1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/35/10/10.1118/1.2981826
1.
1.J. F. Williamson, “Brachytherapy technology and physics practice since 1950: a half-century of progress,” Phys. Med. Biol. 51(13), R303R325 (2006).
http://dx.doi.org/10.1088/0031-9155/51/13/R18
2.
2.G. S. Ibbott et al., “Fifty years of AAPM involvement in radiation dosimetry,” Med. Phys. 35, 14181427 (2008).
http://dx.doi.org/10.1118/1.2868765
3.
3.J. F. Williamson and M. J. Rivard, “Quantitative Dosimetry Methods for Brachytherapy,” in Brachytherapy Physics, 2nd ed., edited by B. R. Thomadsen, M. J. Rivard, and W. M. Butler (Medical Physics, Madison, WI, 2005), pp. 233294.
4.
4.P. Grimm and J. E. Sylvester, “Advances in Brachytherapy,” Rev. Neurol. 6 (Supp. 4), 3748 (2004).
5.
5.L. W. Cuttino, D. Todor, and D. W. Arthur, “CT-guided multi-catheter insertion technique for partial breast brachytherapy: Reliable target coverage and dose homogeneity,” Brachytherapy 4(1), 1017 (2005).
6.
6.F. A. Vicini et al., “Accelerated treatment of breast cancer,” J. Clin. Oncol. 19(7), 19932001 (2001).
7.
7.M. Keisch et al., “Initial clinical experience with the MammoSite breast brachytherapy applicator in women with early-stage breast cancer treated with breast-conserving therapy,” Int. J. Radiat. Oncol., Biol., Phys. 55(2), 289293 (2003).
http://dx.doi.org/10.1016/S0360-3016(02)04277-3
8.
8.M. B. Leon et al., “Localized intracoronary gamma-radiation therapy to inhibit the recurrence of restenosis after stenting,” N. Engl. J. Med. 344(4), 250256 (2001).
http://dx.doi.org/10.1056/NEJM200101253440402
9.
9.R. Waksman, “Vascular brachytherapy: Applications in the era of drug-eluting stents,” Rev Cardiovasc Med 3 (Suppl. 5), S23S30 (2002).
10.
10.G. W. Stone et al., “Paclitaxel-eluting stents vs vascular brachytherapy for in-stent restenosis within bare-metal stents: The TAXUS V ISR randomized trial,” JAMA, J. Am. Med. Assoc. 295(11), 12531263 (2006).
11.
11.J. W. Moses et al., “Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery,” N. Engl. J. Med. 349, 13151323 (2003).
http://dx.doi.org/10.1056/NEJMoa035071
12.
12.Y. Yu et al., “Permanent prostate seed implant brachytherapy: Report of the American Association of Physicists in Medicine Task Group No. 64,” Med. Phys. 26(10), 20542076 (1999).
http://dx.doi.org/10.1118/1.598721
13.
13.R. K. Das et al., “3D CT-based high-dose-rate breast brachytherapy implants: Treatment planning and quality assurance,” Int. J. Radiat. Oncol., Biol., Phys. 59(4), 12241228 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.03.030
14.
14.C. Haie-Meder et al., “Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV,” Radiother. Oncol. 74(3), 235245 (2005).
http://dx.doi.org/10.1016/j.radonc.2004.12.015
15.
15.S. Nag et al., “Intraoperative planning and evaluation of permanent prostate brachytherapy: Report of the American Brachytherapy Society,” Int. J. Radiat. Oncol., Biol., Phys. 51(5), 14221430 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)01616-9
16.
16.E. K. Lee and M. Zaider, “Intraoperative dynamic dose optimization in permanent prostate implants,” Int. J. Radiat. Oncol., Biol., Phys. 56(3), 854861 (2003).
http://dx.doi.org/10.1016/S0360-3016(03)00291-8
17.
17.T. Martin et al., “3-D conformal HDR brachytherapy as monotherapy for localized prostate cancer. A pilot study,” Strahlenther. Onkol. 180(4), 225232 (2004).
http://dx.doi.org/10.1007/s00066-004-1215-4
18.
18.R. S. Malyapa et al., “Physiologic FDG-PET Three-Dimensional Brachytherapy Treatment Planning for Cervical Cancer,” Int. J. Radiat. Oncol., Biol., Phys. 54(4), 11401146 (2002).
http://dx.doi.org/10.1016/S0360-3016(02)03043-2
19.
19.M. J. Rivard et al., “Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations,” Med. Phys. 31(3), 633674 (2004).
http://dx.doi.org/10.1118/1.1646040
20.
20.O. Chibani and J. F. Williamson, “MCPI: a sub-minute Monte Carlo dose calculation engine for prostate implants,” Med. Phys. 32(12), 36883698 (2005).
http://dx.doi.org/10.1118/1.2126822
21.
21.A. K. Tedgren and A. Ahnesjo, “Accounting for high Z shields in brachytherapy using collapsed cone superposition for scatter dose calculation,” Med. Phys. 30(8), 22062217 (2003).
http://dx.doi.org/10.1118/1.1587411
22.
22.J. F. Williamson, “Integration of IMRT and Brachytherapy,” in IMRT Handbook, edited by T. Bortfeld, R. Schmidt-Ullrich, W. DeNeve et al. (Springer, Heidelberg, 2005), pp. 423438.
23.
23.M. Van Herk, “Errors and margins in radiotherapy,” Semin. Radiat. Oncol. 14(1), 5264 (2004).
24.
24.M. van Herk, “Different styles of image-guided radiotherapy,” Semin. Radiat. Oncol. 17(4), 258267 (2007).
25.
25.R. Timmerman et al., “Optimizing dose and fractionation for stereotactic body radiation therapy. Normal tissue and tumor control effects with large dose per fraction,” Front. Radiat. Ther. Oncol. 40, 352365 (2007).
26.
26.T. Pawlicki, C. Cotrutz, and C. King, “Prostate cancer therapy with stereotactic body radiation therapy,” Front. Radiat. Ther. Oncol. 40, 395406 (2007).
27.
