1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Anniversary Paper: Image processing and manipulation through the pages of
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/35/10/10.1118/1.2977537
1.
1.A. G. Haus, J. E. Gray, and T. R. Daly, “Evaluation of mammographic viewbox luminance, illuminance, and color,” Med. Phys. 20, 819821 (1993).
http://dx.doi.org/10.1118/1.596988
2.
2.A. S. Chawla and E. Samei, “Ambient illumination revisited: A new adaptation-based approach for optimizing medical imaging reading environments,” Med. Phys. 34, 8190 (2007).
http://dx.doi.org/10.1118/1.2402583
3.
3.W. D. Renner and J. C. Luke, “Image processing of conventional tomograms,” Med. Phys. 8, 388395 (1981).
http://dx.doi.org/10.1118/1.594964
4.
4.J. C. Weiser, D. Gur, R. C. Gennari, and M. Deutsch, “Evaluation of analog contrast enhancement and digital unsharp masking in low-contrast portal images,” Med. Phys. 17, 122125 (1990).
http://dx.doi.org/10.1118/1.596541
5.
5.H. Liu, J. Xu, L. L. Fajardo, S. Yin, and F. T. S. Yu, “Optical processing architecture and its potential application for digital and analog radiography,” Med. Phys. 26, 648652 (1999).
http://dx.doi.org/10.1118/1.598565
6.
6.A. Panchangam, K. V. L. N. Sastry, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, “Processing of medical images using real-time optical Fourier processing,” Med. Phys. 28, 2227 (2001).
http://dx.doi.org/10.1118/1.1328079
7.
7.T. Villafana, “Modulation transfer function of a finite scanning microdensitometer slit,” Med. Phys. 2, 251254 (1975).
http://dx.doi.org/10.1118/1.594187
8.
8.F.-F. Yin, M. L. Giger, and K. Doi, “Measurement of the presampling modulation transfer function of film digitizers using a curve fitting technique,” Med. Phys. 17, 962966 (1990).
http://dx.doi.org/10.1118/1.596463
9.
9.H. Yoshimura, X.-W. Xu, K. Doi, H. MacMahon, K. R. Hoffmann, M. L. Giger, and S. M. Montner, “Development of a high quality film duplication system using a laser digitizer: Comparison with computed radiography,” Med. Phys. 20, 5158 (1993).
http://dx.doi.org/10.1118/1.597061
10.
10.R. J. J. Meeder, D. A. Jaffray, and P. Munro, “Tests for evaluating laser film digitizers,” Med. Phys. 22, 635642 (1995).
http://dx.doi.org/10.1118/1.597550
11.
11.N. J. Hangiandreou, T. J. O’Connor, and J. P. Felmlee, “An evaluation of the signal and noise characteristics of four CCD-based film digitizers,” Med. Phys. 25, 20202026 (1998).
http://dx.doi.org/10.1118/1.598390
12.
12.J. F. Dempsey, D. A. Low, A. S. Kirov, and J. F. Williamson, “Quantitative optical densitometry with scanning-laser film digitizers,” Med. Phys. 26, 17211731 (1999).
http://dx.doi.org/10.1118/1.598664
13.
13.A. González, J. A. Martínez, and B. Tobarra, “Technical note: Signal resolution increase and noise reduction in a CCD digitizer,” Med. Phys. 31, 525527 (2004).
http://dx.doi.org/10.1118/1.1644672
14.
14.G. R. Gluckman and L. E. Reinstein, “Comparison of three high-resolution digitizers for radiochromic film dosimetry,” Med. Phys. 29, 18391846 (2002).
http://dx.doi.org/10.1118/1.1485056
15.
15.S. Devic, J. Seuntjens, G. Hegyi, E. B. Podgorsak, C. G. Soares, A. S. Kirov, I. Ali, J. F. Williamson, and A. Elizondo, “Dosimetric properties of improved GafChromic films for seven different digitizers,” Med. Phys. 31, 23922401 (2004).
http://dx.doi.org/10.1118/1.1776691
16.
16.E. Wilcox, G. Daskalov, and L. Nedialkova, “Comparison of the Epson Expression 1680 flatbed and the Vidar VXR-16 Dosimetry PRO film scanners for use in IMRT dosimetry using Gafchromic and radiographic film,” Med. Phys. 34, 4148 (2007).
http://dx.doi.org/10.1118/1.2402584
17.
17.P. G. Nagy, “The future of PACS,” Med. Phys. 34, 26762682 (2007).
http://dx.doi.org/10.1118/1.2743097
18.
18.J. H. Trueblood, K. R. Hogstrom, and W. R. Hendee, “Medical physicists should position themselves as institutional resources in expanding areas such as healthcare informatics and information networking,” Med. Phys. 27, 631633 (2000).
http://dx.doi.org/10.1118/1.598946
19.
19.J. R. Halama, W. Huda, and W. R. Hendee, “Medical physicists should assume PACS responsibilities,” Med. Phys. 29, 19131915 (2002).
http://dx.doi.org/10.1118/1.1496097
20.
20.G. C. Nikiforidis, G. C. Kagadis, and C. G. Orton, “It is important that medical physicists be involved in the development and implementation of integrated hospital information systems,” Med. Phys. 33, 44554458 (2006).
http://dx.doi.org/10.1118/1.2242051
21.
21.G. C. Kagadis, P. Nagy, S. Langer, M. Flynn, and G. Starkschall, “Anniversary Paper: Roles of medical physicists and health care applications of informatics,” Med. Phys. 35, 119127 (2008).
http://dx.doi.org/10.1118/1.2822875
22.
22.B. S. Baxter, L. E. Hitchner, and G. Q. Maquire, Jr., AAPM Report No. 10: A Standard Format for Digital Image Exchange (American Institute of Physics, New York, 1982).
