoration,” Med. Phys. 12, 5358 (1985).
56.B. C. Penney, M. A. King, R. B. Schwinger, S. P. Baker, P. Stritzke, and P. W. Doherty, “Constrained least-squares restoration of nuclear medicine images: Selecting the coarseness function,” Med. Phys. 14, 849858 (1987).
57.K. Sekihara and H. Kohno, “Image restoration from nonuniform static field influence in modified echo-planar imaging,” Med. Phys. 14, 10871089 (1987).
58.B. C. Penney, M. A. King, and R. B. Schwinger, “Modifying constrained least-squares restoration for application to single photon emission computed tomography projection images,” Med. Phys. 15, 334342 (1988).
59.W. Qian and L. P. Clarke, “A restoration algorithm for P-32 and Y-90 bremsstrahlung emission nuclear imaging: A wavelet-neural network approach,” Med. Phys. 23, 13091323 (1996).
60.R. A. Close, K. C. Shah, and J. S. Whiting, “Regularization method for scatter-glare correction in fluoroscopic images,” Med. Phys. 26, 17941801 (1999).
61.P. Cerveri, C. Forlani, N. A. Borghese, and G. Ferrigno, “Distortion correction for x-ray image intensifiers: Local unwarping polynomials and RBF neural networks,” Med. Phys. 29, 17591771 (2002).
62.S. Fantozzi, A. Cappello, and A. Leardini, “A global method based on thin-plate splines for correction of geometric distortion: An application to fluoroscopic images,” Med. Phys. 30, 124131 (2003).
63.D. W. Holdsworth, S. I. Pollmann, H. N. Nikolov, and R. Fahrig, “Correction of XRII geometric distortion using a liquid-filled grid and image subtraction,” Med. Phys. 32, 5564 (2005).
64.L. N. Baldwin, K. Wachowicz, S. D. Thomas, R. Rivest, and B. G. Fallone, “Characterization, prediction, and correction of geometric distortion in 3 TMR images,” Med. Phys. 34, 388399 (2007).
65.S. Yan, C. Wang, and M. Ye, “A method based on moving least squares for XRII image distortion correction,” Med. Phys. 34, 41944206 (2007).
66.M. Zhang, Q. Chen, X.-F. Li, J. O’Donoghue, S. Ruan, P. Zanzonico, C. C. Ling, and J. L. Humm, “Image deconvolution in digital autoradiography: A preliminary study,” Med. Phys. 35, 522530 (2008).
67.A. Buades, B. Coll, and J. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Model. Simul. 4, 490530 (2005).
68.R. J. Warp and J. T. Dobbins III, “Quantitative evaluation of noise reduction strategies in dual-energy imaging,” Med. Phys. 32, 190198 (2003).
69.S. Richard and J. H. Siewerdsen, “Cascaded systems analysis of noise reduction algorithms in dual-energy imaging,” Med. Phys. 35, 586601 (2008).
70.P. J. La Rivière, “Penalized-likelihood sinogram smoothing for low-dose CT,” Med. Phys. 32, 16761683 (2005).
71.J. Q. Xia, J. Y. Lo, K. Yang, C. E. Floyd, Jr., and J. M. Boone, “Dedicated breast computed tomography: Volume image denoising via a partial-diffusion equation based technique,” Med. Phys. 35, 19501958 (2008).
72.M. Hilts and A. Jirasek, “Adaptive mean filtering for noise reduction in CT polymer gel dosimetry,” Med. Phys. 35, 344355 (2008).
73.J.-S. Lee, “Digital image smoothing and the sigma filter,” Comput. Vis. Graph. Image Process. 24, 255269 (1998).
74.S. Smith and J. Brady, “SUSAN—a new approach to low level image processing,” Int. J. Comput. Vis. 23, 4578 (1997).
75.M. Hilts and C. Duzenli, “Image filtering for improved dose resolution in CT polymer gel dosimetry,” Med. Phys. 31, 3949 (2004).
76.A. Schilham, B. van Ginneken, H. Gietema, and M. Prokop, “Local noise weighted filtering for emphysema scoring of low-dose CT images,” IEEE Trans. Med. Imaging 25, 451463 (2006).