27.L. Xiong et al., “Deformable structure registration of bladder through surface mapping,” Med. Phys. 33(6), 18481856 (2006).
http://dx.doi.org/10.1118/1.2198192
28.
28.G. E. Christensen et al., “Image-based dose planning of intracavitary brachytherapy: Registration of serial-imaging studies using deformable anatomic templates,” Int. J. Radiat. Oncol., Biol., Phys. 51(1), 227243 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)01667-4
29.
29.M. B. Sharpe and K. Brock, “Quality assurance of serial 3D image registration, fusion and segmentation,” Int. J. Radiat. Oncol., Biol., Phys., Suppl. 71 (1 Suppl.), S33S37 (2008).
30.
30.L. L. Meisberger, R. J. Keller, and R. J. Shalek, “The effective attenuation in water of the gamma rays of gold-198, iridium-192, cesium-137, radium-226, and cobalt-60,” Radiology 90(5), 953957 (1968).
31.
31.R. G. Dale, “Some theoretical derivations relating to the tissue dosimetry of brachytherapy nuclides, with particular reference to iodine-125,” Med. Phys. 10(2), 176183 (1983).
http://dx.doi.org/10.1118/1.595297
32.
32.R. Dale, “Revisions to radial dose function data for and ,” Med. Phys. 13(6), 963964 (1986).
http://dx.doi.org/10.1118/1.595828
33.
33.L. L. Anderson, R. Nath, and K. A. Weaver, Interstitial Collaborative Working Group (ICWG). Interstitial Brachytherapy: Physical, Biological, and Clinical Considerations (Raven, New York, 1990).
34.
34.R. Nath et al., “Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. American Association of Physicists in Medicine,” Med. Phys. 22(2), 209234 (1995).
http://dx.doi.org/10.1118/1.597458
35.
35.R. Nath et al., “Intravascular brachytherapy physics: report of the AAPM Radiation Therapy Committee Task Group no. 60. American Association of Physicists in Medicine,” Med. Phys. 26(2), 119152 (1999).
http://dx.doi.org/10.1118/1.598496
36.
36.S. T. Chiu-Tsao et al., “Dose calculation formalisms and consensus dosimetry parameters for intravascular brachytherapy dosimetry: Recommendations of the AAPM Therapy Physics Committee Task Group No. 149,” Med. Phys. 34(11), 41264157 (2007).
http://dx.doi.org/10.1118/1.2767184
37.
37.A. S. Meigooni et al., “Treatment planning consideration for prostate implants with the new linear RadioCoil 103Pd brachytherapy source,” J. Appl. Clin. Med. Phys. 6(3), 2336 (2005).
http://dx.doi.org/10.1120/jacmp.2025.25347
38.
38.L. Liu, S. C. Prasad, and D. A. Bassano, “Determination of Cs-137 dosimetry parameters according to the AAPM TG-43 formalism,” Med. Phys. 31, 477483 (2004).
http://dx.doi.org/10.1118/1.1644519
39.
39.R. Nath et al., Specification of Brachytherapy Source Strength: Report of AAPM Task Group No. 32 (American Institute of Physics, Melville, NY, 1987).
40.
40.K. E. Stump, L. A. DeWerd, J. A. Micka, and D. R. AndersonCalibration of new high dose rate 192Ir sources,” Med. Phys. 29(7), 14831488 (2002).
http://dx.doi.org/10.1118/1.1487860
41.
41.B. Rasmussen, S. Davis, J. Micka, and L. DeWerd, “The Air-Kerma Strength Standard for 192Ir HDR Sources at the University of Wisconsin ADCL,” Med. Phys. 35(6), 2969 (2008).
42.
42.R. Colle and B. E. Zimmerman, “A dual-compensated cryogenic microcalorimeter for radioactivity standardizations,” Appl. Radiat. Isot. 56(1-2), 223230 (2002).
43.
43.A. Sarfehnia, K. Stewart, and J. Seuntjens, “An absorbed dose to water standard for HDR 192Ir brachytherapy sources based on water calorimetry: Numerical and experimental proof-of-principle,” Med. Phys. 34(12), 49574961 (2007).
http://dx.doi.org/10.1118/1.2815941
44.
44.Z. Chen and R. Nath, “Dose rate constants determined by a photon spectrometry technique for 20 different models of low-energy brachytherapy sources,” Med. Phys. 35, 2864 (2008).
45.
45.A. S. Meigooni et al., “Instrumentation and dosimeter-size artifacts in quantitative thermoluminescence dosimetry of low-dose fields,” Med. Phys. 22(5), 555561 (1995).
http://dx.doi.org/10.1118/1.597555
46.
46.J. F. Williamson and A. S. Meigooni, “Quantitative Dosimetry Methods in Brachytherapy,” in Brachytherapy Physics, edited by J. F. Williamson, B. R. Thomadsen, and R. Nath (Medical Physics, Madison, WI, 1995).
47.
47.E. Y. Hirata et al., “Low dose fraction behavior of high sensitivity radiochromic film,” Med. Phys. 32(4), 10541060 (2005).
http://dx.doi.org/10.1118/1.1883565
48.
48.S. T. Chiu-Tsao et al., “Dose response characteristics of new models of GAFCHROMIC films: Dependence on densitometer light source and radiation energy,” Med. Phys. 31(9), 25012508 (2004).
http://dx.doi.org/10.1118/1.1767103
49.
49.S. T. Chiu-Tsao et al., “Verification of Ir-192 near source dosimetry using GAFCHROMIC film,” Med. Phys. 31(2), 201207 (2004).
http://dx.doi.org/10.1118/1.1637733
50.
50.S. T. Chiu-Tsao et al., “Energy dependence of response of new high sensitivity radiochromic films for megavoltage and kilovoltage radiation energies,” Med. Phys. 32(11), 33503354 (2005).
http://dx.doi.org/10.1118/1.2065467
51.
51.K. A. Gifford et al., “Comparison of Monte Carlo calculations around a Fletcher Suit Delclos ovoid with radiochromic film and normoxic polymer gel dosimetry,” Med. Phys. 32(7), 22882294 (2005).
http://dx.doi.org/10.1118/1.1944247
52.