23.
23.J. Morishita, S. Katsuragawa, K. Kondo, and K. Doi, “An automated patient recognition method based on an image-matching technique using previous chest radiographs in the picture archiving and communication system environment,” Med. Phys. 28, 10931097 (2001).
http://dx.doi.org/10.1118/1.1373403
24.
24.H. Arimura, S. Katsuragawa, Q. Li, T. Ishida, and K. Doi, “Development of a computerized method for identifying the posteroanterior and lateral views of chest radiographs by use of a template matching technique,” Med. Phys. 29, 15561561 (2002).
http://dx.doi.org/10.1118/1.1487426
25.
25.K. H. Höhne, U. Obermöller, M. Riemer, G. Witte, and M. Böhm, “Data compression in digital angiography using the Fourier transform,” Med. Phys. 10, 899905 (1983).
http://dx.doi.org/10.1118/1.595346
26.
26.J. Liénard, “Real-time distortionless high-factor compression scheme,” Med. Phys. 16, 845850 (1989).
http://dx.doi.org/10.1118/1.596309
27.
27.S.-C. B. Lo, E. L. Shen, S. K. Mun, and J. Chen, “A method for splitting digital value in radiological image compression,” Med. Phys. 18, 939946 (1991).
http://dx.doi.org/10.1118/1.596609
28.
28.L. T. Cook, M. F. Insana, M. A. McFadden, T. J. Hall, and G. G. Cox, “Contrast-detail analysis of image degradation due to lossy compression,” Med. Phys. 22, 715721 (1995).
http://dx.doi.org/10.1118/1.597489
29.
29.G. G. Cox, L. T. Cook, M. F. Insana, M. A. McFadden, T. J. Hall, L. A. Harrison, D. A. Eckard, and N. L. Martin, “The effects of lossy compression on the detection of subtle pulmonary nodules,” Med. Phys. 23, 127132 (1996).
http://dx.doi.org/10.1118/1.597691
30.
30.F.-F. Yin and Q. Gao, “Oncologic image compression using both wavelet and masking techniques,” Med. Phys. 24, 20382042 (1997).
http://dx.doi.org/10.1118/1.598118
31.
31.B. Zhao, L. H. Schwarz, and P. K. Kijewski, “Effects of lossy compression on lesion detection: Predictions of the nonprewhitening matched filter,” Med. Phys. 25, 16211624 (1998).
http://dx.doi.org/10.1118/1.598342
32.
32.N. C. Phelan and J. T. Ennis, “Medical image compression based on a morphological representation of wavelet coefficient,” Med. Phys. 26, 16071611 (1999).
http://dx.doi.org/10.1118/1.598655
33.
33.S. K. Thompson, J. D. Hazle, D. F. Schomer, A. A. Elekes, D. A. Johnston, J. Huffman, and C. K. Chui, “Performance analysis of a new semiorthogonal spline wavelet compression algorithm for tonal medical images,” Med. Phys. 27, 276288 (2000).
http://dx.doi.org/10.1118/1.598830
34.
34.A. Fidler, U. Skaleric, and B. Likar, “The impact of image information on compressibility and degradation in medical image compression,” Med. Phys. 33, 28322838 (2006).
http://dx.doi.org/10.1118/1.2218316
35.
35.P. D. Esser and R. A. Fawwaz, “A spatially calibrated computer display and associated quality assurance,” Med. Phys. 7, 168 (1980).
http://dx.doi.org/10.1118/1.594667
36.
36.F. G. Sommer, S. C. Orphanoudakis, and K. J. W. Taylor, “Preliminary evaluation of display format effects on perceptibility in a low contrast ultrasound test object,” Med. Phys. 8, 155157 (1981).
http://dx.doi.org/10.1118/1.594900
37.
37.M. L. Giger, K. Ohara, and K. Doi, “Investigation of basic imaging properties in digital radiography. 9. Effect of displayed grey levels on signal detection,” Med. Phys. 13, 312318 (1986).
http://dx.doi.org/10.1118/1.595919
38.
38.R. D. Nawfel, K. H. Chan, D. J. Wagenaar, and P. F. Judy, “Evaluation of video gray-scale display,” Med. Phys. 19, 561567 (1992).
http://dx.doi.org/10.1118/1.596846
39.
39.J. Moseley and P. Munro, “Display equalization: A new display method for portal images,” Med. Phys. 20, 99102 (1993).
http://dx.doi.org/10.1118/1.597067
40.
40.L. T. Cook, G. G. Cox, M. F. Insana, M. A. McFadden, T. J. Hall, R. S. Gaborski, and F. Y. M. Lure, “Comparison of a cathode-ray-tube and film for display of computed radiographic images,” Med. Phys. 25, 11321138 (1998).
http://dx.doi.org/10.1118/1.598304
41.
41.B. M. Hemminger, A. W. Dillon, R. E. Johnston, K. E. Muller, M. C. Deluca, C. S. Coffey, and E. D. Pisano, “Effect of display luminance on the feature detection rates of masses in mammograms,” Med. Phys. 26, 22662272 (1999).
http://dx.doi.org/10.1118/1.598740
42.
42.A. Badano, M. J. Flynn, S. Martin, and J. Kanicki, “Angular dependence of the luminance and contrast in medical monochrome liquid crystal displays,” Med. Phys. 30, 26022613 (2003).
http://dx.doi.org/10.1118/1.1606449
43.
43.A. Badano and D. H. Fifadara, “Goniometric and conoscopic measurements of angular display contrast for one-, three-, five-, and nine-million-pixel medical liquid crystal displays,” Med. Phys. 31, 34523460 (2004).
http://dx.doi.org/10.1118/1.1824198
44.