77.A. Kano, K. Doi, H. MacMahon, D. D. Hassell, and M. L. Giger, “Digital image subtraction of temporally sequential chest images for detection of interval change,” Med. Phys. 21, 453461 (1994).
78.T. Ishida, S. Katsuragawa, K. Nakamura, H. MacMahon, and K. Doi, “Iterative image warping technique for temporal subtraction of sequential chest radiographs to detect interval change,” Med. Phys. 26, 13201329 (1999).
79.L. Hadjiiski, H.-P. Chan, B. Sahiner, N. Petrick, and M. A. Helvie, “Automated registration of breast lesions in temporal pairs of mammograms for interval change analysis—Local affine transformation for improved localization,” Med. Phys. 28, 10701079 (2001).
80.S. Timp, S. van Engeland, and N. Karssemeijer, “A regional registration method to find corresponding mass lesions in temporal mammogram pairs,” Med. Phys. 32, 26292638 (2005).
81.J. Shiraishi, Q. Li, D. Appelbaum, Y. Pu, and K. Doi, “Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body bone scans,” Med. Phys. 34, 2536 (2007).
82.S. G. Armato III, D. J. Doshi, R. Engelmann, C. L. Croteau, and H. MacMahon, “Temporal subtraction in chest radiography: Automated assessment of registration accuracy,” Med. Phys. 33, 12391249 (2006).
83.Q.-S. Chen, M. Defrise, and F. Deconinck, “Three-dimensional multimodality medical image registration using a parameter accumulation approach,” Med. Phys. 23, 877885 (1996).
84.E. E. Graves, A. Pirzkall, S. J. Nelson, D. Larson, and L. Verhey, “Registration of magnetic resonance spectroscopic imaging to computed tomography for radiotherapy treatment planning,” Med. Phys. 28, 24892496 (2001).
85.G. C. Kagadis, K. K. Delibasis, G. K. Matsopoulos, N. A. Mouravliansky, P. A. Asvestas, and G. C. Nikiforidis, “A comparative study of surface- and volume-based techniques for the automatic registration between CT and SPECT brain images,” Med. Phys. 29, 201213 (2002).
86.M. Söhn, M. Birkner, Y. Chi, J. Wang, D. Yan, B. Berger, and M. Alber, “Model-independent, multimodality deformable image registration by local matching of anatomical features and minimization of elastic energy,” Med. Phys. 35, 866878 (2008).
87.J. Stancanello, P. Romanelli, N. Modugno, P. Cerveri, G. Ferrigno, F. Uggeri, and G. Cantore, “Atlas-based identification of targets for functional radiosurgery,” Med. Phys. 33, 16031611 (2006).
88.S. Klein, U. A. van der Heide, I. M. Lips, M. van Vulpen, M. Staring, and J. P. W. Pluim, “Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information,” Med. Phys. 35, 14071417 (2008).
89.F.-F. Yin, M. L. Giger, K. Doi, C. J. Vyborny, and R. A. Schmidt, “Computerized detection of masses in digital mammograms: Automated alignment of breast images and its effect on bilateral-subtraction technique,” Med. Phys. 21, 445452 (1994).
90.Q. Li, S. Katsuragawa, T. Ishida, H. Yoshida, S. Tsukuda, H. MacMahon, and K. Doi, “Contralateral subtraction: A novel technique for detection of asymmetric abnormalities on digital chest radiographs,” Med. Phys. 27, 4755 (2000).
91.Y.-T. Wu, J. Wei, L. M. Hadjiiski, B. Sahiner, C. Zhou, J. Ge, J. Shi, Y. Zhang, and H.-P. Chan, “Bilateral analysis based false positive reduction for computer-aided mass detection,” Med. Phys. 34, 33343344 (2007).
92.J. Pu, B. Zheng, J. K. Leader, and D. Gur, “An ellipse-fitting based method for efficient registration of breast masses on two mammographic views,” Med. Phys. 35, 487494 (2008).