52.P. Baras et al., “An evaluation of the TSE MR sequence for time efficient data acquisition in polymer gel dosimetry of applications involving high doses and steep dose gradients,” Med. Phys. 32(11), 33393345 (2005).
http://dx.doi.org/10.1118/1.2065367
53.
53.E. Pantelis et al., “Polymer gel dosimetry close to an 125I interstitial brachytherapy seed,” Phys. Med. Biol. 50(18), 43714384 (2005).
http://dx.doi.org/10.1088/0031-9155/50/18/009
54.
54.P. Papagiannis et al., “Polymer gel dosimetry for the TG-43 dosimetric characterization of a new 125I interstitial brachytherapy seed,” Phys. Med. Biol. 51(8), 21012111 (2006).
http://dx.doi.org/10.1088/0031-9155/51/8/010
55.
55.R. G. Selwyn, “Image-based dosimetry for selective internal radiation therapy (SIRT) using Y-90 microspheres,” University of Wisconsin, 2007.
56.
56.R. M. Sievert, “Die Intensitatsverteilung der primaren g-strahlung in der nahe medizinischer radiumpraparate,” Acta Radiol. (1921-1962) 1, 89128 (1921).
http://dx.doi.org/10.3109/00016922109133336
57.
57.M. A. Van Dilla and G. J. Hine, “Gamma-ray diffusion experiments in water,” Nucleonics 10, 5458 (1952).
58.
58.R. J. Shalek and M. Stovall, “The M. D. Anderson method for the computation of isodose curves around interstitial and intracavitary radiation sources. I. Dose from linear sources,” Am. J. Roentgenol., Radium Ther. Nucl. Med. 102(3), 662672 (1968).
59.
59.V. Krishnaswamy, “Calculation of the dose distribution about californium-252 needles in tissue,” Radiology 98(1), 155160 (1971).
60.
60.G. E. Moore, “Cramming more components onto integrated circuits,” Electronics 38, 114117 (1965).
61.
61.M. J. Rivard et al., “Clinical brachytherapy with neutron emitting 252Cf sources and adherence to AAPM TG-43 dosimetry protocol,” Med. Phys. 26(1), 8796 (1999).
http://dx.doi.org/10.1118/1.598472
62.
62.M. J. Berger, “MIRD Pamphlet 2: Energy deposition in water by photons from point isotropic sources,” J. Nucl. Med. 9 (Supp. 1), 1725 (1968).
63.
63.S. Webb and R. A. Fox, “The dose in water surrounding point isotropic gamma-ray emitters,” Br. J. Radiol. 52(618), 482484 (1979).
64.
64.J. F. Williamson, R. L. Morin, and F. M. Khan, “Monte Carlo evaluation of the Sievert integral for brachytherapy dosimetry,” Phys. Med. Biol. 28(9), 10211032 (1983).
http://dx.doi.org/10.1088/0031-9155/28/9/002
65.
65.G. S. Burns and D. E. Raeside, “Monte Carlo simulation of the dose distribution around 125I seeds,” Med. Phys. 14(3), 420424 (1987).
http://dx.doi.org/10.1118/1.596059
66.
66.J. F. Williamson and T. Seminoff, “Template-guided interstitial implants: Cs-137 reusable sources as a substitute for Ir-192,” Radiology 165(1), 265269 (1987).
67.
67.A. S. Meigooni, J. A. Meli, and R. Nath, “A comparison of solid phantoms with water for dosimetry of 125I brachytherapy sources,” Med. Phys. 15(5), 695701 (1988).
http://dx.doi.org/10.1118/1.596182
68.
68.J. F. Williamson, “Monte Carlo and analytic calculation of absorbed dose near intracavitary sources,” Int. J. Radiat. Oncol., Biol., Phys. 15(1), 227237 (1988).
69.
69.J. F. Williamson, “Monte Carlo evaluation of specific dose constants in water for seeds,” Med. Phys. 15(5), 686694 (1988).
http://dx.doi.org/10.1118/1.596181
70.
70.J. F. Williamson and F. J. Quintero, “Theoretical evaluation of dose distributions in water about models 6711 and 6702 seeds,” Med. Phys. 15(6), 891897 (1988).
http://dx.doi.org/10.1118/1.596172
71.
71.J. F. Williamson, R. L. Morin, and F. M. Khan, “Dose calibrator response to brachytherapy sources: A Monte Carlo and analytic evaluation,” Med. Phys. 10(2), 135140 (1983).
http://dx.doi.org/10.1118/1.595234
72.
72.W. H. Ellett, G. L. Brownell, and A. R. Reddy, “An assessment of Monte Carlo calculations to determine gamma ray dose from internal emitters,” Phys. Med. Biol. 13(2), 219230 (1968).
73.
73.J. F. Williamson et al., “Comparison of calculated and measured heterogeneity correction factors for , , and brachytherapy sources near localized heterogeneities,” Med. Phys. 20(1), 209222 (1993).
http://dx.doi.org/10.1118/1.597088
74.
74.G. W. Batten, “The M. D. Anderson method for the computation of isodose curves around interstitial and intracavitary radiation sources: II. Mathematical and computational aspect,” Am. J. Roentgenol. 102, 673676 (1968).
75.
75.M. L. Meurk and G. D. Adams, “Computer evaluation of dose rates around multiple radium sources,” Radiology 80, 115116 (1963).
76.
76.G. D. Adams and M. L. Meurk, “The use of a computer to calculate isodose information surrounding distributed gynaecological radium sources,” Phys. Med. Biol. 18, 533540 (1964).
77.
77.R. F. Nelson and M. L. Meurk, “Use of automatic computing machines for implant dosimetry,” Radiology 70, 90 (1958).
78.
78.C. S. Hope et al., “Computerization of dose distribution in cervix radium treatments,” Phys. Med. Biol. 9, 345390 (1964).
79.
79.R. J. Shalek and M. A. Stovall, “Calculation of isodose distributions in interstitial implantations by computer,” Radiology 76, 119120 (1961).
80.
80.M. A. Stovall and R. J. Shalek, “Study of explicit distributions of radiation in interstitial implantations. I. Method of calculation with automatic digital computer,” Radiology 78, 950954 (1962).