44.A. Badano, R. M. Gagne, R. J. Jennings, S. E. Drilling, B. R. Imhoff, and E. Muka, “Noise in flat-panel displays with subpixel structure,” Med. Phys. 31, 715723 (2004).
http://dx.doi.org/10.1118/1.1656529
45.
45.H. Jung, H.-J. Kim, W.-S. Kang, S. K. Yoo, K. Fujioka, M. Hasegawa, and E. Samei, “Assessment of flat panel LCD primary class display performance based on AAPM TG 18 acceptance protocol,” Med. Phys. 31, 21552164 (2004).
http://dx.doi.org/10.1118/1.1764946
46.
46.E. Samei, A. Badano, D. Chakraborty, K. Compton, C. Cornelius, K. Corrigan, M. J. Flynn, B. Hemminger, N. Hangiandreou, J. Johnson, D. M. Moxley-Stevens, W. Pavlicek, H. Roehrig, L. Rutz, S. J. Shepard, R. A. Uzenoff, J. Wang, and C. E. Willis, “Assessment of display performance for medical imaging systems: Executive summary of AAPM TG18 report,” Med. Phys. 32, 12051225 (2005).
http://dx.doi.org/10.1118/1.1861159
47.
47.E. Samei, A. Badano, D. Chakraborty, K. Compton, C. Cornelius, K. Corrigan, M. J. Flynn, B. Hemminger, N. Hangiandreou, J. Johnson, D. M. Moxley-Stevens, W. Pavlicek, H. Roehrig, L. Rutz, S. J. Shepard, R. A. Uzenoff, J. Wang, and C. E. Willis, AAPM On-Line Report No. 03: Assessment of Display Performance for Medical Imaging Systems, 2005.
48.
48.E. Samei and S. L. Wright, “Viewing angle performance of medical liquid crystal displays,” Med. Phys. 33, 645654 (2006).
http://dx.doi.org/10.1118/1.2168430
49.
49.R. S. Saunders, Jr. and E. Samei, “Resolution and noise measurements of five CRT and LCD medical displays,” Med. Phys. 33, 308319 (2006).
http://dx.doi.org/10.1118/1.2150777
50.
50.J. Jacobs, F. Rogge, J. Kotre, G. Marchal, and H. Bosmans, “Preliminary validation of a new variable pattern for daily quality assurance of medical image display devices,” Med. Phys. 34, 27442758 (2007).
http://dx.doi.org/10.1118/1.2742502
51.
51.H. Liang and A. Badano, “Temporal response of medical liquid crystal displays,” Med. Phys. 34, 639646 (2007).
http://dx.doi.org/10.1118/1.2428403
52.
52.E. Samei, N. T. Ranger, and D. M. Delong, “A comparative contrast-detail study of five medical displays,” Med. Phys. 35, 13581364 (2008).
http://dx.doi.org/10.1118/1.2868780
53.
53.AAPM Report No. 42. The Role of the Clinical Medical Physicist in Diagnostic Radiology, Report of the AAPM Task Group No. 2 (American Institute of Physics, Woodbury, NY, 1994).
54.
54.J. A. Seibert, O. Nalcioglu, and W. Roeck, “Removal of image intensifier veiling glare by mathematical deconvolution techniques,” Med. Phys. 12, 281288 (1985).
http://dx.doi.org/10.1118/1.595720
55.
55.S. Webb, A. P. Long, R. J. Ott, M. O. Leach, and M. A. Flower, “Constrained deconvolution of SPECT liver tomograms by direct digital image restoration,” Med. Phys. 12, 5358 (1985).
http://dx.doi.org/10.1118/1.595735
56.
56.B. C. Penney, M. A. King, R. B. Schwinger, S. P. Baker, P. Stritzke, and P. W. Doherty, “Constrained least-squares restoration of nuclear medicine images: Selecting the coarseness function,” Med. Phys. 14, 849858 (1987).
http://dx.doi.org/10.1118/1.596123
57.
57.K. Sekihara and H. Kohno, “Image restoration from nonuniform static field influence in modified echo-planar imaging,” Med. Phys. 14, 10871089 (1987).
http://dx.doi.org/10.1118/1.595989
58.
58.B. C. Penney, M. A. King, and R. B. Schwinger, “Modifying constrained least-squares restoration for application to single photon emission computed tomography projection images,” Med. Phys. 15, 334342 (1988).
http://dx.doi.org/10.1118/1.596227
59.
59.W. Qian and L. P. Clarke, “A restoration algorithm for P-32 and Y-90 bremsstrahlung emission nuclear imaging: A wavelet-neural network approach,” Med. Phys. 23, 13091323 (1996).
http://dx.doi.org/10.1118/1.597868
60.
60.R. A. Close, K. C. Shah, and J. S. Whiting, “Regularization method for scatter-glare correction in fluoroscopic images,” Med. Phys. 26, 17941801 (1999).
http://dx.doi.org/10.1118/1.598683
61.
61.P. Cerveri, C. Forlani, N. A. Borghese, and G. Ferrigno, “Distortion correction for x-ray image intensifiers: Local unwarping polynomials and RBF neural networks,” Med. Phys. 29, 17591771 (2002).
http://dx.doi.org/10.1118/1.1488602
62.
62.S. Fantozzi, A. Cappello, and A. Leardini, “A global method based on thin-plate splines for correction of geometric distortion: An application to fluoroscopic images,” Med. Phys. 30, 124131 (2003).
http://dx.doi.org/10.1118/1.1538228
63.
63.D. W. Holdsworth, S. I. Pollmann, H. N. Nikolov, and R. Fahrig, “Correction of XRII geometric distortion using a liquid-filled grid and image subtraction,” Med. Phys. 32, 5564 (2005).
http://dx.doi.org/10.1118/1.1827751
64.