93.J. Cai, J. C. H. Chu, V. A. Saxena, and L. H. Lanzl, “A simple algorithm for planar image registration in radiation therapy,” Med. Phys. 25, 824829 (1998).
94.A. E. Lujan, J. M. Balter, and R. K. T. Haken, “Determination of rotations in three dimensions using two-dimensional portal image registration,” Med. Phys. 25, 703708 (1998).
95.J. Kreß, S. Minohara, M. Endo, J. Debus, and T. Kanai, “Patient position verification using CT images,” Med. Phys. 26, 941948 (1999).
96.C. Bert, K. G. Metheany, K. Doppke, and G. T. Y. Chen, “A phantom evaluation of a stereo-vision surface imaging system for radiotherapy patient setup,” Med. Phys. 32, 27532762 (2005).
97.J. Chang, K. M. Yenice, A. Narayana, and P. H. Gutin, “Accuracy and feasibility of cone-beam computed tomography for stereotactic radiosurgery setup,” Med. Phys. 34, 20772084 (2007).
98.M. M. Coselmon, J. M. Balter, D. L. McShan, and M. L. Kessler, “Mutual information based CT registration of the lung at exhale and inhale breathing states using thin-plate splines,” Med. Phys. 31, 29422948 (2004).
99.T. Pan, T.-Y. Lee, E. Rietzel, and G. T. Y. Chen, “4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT,” Med. Phys. 31, 333340 (2004).
100.R. Tanaka, S. Sanada, M. Suzuki, T. Kobayashi, T. Matsui, H. Inoue, and N. Yoshihisa, “Breathing chest radiography using a dynamic flat-panel detector combined with computer analysis,” Med. Phys. 31, 22542262 (2004).
101.K. Berlinger, M. Roth, O. Sauer, L. Vences, and A. Schweikard, “Fully automatic detection of corresponding anatomical landmarks in volume scans of different respiratory state,” Med. Phys. 33, 15691572 (2006).
102.B. Thorndyke, E. Schreibmann, A. Koong, and L. Xing, “Reducing respiratory motion artifacts in positron emission tomography through retrospective stacking,” Med. Phys. 33, 26322641 (2006).
103.Q. Zhang, A. Pevsner, A. Hertanto, Y.-C. Hu, K. E. Rosenzweig, C. C. Ling, and G. S. Mageras, “A patient-specific respiratory model of anatomical motion for radiation treatment planning,” Med. Phys. 34, 47724781 (2007).
104.V. Boldea, G. C. Sharp, S. B. Jiang, and D. Sarrut, “4D-CT lung motion estimation with deformable registration: Quantification of motion nonlinearity and hysteresis,” Med. Phys. 35, 10081018 (2008).
105.P. C. Johns, D. J. Drost, M. J. Yaffe, and A. Fenster, “Dual-energy mammography: Initial experimental results,” Med. Phys. 12, 297304 (1985).
106.S. Y. Molloi and C. A. Mistretta, “Quantification techniques for dual-energy cardiac imaging,” Med. Phys. 16, 209217 (1989).
107.T. Xu, J. L. Ducote, J. T. Wong, and S. Molloi, “Feasibility of real time dual-energy imaging based on a flat panel detector for coronary artery calcium quantification,” Med. Phys. 33, 16121622 (2006).
108.J.-T. Ho, R. A. Kruger, and J. A. Sorenson, “Comparison of dual and single exposure techniques in dual-energy chest radiography,” Med. Phys. 16, 202208 (1989).
109.N. A. Shkumat, J. H. Siewerdsen, A. C. Dhanantwari, D. B. Williams, S. Richard, N. S. Paul, J. Yorkston, and R. Van Metter, “Optimization of image acquisition techniques for dual-energy imaging of the chest,” Med. Phys. 34, 39043915 (2007).
110.J. Liu, D. Nishimura, and A. Macovski, “Vessel imaging using dual-energy tomosynthesis,” Med. Phys. 14, 950955 (1987).
111.M. S. Van Lysel, “Optimization of beam parameters for dual-energy digital subtraction angiography,” Med. Phys. 21, 219226 (1994).