81.
81.J. F. Williamson, “Monte Carlo evaluation of kerma at a point for photon transport problems,” Med. Phys. 14(4), 567576 (1987).
http://dx.doi.org/10.1118/1.596069
82.
82.J. G. Wierzbicki et al., “Calculated dosimetric parameters of the IoGold source model 3631-A,” Med. Phys. 25(11), 21972199 (1998).
http://dx.doi.org/10.1118/1.598417
83.
83.S. E. Storm and H. I. Israel, “Photon cross-sections from for elements to ,” Nucl. Data, Sect. A 7, 566581 (1970).
84.
84.J. J. Demarco, R. E. Wallace, and K. Boedeker, “An analysis of MCNP cross-sections and tally methods for low-energy photon emitters,” Phys. Med. Biol. 47(8), 13211332 (2002).
http://dx.doi.org/10.1088/0031-9155/47/8/307
85.
85.D. E. Cullen, J. H. Hubbell, and L. Kissel, “EPDL97: The evaluated photon data library, ’97 Version, Vol. 6, Revision 5,” Report No. UCRL-50400, Lawrence Livermore National Laboratory, 1997.
86.
86.J. Perez-Calatayud, D. Granero, and F. Ballester, “Phantom size in brachytherapy source dosimetric studies,” Med. Phys. 31(7), 20752081 (2004).
http://dx.doi.org/10.1118/1.1759826
87.
87.G. Lymperopoulou et al., “A dosimetric comparison of and for HDR brachytherapy of the breast, accounting for the effect of finite patient dimensions and tissue inhomogeneities,” Med. Phys. 33(12), 45834589 (2006).
http://dx.doi.org/10.1118/1.2392408
88.
88.R. E. Taylor, G. Yegin, and D. W. Rogers, “Benchmarking brachydose: Voxel based EGSnrc Monte Carlo calculations of TG-43 dosimetry parameters,” Med. Phys. 34(2), 445457 (2007).
http://dx.doi.org/10.1118/1.2400843
89.
89.A. S. Meigooni, J. A. Meli, and R. Nath, “Interseed effects on dose for 125I brachytherapy implants,” Med. Phys. 19(2), 385390 (1992).
http://dx.doi.org/10.1118/1.596871
90.
90.O. Chibani, J. F. Williamson, and D. Todor, “Dosimetric effects of seed anisotropy and interseed attenuation for 103Pd and 125I prostate implants,” Med. Phys. 32(8), 25572566 (2005).
http://dx.doi.org/10.1118/1.1897466
91.
91.M. J. Rivard, “Monte Carlo calculations of AAPM Task Group Report No. 43 dosimetry parameters for the MED3631-A/M 125I source,” Med. Phys. 28, 629637 (2001).
http://dx.doi.org/10.1118/1.1355306
92.
92.S. M. Seltzer et al., “New national air-kerma-strength standards for and brachytherapy seeds,” J. Res. Natl. Inst. Stand. Technol. 108, 337358 (2003).
93.
93.J. F. Williamson, “Dosimetric characteristics of the DRAXIMAGE model LS-1 1-125 interstitial brachytherapy source design: A Monte Carlo investigation,” Med. Phys. 29(4), 509521 (2002).
http://dx.doi.org/10.1118/1.1452733
94.
94.D. A. Low et al., “Applicator-guided intensity-modulated radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 52(5), 14001406 (2002).
http://dx.doi.org/10.1016/S0360-3016(01)02798-5
95.
95.C. S. Melhus and M. J. Rivard, “Approaches to calculating AAPM TG-43 brachytherapy dosimetry parameters for , , , , and sources,” Med. Phys. 33(6), 17291737 (2006).
http://dx.doi.org/10.1118/1.2199987
96.
96.M. J. Rivard et al., “Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: an electronic brachytherapy source,” Med. Phys. 33(11), 40204032 (2006).
http://dx.doi.org/10.1118/1.2357021
97.
97.M. C. Smitt and R. Kirby, “Dose-volume characteristics of a electronic brachytherapy source for intracavitary accelerated partial breast irradiation,” Brachytherapy 6(3), 207211 (2007).
98.
98.D. C. Medich, M. A. Tries, and J. J. Munro, 2nd, “Monte Carlo characterization of an ytterbium-169 high dose rate brachytherapy source with analysis of statistical uncertainty,” Med. Phys. 33(1), 163172 (2006).
http://dx.doi.org/10.1118/1.2147767
99.
99.G. Yegin and D. W. O. RogersA fast Monte Carlo code for multi-seed brachytherapy treatments including interseed effects,” Med. Phys. 31, 1771 (2004).
100.
100.A. K. Carlsson and A. Ahnesjo, “The collapsed cone superposition algorithm applied to scatter dose calculations in brachytherapy,” Med. Phys. 27(10), 23202332 (2000).
http://dx.doi.org/10.1118/1.1290485
101.
101.K. R. Russell, A. K. Tedgren, and A. Ahnesjo, “Brachytherapy source characterization for improved dose calculations using primary and scatter dose separation,” Med. Phys. 32(9), 27392752 (2005).
http://dx.doi.org/10.1118/1.1949767
102.
102.C. Boudreau et al., “IMRT head and neck treatment planning with a commercially available Monte Carlo based planning system,” Phys. Med. Biol. 50(5), 879890 (2005).
http://dx.doi.org/10.1088/0031-9155/50/5/012
103.
103.K. A. Gifford et al., “A three-dimensional computed tomography-assisted Monte Carlo evaluation of ovoid shielding on the dose to the bladder and rectum in intracavitary radiotherapy for cervical cancer,” Int. J. Radiat. Oncol., Biol., Phys. 63(2), 615621 (2005).
104.
104.J. Markman et al., “On the validity of the superposition principle in dose calculations for intracavitary implants with shielded vaginal colpostats,” Med. Phys. 28(2), 147155 (2001).
http://dx.doi.org/10.1118/1.1339224
105.