64.L. N. Baldwin, K. Wachowicz, S. D. Thomas, R. Rivest, and B. G. Fallone, “Characterization, prediction, and correction of geometric distortion in 3 TMR images,” Med. Phys. 34, 388399 (2007).
http://dx.doi.org/10.1118/1.2402331
65.
65.S. Yan, C. Wang, and M. Ye, “A method based on moving least squares for XRII image distortion correction,” Med. Phys. 34, 41944206 (2007).
http://dx.doi.org/10.1118/1.2791037
66.
66.M. Zhang, Q. Chen, X.-F. Li, J. O’Donoghue, S. Ruan, P. Zanzonico, C. C. Ling, and J. L. Humm, “Image deconvolution in digital autoradiography: A preliminary study,” Med. Phys. 35, 522530 (2008).
http://dx.doi.org/10.1118/1.2828198
67.
67.A. Buades, B. Coll, and J. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Model. Simul. 4, 490530 (2005).
http://dx.doi.org/10.1137/040616024
68.
68.R. J. Warp and J. T. Dobbins III, “Quantitative evaluation of noise reduction strategies in dual-energy imaging,” Med. Phys. 32, 190198 (2003).
69.
69.S. Richard and J. H. Siewerdsen, “Cascaded systems analysis of noise reduction algorithms in dual-energy imaging,” Med. Phys. 35, 586601 (2008).
http://dx.doi.org/10.1118/1.2826556
70.
70.P. J. La Rivière, “Penalized-likelihood sinogram smoothing for low-dose CT,” Med. Phys. 32, 16761683 (2005).
http://dx.doi.org/10.1118/1.1915015
71.
71.J. Q. Xia, J. Y. Lo, K. Yang, C. E. Floyd, Jr., and J. M. Boone, “Dedicated breast computed tomography: Volume image denoising via a partial-diffusion equation based technique,” Med. Phys. 35, 19501958 (2008).
http://dx.doi.org/10.1118/1.2903436
72.
72.M. Hilts and A. Jirasek, “Adaptive mean filtering for noise reduction in CT polymer gel dosimetry,” Med. Phys. 35, 344355 (2008).
http://dx.doi.org/10.1118/1.2818742
73.
73.J.-S. Lee, “Digital image smoothing and the sigma filter,” Comput. Vis. Graph. Image Process. 24, 255269 (1998).
http://dx.doi.org/10.1016/0734-189X(83)90047-6
74.
74.S. Smith and J. Brady, “SUSAN—a new approach to low level image processing,” Int. J. Comput. Vis. 23, 4578 (1997).
http://dx.doi.org/10.1023/A:1007963824710
75.
75.M. Hilts and C. Duzenli, “Image filtering for improved dose resolution in CT polymer gel dosimetry,” Med. Phys. 31, 3949 (2004).
http://dx.doi.org/10.1118/1.1633106
76.
76.A. Schilham, B. van Ginneken, H. Gietema, and M. Prokop, “Local noise weighted filtering for emphysema scoring of low-dose CT images,” IEEE Trans. Med. Imaging 25, 451463 (2006).
http://dx.doi.org/10.1109/TMI.2006.871545
77.
77.A. Kano, K. Doi, H. MacMahon, D. D. Hassell, and M. L. Giger, “Digital image subtraction of temporally sequential chest images for detection of interval change,” Med. Phys. 21, 453461 (1994).
http://dx.doi.org/10.1118/1.597308
78.
78.T. Ishida, S. Katsuragawa, K. Nakamura, H. MacMahon, and K. Doi, “Iterative image warping technique for temporal subtraction of sequential chest radiographs to detect interval change,” Med. Phys. 26, 13201329 (1999).
http://dx.doi.org/10.1118/1.598627
79.
79.L. Hadjiiski, H.-P. Chan, B. Sahiner, N. Petrick, and M. A. Helvie, “Automated registration of breast lesions in temporal pairs of mammograms for interval change analysis—Local affine transformation for improved localization,” Med. Phys. 28, 10701079 (2001).
http://dx.doi.org/10.1118/1.1376134
80.
80.S. Timp, S. van Engeland, and N. Karssemeijer, “A regional registration method to find corresponding mass lesions in temporal mammogram pairs,” Med. Phys. 32, 26292638 (2005).
http://dx.doi.org/10.1118/1.1984323
81.
81.J. Shiraishi, Q. Li, D. Appelbaum, Y. Pu, and K. Doi, “Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body bone scans,” Med. Phys. 34, 2536 (2007).
http://dx.doi.org/10.1118/1.2401044
82.
82.S. G. Armato III, D. J. Doshi, R. Engelmann, C. L. Croteau, and H. MacMahon, “Temporal subtraction in chest radiography: Automated assessment of registration accuracy,” Med. Phys. 33, 12391249 (2006).
http://dx.doi.org/10.1118/1.2184441
83.
83.Q.-S. Chen, M. Defrise, and F. Deconinck, “Three-dimensional multimodality medical image registration using a parameter accumulation approach,” Med. Phys. 23, 877885 (1996).
http://dx.doi.org/10.1118/1.597730
84.
84.E. E. Graves, A. Pirzkall, S. J. Nelson, D. Larson, and L. Verhey, “Registration of magnetic resonance spectroscopic imaging to computed tomography for radiotherapy treatment planning,” Med. Phys. 28, 24892496 (2001).
http://dx.doi.org/10.1118/1.1420400
85.
85.G. C. Kagadis, K. K. Delibasis, G. K. Matsopoulos, N. A. Mouravliansky, P. A. Asvestas, and G. C. Nikiforidis, “A comparative study of surface- and volume-based techniques for the automatic registration between CT and SPECT brain images,” Med. Phys. 29, 201213 (2002).
http://dx.doi.org/10.1118/1.1445412
86.