112.R. A. Kruger, “Dual-energy electronic scanning-slit fluorography for the determination of vertebral bone mineral content,” Med. Phys. 14, 562566 (1987).
113.S. G. Armato III, D. J. Doshi, R. Engelmann, P. Caligiuri, and H. MacMahon, “Temporal subtraction of dual-energy chest radiographs,” Med. Phys. 33, 19111919 (2006).
114.L.-N. D. Loo, K. Doi, and C. E. Metz, “Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns,” Med. Phys. 12, 209214 (1985).
115.R. M. Wilenzick and C. R. B. Merritt, “Megavoltage portal films using computed radiographic imaging with photostimulable phosphors,” Med. Phys. 14, 389392 (1987).
116.J. C. Weiser, D. Gur, and R. C. Gennari, “Evaluation of analog contrast enhancement and digital unsharp masking in low-contrast portal images,” Med. Phys. 17, 122125 (1990).
117.M. Stahl, T. Aach, and S. Dippe, “Digital radiography enhancement by nonlinear multiscale processing,” Med. Phys. 27, 5665 (2000).
118.J. C. Brailean, D. Little, M. L. Giger, C.-T. Chen, and B. J. Sullivan, “Application of the EM algorithm to radiographic images,” Med. Phys. 19, 11751182 (1992).
119.I. Crooks and B. G. Fallone, “Contrast enhancement of portal images by selective histogram equalization,” Med. Phys. 20, 199204 (1993).
120.J. Kim, F.-F. Yin, Y. Zhao, and J. H. Kim, “Effects of x-ray and CT image enhancements on the robustness and accuracy of a rigid 3D/2D image registration,” Med. Phys. 32, 866873 (2005).
121.G. C. Lehmann, D. W. Holdsworth, and M. Drangova, “Angle-independent measure of motion for image-based gating in 3D coronary angiography,” Med. Phys. 33, 13111320 (2006).
122.K. W. Leszczynski, S. Shalev, and N. S. Cosby, “The enhancement of radiotherapy verification images by an automated edge detection technique,” Med. Phys. 19, 611621 (1992).
123.I. Crooks and B. G. Fallone, “A novel algorithm for the edge detection and edge enhancement of medical images,” Med. Phys. 20, 993998 (1993).
124.Q. Li, S. Sone, and K. Doi, “Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans,” Med. Phys. 30, 20402051 (2003).
125.T. Ema, K. Doi, R. M. Nishikawa, Y. Jiang, and J. Papaioannou, “Image feature analysis and computer-aided diagnosis in mammography: Reduction of false-positive clustered microcalcifications using local edge-gradient analysis,” Med. Phys. 22, 161169 (1995).
126.X.-W. Xu and K. Doi, “Image feature analysis for computer-aided diagnosis: Detection of right and left hemidiaphragm edges and delineation of lung field in chest radiographs,” Med. Phys. 23, 16131624 (1996).
127.M. L. Giger, J. M. Boone, and H.-P. Chan, “History and status of CAD and quantitative image analysis,” Med. Phys. (in press).
128.E. Chaney, G. Ibbott, and W. R. Hendee, “Methods for image segmentation should be standardized and calibrated,” Med. Phys. 32, 35073510 (2005).
129.J. Duryea, M. Magalnick, S. Alli, L. Yao, M. Wilson, and R. Goldbach-Mansky, “Semiautomated three-dimensional segmentation software to quantify carpal bone volume changes on wrist CT scans for arthritis assessment,” Med. Phys. 35, 23212330 (2008).
130.M. Hardisty, L. Gordon, P. Agarwal, T. Skrinskas, and C. Whyne, “Quantitative characterization of metastatic disease in the spine. Part I. Semiautomated segmentation using atlas-based deformable registration and the level set method,” Med. Phys. 34, 31273134 (2007).
131.F. Zhuge, G. D. Rubin, S. Sun, and S. Napel, “An abdominal aortic aneurysm segmentation method: Level set with region and statistical information,” Med. Phys. 33, 14401453 (2006).
132.E. Angelié, P. J. H. de Koning, M. G. Danilouchkine, H. C. van Assen, G. Koning, R. J. van der Geest, and J. H. C. Reiber, “Optimizing the automatic segmentation of the left ventricle in magnetic resonance images,” Med. Phys. 32, 369375 (2005).