105.A. S. Kirov et al., “Measurement and calculation of heterogeneity correction factors for an Ir-192 high dose-rate brachytherapy source behind tungsten alloy and steel shields,” Med. Phys. 23(6), 911919 (1996).
http://dx.doi.org/10.1118/1.597733
106.
106.H. Perera et al., “Dosimetric Characteristics, Air-kerma Strength Calibration and Verification of Monte Carlo Simulation for a New Ytterbium-169 Brachytherapy Source,” Int. J. Radiat. Oncol., Biol., Phys. 28, 953971 (1994).
107.
107.J. F. Williamson, “Dose calculations about shielded gynecological colpostats,” Int. J. Radiat. Oncol., Biol., Phys. 19, 167178 (1990).
108.
108.J. F. Williamson, “Semi-empirical Dose-Calculation Models in Brachytherapy,” in Brachytherapy Physics, 2nd ed., edited by B. R. Thomadsen, M. J. Rivard, and W. M. Butler (Medical Physics, Madison, WI, 2005), pp. 201232.
109.
109.P. Lindsay, J. Battista, and J. Van Dyk, “The effect of seed anisotropy on brachytherapy dose distributions using and ,” Med. Phys. 28(3), 336345 (2001).
http://dx.doi.org/10.1118/1.1350674
110.
110.D. Y. Huang et al., “Dose distribution of 125I sources in different tissues,” Med. Phys. 17(5), 826832 (1990).
http://dx.doi.org/10.1118/1.596476
111.
111.A. S. Meigooni and R. Nath, “Tissue inhomogeneity correction for brachytherapy sources in a heterogeneous phantom with cylindrical symmetry,” Med. Phys. 19(2), 401407 (1990).
http://dx.doi.org/10.1118/1.596894
112.
112.R. K. Das et al., “Validation of Monte Carlo dose calculations near 125I sources in the presence of bounded heterogeneities,” Int. J. Radiat. Oncol., Biol., Phys. 38(4), 843853 (1997).
http://dx.doi.org/10.1016/S0360-3016(97)00067-9
113.
113.R. L. Maughan et al., “The elemental composition of tumors: Kerma data for neutrons,” Med. Phys. 24(8), 12411244 (1997).
http://dx.doi.org/10.1118/1.598144
114.
114.G. Anagnostopoulos et al., “The effect of patient inhomogeneities in oesophageal HDR brachytherapy: A Monte Carlo and analytical dosimetry study,” Phys. Med. Biol. 49(12), 26752685 (2004).
http://dx.doi.org/10.1088/0031-9155/49/12/014
115.
115.S. J. Ye et al., “Dose errors due to inhomogeneities in balloon catheter brachytherapy for breast cancer,” Int. J. Radiat. Oncol., Biol., Phys. 60(2), 672677 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.05.039
116.
116.J. F. Williamson, R. Baker, and Z. Li, “A convolution algorithm for brachytherapy dose computations in heterogeneous geometries,” Med. Phys. 18, 12561265 (1991).
http://dx.doi.org/10.1118/1.596601
117.
117.G. M. Daskalov et al., “Dosimetric modeling of the microselectron high-dose rate source by the multigroup discrete ordinates method,” Med. Phys. 27(10), 23072319 (2000).
http://dx.doi.org/10.1118/1.1308279
118.
118.G. M. Daskalov et al., “Multigroup discrete ordinates modeling of 125I 6702 seed dose distributions using a broad energy-group cross section representation,” Med. Phys. 29(2), 113124 (2002).
http://dx.doi.org/10.1118/1.1429238
119.
119.K. A. Gifford et al., “Comparison of a finite-element multigroup discrete-ordinates code with Monte Carlo for radiotherapy calculations,” Phys. Med. Biol. 51(9), 22532265 (2006).
http://dx.doi.org/10.1088/0031-9155/51/9/010
120.
120.J. Williamson et al., “Accuracy and efficiency comparisons between three-dimensional multigroup discrete ordinates and voxel based Monte Carlo methods for dosimetric modeling of the Model 6702 seed,” Med. Phys. 28(6), 1229 (2001).
121.
121.J. J. DeMarco et al., “CT-based dosimetry calculations for prostate implants,” Int. J. Radiat. Oncol., Biol., Phys. 45(5), 13471353 (1999).
http://dx.doi.org/10.1016/S0360-3016(99)00343-0
122.
122.F. A. Lerma and J. F. Williamson, “Accurate localization of intracavitary brachytherapy applicators from 3D CT imaging studies,” Med. Phys. 29(3), 325333 (2002).
http://dx.doi.org/10.1118/1.1412243
123.
123.ICRP, ICRP Publication 89: Basic Anatomical and Physiological Data for Use in Radiological Protection: Reference Values, International Commission on Radiological Protection (Pergamon, Oxford, 2003).
124.
124.C. E. Cann, “Quantitative CT for Determination of Bone Mineral Density: A Review,” Radiology 166, 509522 (1988).
125.
125.R. A. Rutherford, B. R. Pullan, and I. Isherwood, “Measurement of effective atomic number and electron density using an EMI scanner,” Neuroradiology 11(1), 1521 (1976).
126.
126.S. Devic et al., “Dual Energy CT Tissue Quantitation for Monte-Carlo Based Treatment Planning for Brachytherapy,” presented at the Proceedings of the 2000 World Congress on Medical Physics and Biomedical Engineering, Chicago, IL, 2000.
127.
127.J. F. Williamson et al., “On Two-Parameter Representations of Photon Cross Sections: Application to Dual Energy CT imaging,” Med. Phys. 33, 41154129 (2006).
http://dx.doi.org/10.1118/1.2349688
128.
128.W. J. Meredith, Radium Dosage (E. & S. Livingstone, Edinburgh, 1967).
129.
129.B. Pierquin and G. Marinello, A Practical Manual of Brachytherapy (Medical Physics, Madison, WI, 1997).
130.
130.D. K. Kwan et al., “Single- and double-plane iridium-192 interstitial implants: implantation guidelines and dosimetry,” Med. Phys. 10(4), 456461 (1983).
http://dx.doi.org/10.1118/1.595308
131.