86.M. Söhn, M. Birkner, Y. Chi, J. Wang, D. Yan, B. Berger, and M. Alber, “Model-independent, multimodality deformable image registration by local matching of anatomical features and minimization of elastic energy,” Med. Phys. 35, 866878 (2008).
http://dx.doi.org/10.1118/1.2836951
87.
87.J. Stancanello, P. Romanelli, N. Modugno, P. Cerveri, G. Ferrigno, F. Uggeri, and G. Cantore, “Atlas-based identification of targets for functional radiosurgery,” Med. Phys. 33, 16031611 (2006).
http://dx.doi.org/10.1118/1.2198588
88.
88.S. Klein, U. A. van der Heide, I. M. Lips, M. van Vulpen, M. Staring, and J. P. W. Pluim, “Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information,” Med. Phys. 35, 14071417 (2008).
http://dx.doi.org/10.1118/1.2842076
89.
89.F.-F. Yin, M. L. Giger, K. Doi, C. J. Vyborny, and R. A. Schmidt, “Computerized detection of masses in digital mammograms: Automated alignment of breast images and its effect on bilateral-subtraction technique,” Med. Phys. 21, 445452 (1994).
http://dx.doi.org/10.1118/1.597307
90.
90.Q. Li, S. Katsuragawa, T. Ishida, H. Yoshida, S. Tsukuda, H. MacMahon, and K. Doi, “Contralateral subtraction: A novel technique for detection of asymmetric abnormalities on digital chest radiographs,” Med. Phys. 27, 4755 (2000).
http://dx.doi.org/10.1118/1.598856
91.
91.Y.-T. Wu, J. Wei, L. M. Hadjiiski, B. Sahiner, C. Zhou, J. Ge, J. Shi, Y. Zhang, and H.-P. Chan, “Bilateral analysis based false positive reduction for computer-aided mass detection,” Med. Phys. 34, 33343344 (2007).
http://dx.doi.org/10.1118/1.2756612
92.
92.J. Pu, B. Zheng, J. K. Leader, and D. Gur, “An ellipse-fitting based method for efficient registration of breast masses on two mammographic views,” Med. Phys. 35, 487494 (2008).
http://dx.doi.org/10.1118/1.2828188
93.
93.J. Cai, J. C. H. Chu, V. A. Saxena, and L. H. Lanzl, “A simple algorithm for planar image registration in radiation therapy,” Med. Phys. 25, 824829 (1998).
http://dx.doi.org/10.1118/1.598292
94.
94.A. E. Lujan, J. M. Balter, and R. K. T. Haken, “Determination of rotations in three dimensions using two-dimensional portal image registration,” Med. Phys. 25, 703708 (1998).
http://dx.doi.org/10.1118/1.598253
95.
95.J. Kreß, S. Minohara, M. Endo, J. Debus, and T. Kanai, “Patient position verification using CT images,” Med. Phys. 26, 941948 (1999).
http://dx.doi.org/10.1118/1.598486
96.
96.C. Bert, K. G. Metheany, K. Doppke, and G. T. Y. Chen, “A phantom evaluation of a stereo-vision surface imaging system for radiotherapy patient setup,” Med. Phys. 32, 27532762 (2005).
http://dx.doi.org/10.1118/1.1984263
97.
97.J. Chang, K. M. Yenice, A. Narayana, and P. H. Gutin, “Accuracy and feasibility of cone-beam computed tomography for stereotactic radiosurgery setup,” Med. Phys. 34, 20772084 (2007).
http://dx.doi.org/10.1118/1.2731031
98.
98.M. M. Coselmon, J. M. Balter, D. L. McShan, and M. L. Kessler, “Mutual information based CT registration of the lung at exhale and inhale breathing states using thin-plate splines,” Med. Phys. 31, 29422948 (2004).
http://dx.doi.org/10.1118/1.1803671
99.
99.T. Pan, T.-Y. Lee, E. Rietzel, and G. T. Y. Chen, “4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT,” Med. Phys. 31, 333340 (2004).
http://dx.doi.org/10.1118/1.1639993
100.
100.R. Tanaka, S. Sanada, M. Suzuki, T. Kobayashi, T. Matsui, H. Inoue, and N. Yoshihisa, “Breathing chest radiography using a dynamic flat-panel detector combined with computer analysis,” Med. Phys. 31, 22542262 (2004).
http://dx.doi.org/10.1118/1.1769351
101.
101.K. Berlinger, M. Roth, O. Sauer, L. Vences, and A. Schweikard, “Fully automatic detection of corresponding anatomical landmarks in volume scans of different respiratory state,” Med. Phys. 33, 15691572 (2006).
http://dx.doi.org/10.1118/1.2198587
102.
102.B. Thorndyke, E. Schreibmann, A. Koong, and L. Xing, “Reducing respiratory motion artifacts in positron emission tomography through retrospective stacking,” Med. Phys. 33, 26322641 (2006).
http://dx.doi.org/10.1118/1.2207367
103.
103.Q. Zhang, A. Pevsner, A. Hertanto, Y.-C. Hu, K. E. Rosenzweig, C. C. Ling, and G. S. Mageras, “A patient-specific respiratory model of anatomical motion for radiation treatment planning,” Med. Phys. 34, 47724781 (2007).
http://dx.doi.org/10.1118/1.2804576
104.
104.V. Boldea, G. C. Sharp, S. B. Jiang, and D. Sarrut, “4D-CT lung motion estimation with deformable registration: Quantification of motion nonlinearity and hysteresis,” Med. Phys. 35, 10081018 (2008).
http://dx.doi.org/10.1118/1.2839103
105.
105.P. C. Johns, D. J. Drost, M. J. Yaffe, and A. Fenster, “Dual-energy mammography: Initial experimental results,” Med. Phys. 12, 297304 (1985).
http://dx.doi.org/10.1118/1.595767
106.