133.F. Mao, J. Gill, D. Downey, and A. Fenster, “Segmentation of carotid artery in ultrasound images: Method development and evaluation technique,” Med. Phys. 27, 19611970 (2000).
134.J. D. Gill, H. M. Ladak, D. A. Steinman, and A. Fenster, “Accuracy and variability assessment of a semiautomatic technique for segmentation of the carotid arteries from three-dimensional ultrasound images,” Med. Phys. 27, 13331342 (2000).
135.Y. Yuan, M. L. Giger, H. Li, K. Suzuki, and C. Sennett, “A dual-stage method for lesion segmentation on digital mammograms,” Med. Phys. 34, 41804193 (2007).
136.K. Horsch, M. L. Giger, L. A. Venta, and C. J. Vyborny, “Automatic segmentation of breast lesions on ultrasound,” Med. Phys. 28, 16521659 (2001).
137.W. Mullally, M. Betke, J. Wang, and J. P. Ko, “Segmentation of nodules on chest computed tomography for growth assessment,” Med. Phys. 31, 839848 (2004).
138.T. W. Way, L. M. Hadjiiski, B. Sahiner, H.-P. Chan, P. N. Cascade, E. A. Kazerooni, N. Bogot, and C. Zhou, “Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours,” Med. Phys. 33, 23232337 (2006).
139.J. Wang, R. Engelmann, and Q. Li, “Segmentation of pulmonary nodules in three-dimensional CT images by use of a spiral-scanning technique,” Med. Phys. 34, 46784689 (2007).
140.L. Drever, D. M. Robinson, A. McEwan, and W. Roa, “A local contrast based approach to threshold segmentation for PET target volume delineation,” Med. Phys. 33, 15831594 (2006).
141.L. Drever, W. Roa, A. McEwan, and D. Robinson, “Iterative threshold segmentation for PET target volume delineation,” Med. Phys. 34, 12531265 (2007).
142.D. W. G. Montgomery, A. Amira, and H. Zaidi, “Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model,” Med. Phys. 34, 722736 (2007).
143.M. Brambilla, R. Matheoud, C. Secco, G. Loi, M. Krengli, and E. Inglese, “Threshold segmentation for PET target volume delineation in radiation treatment planning: The role of target-to-background ratio and target size,” Med. Phys. 35, 12071213 (2008).
144.T. Cootes, C. Taylor, D. Cooper, and J. Graham, “Active shape models—their training and application,” Comput. Vis. Image Underst. 61, 3859 (1995).
145.T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance models,” IEEE Trans. Pattern Anal. Mach. Intell. 23, 681685 (2001).
146.S. M. Pizer, P. T. Fletcher, S. Joshi, A. G. Gash, J. Stough, A. Thall, G. Tracton, and E. L. Chaney, “A method and software for segmentation of anatomic object ensembles by deformable -reps,” Med. Phys. 32, 13351345 (2005).
147.J. Duryea and J. M. Boone, “A fully automated algorithm for the segmentation of lung fields on digital chest radiographic images,” Med. Phys. 22, 183191 (1995).
148.S. G. Armato III, M. L. Giger, K. Ashizawa, and H. MacMahon, “Automated lung segmentation in digital lateral chest radiographs,” Med. Phys. 25, 15071520 (1998).
149.F. M. Carrascal, J. M. Carreira, M. Souto, P. G. Tahoces, L. Gómez, and J. J. Vidal, “Automatic calculation of total lung capacity from automatically traced lung boundaries in postero-anterior and lateral digital chest radiographs,” Med. Phys. 25, 11181131 (1998).
150.B. van Ginneken and B. M. ter Haar Romeny, “Automatic segmentation of lung fields in chest radiographs,” Med. Phys. 27, 24452455 (2000).
151.M. F. McNitt-Gray, H. K. Huang, and J. W. Sayre, “Feature selection in the pattern classification problem of digital chest radiograph segmentation,” IEEE Trans. Med. Imaging 14, 537547 (1995).