131.R. D. Zwicker, R. Schmidt-Ullrich, and B. Schiller, “Planning of Ir-192 seed implants for boost irradiation to the breast,” Int. J. Radiat. Oncol., Biol., Phys. 11(12), 21632170 (1985).
132.
132.R. Paterson, “A dosage system for gamma ray therapy. Part I: Clinical aspects,” Br. J. Radiol. 7, 592612 (1934).
133.
133.H. Parker, “A dosage system for gamma ray therapy. Part II: Physical aspects,” Br. J. Radiol. 7, 612632 (1934).
134.
134.H. Parker, “A dosage system for gamma ray therapy. Part II: Physical aspects,” Br. J. Radiol. 11, 313340 (1938).
135.
135.R. Paterson, “A dosage system for gamma ray therapy. Part I: Clinical aspects,” Br. J. Radiol. 11, 252266 (1938).
136.
136.D. Neblett, “Techniques and Applicators Available for Interstitial Implantation,” in Brachytherapy Physics, edited by J. F. Williamson, B. R. Thomadsen, and R. Nath (Medical Physics, Madison, WI, 1995).
137.
137.B. R. Thomadsen, S. Shahabi, and D. A. Buchler, “Differential loadings of brachytherapy templates,” Endocurietherapy/Hyperthermia Oncology 6, 197202 (1990).
138.
138.G. Ezzell, “Optimization in Brachytherapy,” in Brachytherapy Physics, 2nd ed., edited by B. R. Thomadsen, M. J. Rivard, and W. Butler (Medical Physics, Madison, WI, 2005).
139.
139.G. Ezzell and R. W. Luthmann, “Clinical Implementation of Dwell Time Optimization Techniques,” in Brachytherapy Physics, edited by J. F. Williamson, B. R. Thomadsen, and R. Nath (Medical Physics, Madison, WI, 1995).
140.
140.E. K. Lee et al., “Treatment planning for brachytherapy: an integer programming model, two computational approaches and experiments with permanent prostate implant planning,” Phys. Med. Biol. 44(1), 145165 (1999).
http://dx.doi.org/10.1088/0031-9155/44/1/012
141.
141.W. D. D’Souza et al., “An iterative sequential mixed-integer approach to automated prostate brachytherapy treatment plan optimization,” Phys. Med. Biol. 46(2), 297322 (2001).
http://dx.doi.org/10.1088/0031-9155/46/2/303
142.
142.J. Pouliot, E. Lessard, and I.-C. Hsu, “Advanced 3D Planning,” in Brachytherapy Physics, 2nd ed., edited by B. R. Thomadsen, M. J. Rivard, and W. Butler (Medical Physics, Madison, WI, 2005).
143.
143.S. Yoo et al., “A greedy heuristic using adjoint functions for the optimization of seed and needle configurations in prostate seed implant,” Phys. Med. Biol. 52(3), 815828 (2007).
http://dx.doi.org/10.1088/0031-9155/52/3/020
144.
144.B. R. Thomadsen, Achieving Quality in Brachytherapy (Taylor and Francis, London, 1999).
145.
145.M. A. Cleaves, “Radium: With a preliminary note on radium rays in the treatment of cancer,” Medical Record 64(16), 601606 (1903).
146.
146.G. H. Fletcher, “Uterine Cervix,” in Textbook of Radiotherapy, edited by G. H. Fletcher (Lea & Febiger, Philadelphia, 1966), pp. 434474.
147.
147.O. Pasteau and P. Degrais, “The radium treatment of cancer of the prostate,” Arch Roentgenol Ray 18, 396410 (1914).
148.
148.W. M. Butler and G. S. Merrick, “Introduction to prostate brachytherapy,” in Brachytherapy Physics, 2nd ed., edited by B. R. Thomadsen, M. J. Rivard, and W. Butler (Medical Physics, Madison, WI, 2005).
149.
149.W. M. Butler and G. S. Merrick, “Treatment planning in permanent prostate brachytherapy,” in Brachytherapy Physics, 2nd ed., edited by B. R. Thomadsen, M. J. Rivard, and W. M. Butler (Medical Physics, Madison, WI, 2005).
150.
150.E. P. Lief, “Treatment Delivery in Prostate LDR Brachytherapy,” in Brachytherapy Physics, 2nd ed., edited by B. R. Thomadsen, M. J. Rivard, and W. M. Butler (Medical Physics, Madison, WI, 2005), pp. 589601.
151.
151.W. S. Bice, “Post procedural evaluation for prostate implants,” in Brachytherapy Physics, 2nd ed., edited by B. R. Thomadsen, M. J. Rivard, and W. M. Butler (Medical Physics, Madison, WI, 2005), pp. 603640.
152.
152.E. P. Lief, “Modern advances in prostate brachytherapy,” in Brachytherapy Physics, 2nd ed., edited by B. R. Thomadsen, M. J. Rivard, and W. M. Butler (Medical Physics, Madison, WI, 2005), pp. 657672.
153.
153.Z. Ouhib, “HDR brachytherapy for prostate,” in Brachytherapy Physics, 2nd ed., edited by B. R. Thomadsen, M. J. Rivard, and W. M. Butler (Medical Physics, Madison, WI, 2005), pp. 641656.
154.
154.Z. Wang and N. E. Hertel, “Determination of dosimetric characteristics of OptiSeed(TM) a plastic brachytherapy source,” Appl. Radiat. Isot. 63(3), 311321 (2005).
http://dx.doi.org/10.1016/j.apradiso.2005.03.017
155.
155.S. Bernard and S. Vynckier, “Dosimetric study of a new polymer encapsulated palladium-103 seed,” Phys. Med. Biol. 50(7), 14931504 (2005).
http://dx.doi.org/10.1088/0031-9155/50/7/012
156.
156.A. S. Meigooni et al., “Dosimetric characteristics of the new RadioCoil wire line source for use in permanent brachytherapy implants,” Med. Phys. 31(11), 30953105 (2004).
http://dx.doi.org/10.1118/1.1809851
157.
157.A. S. Meigooni, S. B. Awan, and K. Dou, “Feasibility of calibrating elongated brachytherapy sources using a well-type ionization chamber,” Med. Phys. 33(11), 41844189 (2006).
http://dx.doi.org/10.1118/1.2358334
158.