106.S. Y. Molloi and C. A. Mistretta, “Quantification techniques for dual-energy cardiac imaging,” Med. Phys. 16, 209217 (1989).
http://dx.doi.org/10.1118/1.596418
107.
107.T. Xu, J. L. Ducote, J. T. Wong, and S. Molloi, “Feasibility of real time dual-energy imaging based on a flat panel detector for coronary artery calcium quantification,” Med. Phys. 33, 16121622 (2006).
http://dx.doi.org/10.1118/1.2198942
108.
108.J.-T. Ho, R. A. Kruger, and J. A. Sorenson, “Comparison of dual and single exposure techniques in dual-energy chest radiography,” Med. Phys. 16, 202208 (1989).
http://dx.doi.org/10.1118/1.596372
109.
109.N. A. Shkumat, J. H. Siewerdsen, A. C. Dhanantwari, D. B. Williams, S. Richard, N. S. Paul, J. Yorkston, and R. Van Metter, “Optimization of image acquisition techniques for dual-energy imaging of the chest,” Med. Phys. 34, 39043915 (2007).
110.
110.J. Liu, D. Nishimura, and A. Macovski, “Vessel imaging using dual-energy tomosynthesis,” Med. Phys. 14, 950955 (1987).
http://dx.doi.org/10.1118/1.595998
111.
111.M. S. Van Lysel, “Optimization of beam parameters for dual-energy digital subtraction angiography,” Med. Phys. 21, 219226 (1994).
http://dx.doi.org/10.1118/1.597376
112.
112.R. A. Kruger, “Dual-energy electronic scanning-slit fluorography for the determination of vertebral bone mineral content,” Med. Phys. 14, 562566 (1987).
http://dx.doi.org/10.1118/1.596068
113.
113.S. G. Armato III, D. J. Doshi, R. Engelmann, P. Caligiuri, and H. MacMahon, “Temporal subtraction of dual-energy chest radiographs,” Med. Phys. 33, 19111919 (2006).
http://dx.doi.org/10.1118/1.2163387
114.
114.L.-N. D. Loo, K. Doi, and C. E. Metz, “Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns,” Med. Phys. 12, 209214 (1985).
http://dx.doi.org/10.1118/1.595775
115.
115.R. M. Wilenzick and C. R. B. Merritt, “Megavoltage portal films using computed radiographic imaging with photostimulable phosphors,” Med. Phys. 14, 389392 (1987).
http://dx.doi.org/10.1118/1.596054
116.
116.J. C. Weiser, D. Gur, and R. C. Gennari, “Evaluation of analog contrast enhancement and digital unsharp masking in low-contrast portal images,” Med. Phys. 17, 122125 (1990).
http://dx.doi.org/10.1118/1.596541
117.
117.M. Stahl, T. Aach, and S. Dippe, “Digital radiography enhancement by nonlinear multiscale processing,” Med. Phys. 27, 5665 (2000).
http://dx.doi.org/10.1118/1.598857
118.
118.J. C. Brailean, D. Little, M. L. Giger, C.-T. Chen, and B. J. Sullivan, “Application of the EM algorithm to radiographic images,” Med. Phys. 19, 11751182 (1992).
http://dx.doi.org/10.1118/1.596895
119.
119.I. Crooks and B. G. Fallone, “Contrast enhancement of portal images by selective histogram equalization,” Med. Phys. 20, 199204 (1993).
http://dx.doi.org/10.1118/1.597085
120.
120.J. Kim, F.-F. Yin, Y. Zhao, and J. H. Kim, “Effects of x-ray and CT image enhancements on the robustness and accuracy of a rigid 3D/2D image registration,” Med. Phys. 32, 866873 (2005).
http://dx.doi.org/10.1118/1.1869592
121.
121.G. C. Lehmann, D. W. Holdsworth, and M. Drangova, “Angle-independent measure of motion for image-based gating in 3D coronary angiography,” Med. Phys. 33, 13111320 (2006).
http://dx.doi.org/10.1118/1.2191133
122.
122.K. W. Leszczynski, S. Shalev, and N. S. Cosby, “The enhancement of radiotherapy verification images by an automated edge detection technique,” Med. Phys. 19, 611621 (1992).
http://dx.doi.org/10.1118/1.596807
123.
123.I. Crooks and B. G. Fallone, “A novel algorithm for the edge detection and edge enhancement of medical images,” Med. Phys. 20, 993998 (1993).
http://dx.doi.org/10.1118/1.596981
124.
124.Q. Li, S. Sone, and K. Doi, “Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans,” Med. Phys. 30, 20402051 (2003).
http://dx.doi.org/10.1118/1.1581411
125.
125.T. Ema, K. Doi, R. M. Nishikawa, Y. Jiang, and J. Papaioannou, “Image feature analysis and computer-aided diagnosis in mammography: Reduction of false-positive clustered microcalcifications using local edge-gradient analysis,” Med. Phys. 22, 161169 (1995).
http://dx.doi.org/10.1118/1.597465
126.
126.X.-W. Xu and K. Doi, “Image feature analysis for computer-aided diagnosis: Detection of right and left hemidiaphragm edges and delineation of lung field in chest radiographs,” Med. Phys. 23, 16131624 (1996).
http://dx.doi.org/10.1118/1.597738
127.
127.M. L. Giger, J. M. Boone, and H.-P. Chan, “History and status of CAD and quantitative image analysis,” Med. Phys. (in press).
128.
128.E. Chaney, G. Ibbott, and W. R. Hendee, “Methods for image segmentation should be standardized and calibrated,” Med. Phys. 32, 35073510 (2005).
http://dx.doi.org/10.1118/1.2131093
129.