152.O. Tsujii, M. T. Freedman, and S. K. Mun, “Automated segmentation of anatomic regions in chest radiographs using an adaptive-sized hybrid neural network,” Med. Phys. 25, 9981007 (1998).
153.N. F. Vittitoe, R. Vargas-Voracek, and C. E. Floyd, Jr., “Markov random field modeling in posteroanterior chest radiograph segmentation,” Med. Phys. 26, 16701677 (1999).
154.B. van Ginneken, M. Stegmann, and M. Loog, “Segmentation of anatomical structures in chest radiographs using supervised methods: A comparative study on a public database,” Med. Image Anal. 10, 1940 (2006).
155.D. Seghers, D. Loeckx, F. Maes, D. Vandermeulen, and P. Suetens, “Minimal shape and intensity cost path segmentation,” IEEE Trans. Med. Imaging 26, 11151129 (2007).
156.Y. Shi, F. Qi, Z. Xue, L. Chen, K. Ito, H. Matsuo, and D. Shen, “Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics,” IEEE Trans. Med. Imaging 27, 481494 (2008).
157.R. Pilgram, C. Walch, V. Kuhn, R. Schubert, and R. Staudinger, “Proximal femur segmentation in conventional pelvic x-ray,” Med. Phys. 35, 24632472 (2008).
158.G. Bekes, E. Máté, L. G. Nyúl, A. Kuba, and M. Fidrich, “Geometrical model-based segmentation of the organs of sight on CT images,” Med. Phys. 35, 735743 (2008).
159.F. Zhuge, S. Sun, G. Rubin, and S. Napel, “A directional distance aided method for medical image segmentation,” Med. Phys. 34, 49624976 (2007).
160.D. Ragan, G. Starkschall, T. McNutt, M. Kaus, T. Guerrero, and C. W. Stevens, “Semiautomated four-dimensional computed tomography segmentation using deformable models,” Med. Phys. 32, 22542261 (2005).
161.R. Shekhar, P. Lei, C. R. Castro-Pareja, W. L. Plishker, and W. D. D’Souza, “Automatic segmentation of phase-correlated CT scans through nonrigid image registration using geometrically regularized free-form deformation,” Med. Phys. 34, 30543066 (2007).
162.K. Wijesooriya, E. Weiss, V. Dill, L. Dong, R. Mohan, S. Joshi, and P. J. Keall, “Quantifying the accuracy of automated structure segmentation in 4D CT images using a deformable image registration algorithm,” Med. Phys. 35, 12511260 (2008).
163.Z. Wu, E. Rietzel, V. Boldea, D. Sarrut, and G. C. Sharp, “Evaluation of deformable registration of patient lung 4DCT with subanatomical region segmentations,” Med. Phys. 35, 775781 (2008).
164.H. MacMahon, “Improvement in detection of pulmonary nodules: Digital image processing and computer-aided diagnosis,” RadioGraphics 20, 11691177 (2000).

Data & Media loading...


Article metrics loading...



The language of radiology has gradually evolved from “the film” (the foundation of radiology since Wilhelm Roentgen’s 1895 discovery of x-rays) to “the image,” an electronic manifestation of a radiologic examination that exists within the bits and bytes of a computer. Rather than simply storing and displaying radiologic images in a static manner, the computational power of the computer may be used to enhance a radiologist’s ability to visually extract information from the image through image processing and image manipulation algorithms. Image processing tools provide a broad spectrum of opportunities for image enhancement. Gray-level manipulations such as histogram equalization, spatial alterations such as geometric distortion correction, preprocessing operations such as edge enhancement, and enhanced radiography techniques such as temporal subtraction provide powerful methods to improve the diagnostic quality of an image or to enhance structures of interest within an image. Furthermore, these image processing algorithms provide the building blocks of more advanced computer vision methods. The prominent role of medical physicists and the AAPM in the advancement of medical image processing methods, and in the establishment of the “image” as the fundamental entity in radiology and radiation oncology, has been captured in 35 volumes of .


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Anniversary Paper: Image processing and manipulation through the pages of Medical Physics