158.A. B. Paxton et al., “Primary calibration of coiled brachytherapy sources,” Med. Phys. 35(1), 3238 (2008).
http://dx.doi.org/10.1118/1.2815628
159.
159.D. C. Medich and J. J. Munro, 3rd, “Monte Carlo calculated TG-43 dosimetry parameters for the SeedLink 125Iodine brachytherapy system,” Med. Phys. 30(9), 25032508 (2003).
http://dx.doi.org/10.1118/1.1601914
160.
160.L. Lin et al., “The use of directional interstitial sources to improve dosimetry in breast brachytherapy,” Med. Phys. 35(1), 240247 (2008).
http://dx.doi.org/10.1118/1.2815623
161.
161.L. A. DeWerd et al., “Calibration of multiple LDR brachytherapy sources,” Med. Phys. 33(10), 38043813 (2006).
http://dx.doi.org/10.1118/1.2348765
162.
162.W. M. Butler et al., “Third party brachytherapy seed calibrations and physicist responsibilities,” Med. Phys. 33(1), 247248 (2006).
http://dx.doi.org/10.1118/1.2148917
163.
163.M. J. Rivard et al., “Third-party brachytherapy source calibrations and physicist responsibilities: Report of the AAPM Low Energy Brachytherapy Source Calibration Working Group,” Med. Phys. 35(9), 38603865 (2008).
http://dx.doi.org/10.1118/1.2959723
164.
164.G. J. Kutcher et al., “Comprehensive QA for radiation oncology: report of AAPM Radiation Therapy Committee Task Group 40,” Med. Phys. 21(4), 581618 (1994).
http://dx.doi.org/10.1118/1.597316
165.
165.R. Nath et al., “Code of practice for brachytherapy physics: report of the AAPM Radiation Therapy Committee Task Group No. 56. American Association of Physicists in Medicine,” Med. Phys. 24(10), 15571598 (1997).
http://dx.doi.org/10.1118/1.597966
166.
166.N. J. Yue, B. G. Haffty, and J. Yue, “On the assay of brachytherapy sources,” Med. Phys. 34(6), 19751982 (2007).
http://dx.doi.org/10.1118/1.2734723
167.
167.S. J. Damore et al., “Needle displacement during HDR brachytherapy in the treatment of prostate cancer,” Int. J. Radiat. Oncol., Biol., Phys. 46(5), 12051211 (2000).
168.
168.A. T. Monroe et al., “High-dose-rate brachytherapy for large prostate volumes -Uncompromised dosimetric coverage and acceptable toxicity,” Brachytherapy 7(1), 711 (2008).
169.
169.G. Lymperopoulou et al., “A dosimetric comparison of versus for HDR prostate brachytherapy,” Med. Phys. 32, 38323842 (2005).
http://dx.doi.org/10.1118/1.2126821
170.
170.Z. Chen, P. Bongiorni, and R. Nath, “Dose rate constant of a cesium-131 interstitial brachytherapy seed measured by thermoluminescent dosimetry and gamma-ray spectrometry,” Med. Phys. 32(11), 32793285 (2005).
http://dx.doi.org/10.1118/1.2098127
171.
171.M. J. Rivard, “Brachytherapy dosimetry parameters calculated for a source,” Med. Phys. 34(2), 754762 (2007).
http://dx.doi.org/10.1118/1.2432162
172.
172.A. B. Barqawi and E. D. Crawford, “The current use and future trends of focal surgical therapy in the management of localized prostate cancer,” Cancer 13(5), 313317 (2007).
173.
173.W. C. Huang, C. L. Lee, and J. A. Eastham, “Locally ablative therapies for primary radiation failures: a review and critical assessment of the efficacy,” Curr Urol Rep 8(3), 217223 (2007).
174.
174.T. J. Wilt et al., “Systematic review: comparative effectiveness and harms of treatments for clinically localized prostate cancer,” Ann. Intern Med. 148(6), 435448 (2008).
175.
175.D. R. Reed et al., “Effect of post-implant edema on prostate brachytherapy treatment margins,” Int. J. Radiat. Oncol., Biol., Phys. 63(5), 14691473 (2005).
176.
176.G. S. Merrick et al., “Dosimetry of an extracapsular anulus following permanent prostate brachytherapy,” Am. J. Clin. Oncol. 30(3), 228233 (2007).
177.
177.M. J. Rivard, D. A. Evans, and I. Kay, “A technical evaluation of the Nucletron FIRST system: conformance of a remote afterloading brachytherapy seed implantation system to manufacturer specifications and AAPM Task Group report recommendations,” J. Appl. Clin. Med. Phys. 6(1), 2250 (2005).
http://dx.doi.org/10.1120/jacmp.2023.25320
178.
178.G. Fichtinger et al., “Robotic assistance for ultrasound guided prostate brachytherapy,” International Conference on Medical Image Computing and Computer Assisted Intervention, Brisbane, Australia, 2007, Vol 10 (Pt 1), pp. 119127.
179.
179.M. A. Meltsner, N. J. Ferrier, and B. R. Thomadsen, “Observations on rotating needle insertions using a brachytherapy robot,” Phys. Med. Biol. 52(19), 60276037 (2007).
http://dx.doi.org/10.1088/0031-9155/52/19/021
180.
180.N. Yue et al., “Prescription dose in permanent seed prostate implants,” Med. Phys. 32(8), 24962502 (2005).
http://dx.doi.org/10.1118/1.1951062
181.
181.O. Tanaka et al., “Effect of edema on postimplant dosimetry in prostate brachytherapy using CT/MRI fusion,” Int. J. Radiat. Oncol., Biol., Phys. 69(2), 614618 (2007).
182.
182.R. Nath et al., “AAPM recommendations on dose prescription and reporting methods for permanent interstitial brachytherapy for prostate cancer,” Med. Phys. (in press).
183.
183.T. A. King et al., “Long-term results of wide-field brachytherapy as the sole method of radiation therapy after segmental mastectomy for T(is,1,2) breast cancer,” Am. J. Surg. 180(4), 299304 (2000).