129.J. Duryea, M. Magalnick, S. Alli, L. Yao, M. Wilson, and R. Goldbach-Mansky, “Semiautomated three-dimensional segmentation software to quantify carpal bone volume changes on wrist CT scans for arthritis assessment,” Med. Phys. 35, 23212330 (2008).
http://dx.doi.org/10.1118/1.2900111
130.
130.M. Hardisty, L. Gordon, P. Agarwal, T. Skrinskas, and C. Whyne, “Quantitative characterization of metastatic disease in the spine. Part I. Semiautomated segmentation using atlas-based deformable registration and the level set method,” Med. Phys. 34, 31273134 (2007).
http://dx.doi.org/10.1118/1.2746498
131.
131.F. Zhuge, G. D. Rubin, S. Sun, and S. Napel, “An abdominal aortic aneurysm segmentation method: Level set with region and statistical information,” Med. Phys. 33, 14401453 (2006).
http://dx.doi.org/10.1118/1.2193247
132.
132.E. Angelié, P. J. H. de Koning, M. G. Danilouchkine, H. C. van Assen, G. Koning, R. J. van der Geest, and J. H. C. Reiber, “Optimizing the automatic segmentation of the left ventricle in magnetic resonance images,” Med. Phys. 32, 369375 (2005).
http://dx.doi.org/10.1118/1.1842912
133.
133.F. Mao, J. Gill, D. Downey, and A. Fenster, “Segmentation of carotid artery in ultrasound images: Method development and evaluation technique,” Med. Phys. 27, 19611970 (2000).
http://dx.doi.org/10.1118/1.1287111
134.
134.J. D. Gill, H. M. Ladak, D. A. Steinman, and A. Fenster, “Accuracy and variability assessment of a semiautomatic technique for segmentation of the carotid arteries from three-dimensional ultrasound images,” Med. Phys. 27, 13331342 (2000).
http://dx.doi.org/10.1118/1.599014
135.
135.Y. Yuan, M. L. Giger, H. Li, K. Suzuki, and C. Sennett, “A dual-stage method for lesion segmentation on digital mammograms,” Med. Phys. 34, 41804193 (2007).
http://dx.doi.org/10.1118/1.2790837
136.
136.K. Horsch, M. L. Giger, L. A. Venta, and C. J. Vyborny, “Automatic segmentation of breast lesions on ultrasound,” Med. Phys. 28, 16521659 (2001).
http://dx.doi.org/10.1118/1.1386426
137.
137.W. Mullally, M. Betke, J. Wang, and J. P. Ko, “Segmentation of nodules on chest computed tomography for growth assessment,” Med. Phys. 31, 839848 (2004).
http://dx.doi.org/10.1118/1.1656593
138.
138.T. W. Way, L. M. Hadjiiski, B. Sahiner, H.-P. Chan, P. N. Cascade, E. A. Kazerooni, N. Bogot, and C. Zhou, “Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours,” Med. Phys. 33, 23232337 (2006).
http://dx.doi.org/10.1118/1.2207129
139.
139.J. Wang, R. Engelmann, and Q. Li, “Segmentation of pulmonary nodules in three-dimensional CT images by use of a spiral-scanning technique,” Med. Phys. 34, 46784689 (2007).
http://dx.doi.org/10.1118/1.2799885
140.
140.L. Drever, D. M. Robinson, A. McEwan, and W. Roa, “A local contrast based approach to threshold segmentation for PET target volume delineation,” Med. Phys. 33, 15831594 (2006).
http://dx.doi.org/10.1118/1.2198308
141.
141.L. Drever, W. Roa, A. McEwan, and D. Robinson, “Iterative threshold segmentation for PET target volume delineation,” Med. Phys. 34, 12531265 (2007).
http://dx.doi.org/10.1118/1.2712043
142.
142.D. W. G. Montgomery, A. Amira, and H. Zaidi, “Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model,” Med. Phys. 34, 722736 (2007).
http://dx.doi.org/10.1118/1.2432404
143.
143.M. Brambilla, R. Matheoud, C. Secco, G. Loi, M. Krengli, and E. Inglese, “Threshold segmentation for PET target volume delineation in radiation treatment planning: The role of target-to-background ratio and target size,” Med. Phys. 35, 12071213 (2008).
http://dx.doi.org/10.1118/1.2870215
144.
144.T. Cootes, C. Taylor, D. Cooper, and J. Graham, “Active shape models—their training and application,” Comput. Vis. Image Underst. 61, 3859 (1995).
http://dx.doi.org/10.1006/cviu.1995.1004
145.
145.T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance models,” IEEE Trans. Pattern Anal. Mach. Intell. 23, 681685 (2001).
http://dx.doi.org/10.1109/34.927467
146.
146.S. M. Pizer, P. T. Fletcher, S. Joshi, A. G. Gash, J. Stough, A. Thall, G. Tracton, and E. L. Chaney, “A method and software for segmentation of anatomic object ensembles by deformable -reps,” Med. Phys. 32, 13351345 (2005).
http://dx.doi.org/10.1118/1.1869872
147.
147.J. Duryea and J. M. Boone, “A fully automated algorithm for the segmentation of lung fields on digital chest radiographic images,” Med. Phys. 22, 183191 (1995).
http://dx.doi.org/10.1118/1.597539
148.
148.S. G. Armato III, M. L. Giger, K. Ashizawa, and H. MacMahon, “Automated lung segmentation in digital lateral chest radiographs,” Med. Phys. 25, 15071520 (1998).
http://dx.doi.org/10.1118/1.598331
149.
149.F. M. Carrascal, J. M. Carreira, M. Souto, P. G. Tahoces, L. Gómez, and J. J. Vidal, “Automatic calculation of total lung capacity from automatically traced lung boundaries in postero-anterior and lateral digital chest radiographs,” Med. Phys. 25, 11181131 (1998).
http://dx.doi.org/10.1118/1.598303
150.
