Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/35/11/10.1118/1.2986144
1.
1.N. Oestreicher, C. D. Lehman, D. J. Seger, D. S. Buist, and E. White, “The incremental contribution of clinical breast examination to invasive cancer detection in a mammography screening program,” AJR, Am. J. Roentgenol. 184(2), 428432 (2005).
2.
2.L. W. Bassett and R. H. Gold, “The evolution of mammography,” AJR, Am. J. Roentgenol. 150(3), 493498 (1988).
3.
3.R. Leborgne, “Diagnosis of tumors of the breast by simple roentgenography; calcifications in carcinomas,” Am. J. Roentgenol., Radium Ther. Nucl. Med. 65(1), 111 (1951).
4.
4.R. L. Egan, “Experience with mammography in a tumor institution. Evaluation of 1,000 studies,” Radiology 75, 894900 (1960).
5.
5.S. Shapiro, P. Strax, and L. Venet, “Periodic breast cancer screening in reducing mortality from breast cancer,” JAMA, J. Am. Med. Assoc. 215(11), 17771785 (1971).
6.
6.E. L. Thurfjell and J. A. Lindgren, “Breast cancer survival rates with mammographic screening: similar favorable survival rates for women younger and those older than ,” Radiology 201(2), 421426 (1996).
7.
7.R. E. Hendrick, R. A. Smith, J. H. Rutledge III, and C. R. Smart, “Benefit of screening mammography in women aged 40-49: a new meta-analysis of randomized controlled trials,” J Natl Cancer Inst Monogr 22, 8792 (1997).
8.
8.L. Tabar, B. Vitak, H. H. Chen, M. F. Yen, S. W. Duffy, and R. A. Smith, “Beyond randomized controlled trials: organized mammographic screening substantially reduces breast carcinoma mortality,” Cancer 91(9), 17241731 (2001).
9.
9.The Swedish Organized Service Screening Evaluation Group, “Reduction in breast cancer mortality from organized service screening with mammography: 1. Further confirmation with extended data,” Cancer Epidemiol. Biomarkers Prev. 15(1), 4551 (2006).
10.
10.The Swedish Organized Service Screening Evaluation Group, “Reduction in breast cancer mortality from the organised service screening with mammography: 2. Validation with alternative analytic methods,” Cancer Epidemiol. Biomarkers Prev. 15(1), 5256 (2006).
11.
11.J. L. Price and P. D. Bler, “The reduction of radiation and exposure time in mammography,” Br. J. Radiol. 43(508), 251255 (1970).
12.
12.E. P. Muntz and W. W. Logan, “Focal spot size and scatter suppression in magnification mammography,” AJR, Am. J. Roentgenol. 133(3), 453459 (1979).
13.
13.R. M. Nishikawa, G. E. Mawdsley, A. Fenster, and M. J. Yaffe, “Scanned-projection digital mammography,” Med. Phys. 14(5), 717727 (1987).
http://dx.doi.org/10.1118/1.596147
14.
14.A. Karellas, S. Vedantham, and S. Suryanarayanan, Digital Mammography Image Acquisition Technology, in RSNA Categorical Course in Diagnostic Radiology Physics: Advances in Breast Imaging—Physics, Technology and Clinical Applications, edited by A. Karellas and M. L. Giger (RSNA, Oak Brook, IL, 2004), p. 8799.
15.
15.FDA US, MQSA Facility Score Card, January 2, 2008, Center for Devices and Radiological Health, http://www.fda.gov/CDRH/MAMMOGRAPHY/scorecard-statistics.html [Accessed: January 28, 2008].
16.
16.K. A. Fetterly and B. A. Schueler, “Performance evaluation of a ‘dual-side read’ dedicated mammography computed radiography system,” Med. Phys. 30(7), 18431854 (2003).
http://dx.doi.org/10.1118/1.1584045
17.
17.R. S. Saunders, Jr., E. Samei, J. L. Jesneck, and J. Y. Lo, “Physical characterization of a prototype selenium-based full field digital mammography detector,” Med. Phys. 32(2), 588599 (2005).
http://dx.doi.org/10.1118/1.1855033
18.