184.
184.S. Nag et al., “Brachytherapy in the treatment of breast cancer,” Oncology (Williston Park) 15(2), 195202 (2001).
185.
185.D. Wazer, D. Arthur, and F. Vincini, Accelerated Partial Breast Irradiation: Techniques and Clinical Implementation (Springer, Berlin, 2006).
186.
186.G. K. Edmundson et al., “Dosimetric characteristics of the MammoSite RTS, a new breast brachytherapy applicator,” Int. J. Radiat. Oncol., Biol., Phys. 52(4), 11321139 (2002).
http://dx.doi.org/10.1016/S0360-3016(01)02773-0
187.
187.R. T. Greenlee et al., “Cancer statistics, 2001,” Ca-Cancer J. Clin. 51(1), 1536 (2001).
188.
188.T. Okunaka et al., “Photodynamic therapy for multiple primary bronchogenic carcinoma,” Cancer 68(2), 253258 (1991).
189.
189.H. Marsiglia et al., “High-dose-rate brachytherapy as sole modality for early-stage endobronchial carcinoma,” Int. J. Radiat. Oncol., Biol., Phys. 47(3), 665672 (2000).
190.
190.M. Perol et al., “Curative irradiation of limited endobronchial carcinomas with high-dose rate brachytherapy. Results of a pilot study,” Chest 111(5), 14171423 (1997).
191.
191.T. Van Boxem et al., “Radiographically occult lung cancer treated with fiberoptic bronchoscopic electrocautery: a pilot study of a simple and inexpensive technique,” Eur. Respir. J. 11, 169172 (1998).
192.
192.N. Deygas et al., “Cryotherapy in early superficial bronchogenic carcinoma,” Chest 120(1), 2631 (2001).
193.
193.S. Cavaliere et al., “Nd-YAG laser therapy in lung cancer: an experience with 2,253 applications in 1,585 patients,” J. Bronchol. 1, 105111 (1994).
194.
194.C. Aygun et al., “Treatment of non-small cell lung cancer with external beam radiotherapy and high dose rate brachytherapy,” Int. J. Radiat. Oncol., Biol., Phys. 23(1), 127132 (1992).
195.
195.L. F. Chang et al., “High dose rate afterloading intraluminal brachytherapy in malignant airway obstruction of lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. 28(3), 589596 (1994).
196.
196.H. Yokomise et al., “Long-term remission after brachytherapy with external irradiation for locally advanced lung cancer,” Respiration 65(6), 489491 (1998).
197.
197.L. E. Gaspar, “Brachytherapy in lung cancer,” J. Surg. Oncol. 67(1), 6070 (1998).
198.
198.R. M. Huber et al., “Does additional brachytherapy improve the effect of external irradiation? A prospective, randomized study in central lung tumors,” Int. J. Radiat. Oncol., Biol., Phys. 38(3), 533540 (1997).
199.
199.D. Ornadel et al., “Defining the roles of high dose rate endobronchial brachytherapy and laser resection for recurrent bronchial malignancy,” Lung Cancer 16(2–3), 203213 (1997).
200.
200.B. L. Speiser and L. Spratling, “Remote afterloading brachytherapy for the local control of endobronchial carcinoma,” Int. J. Radiat. Oncol., Biol., Phys. 25(4), 579587 (1993).
201.
201.A. G. Villanueva, T. C. Lo, and J. F. Beamis, Jr., “Endobronchial brachytherapy,” Clin. Chest Med. 16(3), 445454 (1995).
202.
202.B. S. Hilaris, M. S. Porrazzo, and C. R. Moorthy, “Endobronchial radiation therapy,” in Flexible Bronchoscopy, edited by K. P. Wang and A. C. Metha (Blackwell Science, Cambridge, MA, 1995), pp. 275287.
203.
203.American College of Surgeons Oncology Group, “A randomized phase III study of sublobar resection versus sublobar resection plus brachytherapy in high risk patients with non-small cell lung cancer (NSCLC), or smaller,” Protocol Z4032 (2005).
204.
204.R. Waxman and P. Serruys, Handbook of Vascular Brachytherapy (Martin Dunitz, London, 1998).
205.
205.L. M. de la Fuente, J. Mrad, E. Penaloza, A. C. Yeung, R. Eury, M. Froix, P. J. Fitzgerald, and S. H. Stertzer, “Initial results of the Quanam drug eluting stent (QuaDS-QP-2) Registry (BARDDS) in human subjects,” Catheter Cardiovasc Interv 53, 480488 (2001).
206.
206.P. T. Finger et al., “Palladium-103 plaque radiation therapy for macular degeneration: Results of a study,” Br. J. Ophthamol. 87(12), 14971503 (2003).
207.
207.J. W. Lafave et al., “Y90-tagged microspheres in adjuvant tumor therapy,” Surgery (St. Louis) 53, 778783 (1963).
208.
208.G. A. Wiseman et al., “Phase I/II 90Y-Zevalin (yttrium-90 ibritumomab tiuxetan, IDEC-Y2B8) radioimmunotherapy dosimetry results in relapsed or refractory non-Hodgkin’s lymphoma,” Eur. J. Nucl. Med. 27(7), 766777 (2000).
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/35/10/10.1118/1.2981826
Loading
/content/aapm/journal/medphys/35/10/10.1118/1.2981826
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/35/10/10.1118/1.2981826
2008-09-24
2015-03-27

Abstract

Brachytherapy began at the turn of the 20th century, contemporary with external-beam radiotherapy. Physicists and physicians together developed the field. There has not been a period since the beginning that has not witnessed innovations and progress in brachytherapy. At the time of this article, the pace of change in the field has never been more rapid, particularly in image-guided brachytherapy and the development of unconventional sources and treatment techniques.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/35/10/1.2981826.html;jsessionid=33ksd4mijsdnn.x-aip-live-03?itemId=/content/aapm/journal/medphys/35/10/10.1118/1.2981826&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Anniversary Paper: Past and current issues, and trends in brachytherapy physics
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/35/10/10.1118/1.2981826
10.1118/1.2981826
SEARCH_EXPAND_ITEM