150.B. van Ginneken and B. M. ter Haar Romeny, “Automatic segmentation of lung fields in chest radiographs,” Med. Phys. 27, 24452455 (2000).
http://dx.doi.org/10.1118/1.1312192
151.
151.M. F. McNitt-Gray, H. K. Huang, and J. W. Sayre, “Feature selection in the pattern classification problem of digital chest radiograph segmentation,” IEEE Trans. Med. Imaging 14, 537547 (1995).
http://dx.doi.org/10.1109/42.414619
152.
152.O. Tsujii, M. T. Freedman, and S. K. Mun, “Automated segmentation of anatomic regions in chest radiographs using an adaptive-sized hybrid neural network,” Med. Phys. 25, 9981007 (1998).
http://dx.doi.org/10.1118/1.598277
153.
153.N. F. Vittitoe, R. Vargas-Voracek, and C. E. Floyd, Jr., “Markov random field modeling in posteroanterior chest radiograph segmentation,” Med. Phys. 26, 16701677 (1999).
http://dx.doi.org/10.1118/1.598673
154.
154.B. van Ginneken, M. Stegmann, and M. Loog, “Segmentation of anatomical structures in chest radiographs using supervised methods: A comparative study on a public database,” Med. Image Anal. 10, 1940 (2006).
http://dx.doi.org/10.1016/j.media.2005.02.002
155.
155.D. Seghers, D. Loeckx, F. Maes, D. Vandermeulen, and P. Suetens, “Minimal shape and intensity cost path segmentation,” IEEE Trans. Med. Imaging 26, 11151129 (2007).
156.
156.Y. Shi, F. Qi, Z. Xue, L. Chen, K. Ito, H. Matsuo, and D. Shen, “Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics,” IEEE Trans. Med. Imaging 27, 481494 (2008).
157.
157.R. Pilgram, C. Walch, V. Kuhn, R. Schubert, and R. Staudinger, “Proximal femur segmentation in conventional pelvic x-ray,” Med. Phys. 35, 24632472 (2008).
http://dx.doi.org/10.1118/1.2919096
158.
158.G. Bekes, E. Máté, L. G. Nyúl, A. Kuba, and M. Fidrich, “Geometrical model-based segmentation of the organs of sight on CT images,” Med. Phys. 35, 735743 (2008).
http://dx.doi.org/10.1118/1.2826557
159.
159.F. Zhuge, S. Sun, G. Rubin, and S. Napel, “A directional distance aided method for medical image segmentation,” Med. Phys. 34, 49624976 (2007).
http://dx.doi.org/10.1118/1.2804556
160.
160.D. Ragan, G. Starkschall, T. McNutt, M. Kaus, T. Guerrero, and C. W. Stevens, “Semiautomated four-dimensional computed tomography segmentation using deformable models,” Med. Phys. 32, 22542261 (2005).
http://dx.doi.org/10.1118/1.1929207
161.
161.R. Shekhar, P. Lei, C. R. Castro-Pareja, W. L. Plishker, and W. D. D’Souza, “Automatic segmentation of phase-correlated CT scans through nonrigid image registration using geometrically regularized free-form deformation,” Med. Phys. 34, 30543066 (2007).
http://dx.doi.org/10.1118/1.2740467
162.
162.K. Wijesooriya, E. Weiss, V. Dill, L. Dong, R. Mohan, S. Joshi, and P. J. Keall, “Quantifying the accuracy of automated structure segmentation in 4D CT images using a deformable image registration algorithm,” Med. Phys. 35, 12511260 (2008).
http://dx.doi.org/10.1118/1.2839120
163.
163.Z. Wu, E. Rietzel, V. Boldea, D. Sarrut, and G. C. Sharp, “Evaluation of deformable registration of patient lung 4DCT with subanatomical region segmentations,” Med. Phys. 35, 775781 (2008).
http://dx.doi.org/10.1118/1.2828378
164.
164.H. MacMahon, “Improvement in detection of pulmonary nodules: Digital image processing and computer-aided diagnosis,” RadioGraphics 20, 11691177 (2000).
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/35/10/10.1118/1.2977537
Loading
/content/aapm/journal/medphys/35/10/10.1118/1.2977537
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/35/10/10.1118/1.2977537
2008-09-16
2015-09-03

Abstract

The language of radiology has gradually evolved from “the film” (the foundation of radiology since Wilhelm Roentgen’s 1895 discovery of x-rays) to “the image,” an electronic manifestation of a radiologic examination that exists within the bits and bytes of a computer. Rather than simply storing and displaying radiologic images in a static manner, the computational power of the computer may be used to enhance a radiologist’s ability to visually extract information from the image through image processing and image manipulation algorithms. Image processing tools provide a broad spectrum of opportunities for image enhancement. Gray-level manipulations such as histogram equalization, spatial alterations such as geometric distortion correction, preprocessing operations such as edge enhancement, and enhanced radiography techniques such as temporal subtraction provide powerful methods to improve the diagnostic quality of an image or to enhance structures of interest within an image. Furthermore, these image processing algorithms provide the building blocks of more advanced computer vision methods. The prominent role of medical physicists and the AAPM in the advancement of medical image processing methods, and in the establishment of the “image” as the fundamental entity in radiology and radiation oncology, has been captured in 35 volumes of .

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/35/10/1.2977537.html;jsessionid=7o09gjdr3dh1u.x-aip-live-03?itemId=/content/aapm/journal/medphys/35/10/10.1118/1.2977537&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Anniversary Paper: Image processing and manipulation through the pages of Medical Physics
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/35/10/10.1118/1.2977537
10.1118/1.2977537
SEARCH_EXPAND_ITEM