18.S. Vedantham, A. Karellas, S. Suryanarayanan, D. Albagli, S. Han, E. J. Tkaczyk, C. E. Landberg, B. Opsahl-Ong, P. R. Granfors, I. Levis, C. J. D’Orsi, and R. E. Hendrick, “Full breast digital mammography with an amorphous silicon-based flat panel detector: Physical characteristics of a clinical prototype,” Med. Phys. 27(3), 558567 (2000).
http://dx.doi.org/10.1118/1.598895
19.
19.J. M. Lewin, C. J. D’Orsi, R. E. Hendrick, L. J. Moss, P. K. Isaacs, A. Karellas, and G. R. Cutter, “Clinical comparison of full-field digital mammography and screen-film mammography for detection of breast cancer,” AJR, Am. J. Roentgenol. 179(3), 671677 (2002).
20.
20.P. Skaane, S. Hofvind, and A. Skjennald, “Randomized trial of screen-film versus full-field digital mammography with soft-copy reading in population-based screening program: Follow-up and final results of Oslo, II study,” Radiology 244(3), 708717 (2007).
21.
21.E. D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J. K. Baum, S. Acharyya, E. F. Conant, L. L. Fajardo, L. Bassett, C. D’Orsi, R. Jong, and M. Rebner, “Diagnostic performance of digital versus film mammography for breast-cancer screening,” N. Engl. J. Med. 353(17), 17731783 (2005).
http://dx.doi.org/10.1056/NEJMoa052911
22.
22.E. D. Pisano, R. E. Hendrick, M. J. Yaffe, J. K. Baum, S. Acharyya, J. B. Cormack, L. A. Hanna, E. F. Conant, L. L. Fajardo, L. W. Bassett, C. J. D’Orsi, R. A. Jong, M. Rebner, A. N. Tosteson, and C. A. Gatsonis, “Diagnostic accuracy of digital versus film mammography: Exploratory analysis of selected population subgroups in DMIST,” Radiology 246(2), 376383 (2008).
23.
23.L. E. Antonuk, J. Boudry, W. Huang, D. L. McShan, E. J. Morton, J. Yorkston, M. J. Longo, and R. A. Street, “Demonstration of megavoltage and diagnostic x-ray imaging with hydrogenated amorphous silicon arrays,” Med. Phys. 19(6), 14551466 (1992).
http://dx.doi.org/10.1118/1.596802
24.
24.S. Suryanarayanan, A. Karellas, and S. Vedantham, “Physical characteristics of a full-field digital mammography system,” Nucl. Instrum. Methods Phys. Res. A 533(3), 560570 (2004).
http://dx.doi.org/10.1016/j.nima.2004.05.128
25.
25.J. A. Rowlands, D. M. Hunter, and N. Araj, “X-ray imaging using amorphous selenium: a photoinduced discharge readout method for digital mammography,” Med. Phys. 18(3), 421431 (1991).
http://dx.doi.org/10.1118/1.596689
26.
26.W. Zhao, J. Law, D. Waechter, Z. Huang, and J. A. Rowlands, “Digital radiology using active matrix readout of amorphous selenium: detectors with high voltage protection,” Med. Phys. 25(4), 539549 (1998).
http://dx.doi.org/10.1118/1.598229
27.
27.W. Zhao, W. G. Ji, A. Debrie, and J. A. Rowlands, “Imaging performance of amorphous selenium based flat-panel detectors for digital mammography: Characterization of a small area prototype detector,” Med. Phys. 30(2), 254263 (2003).
http://dx.doi.org/10.1118/1.1538233
28.
28.G. T. Barnes and I. A. Brezovich, “The design and performance of a scanning multiple slit assembly,” Med. Phys. 6(3), 197204 (1979).
http://dx.doi.org/10.1118/1.594562
29.
29.J. M. Boone, J. A. Seibert, C. M. Tang, and S. M. Lane, “Grid and slot scan scatter reduction in mammography: comparison by using Monte Carlo techniques,” Radiology 222(2), 519527 (2002).
http://dx.doi.org/10.1148/radiol.2222010491
30.
30.M. Aslund, B. Cederstrom, M. Lundqvist, and M. Danielsson, “Physical characterization of a scanning photon counting digital mammography system based on Si-strip detectors,” Med. Phys. 34(6), 19181925 (2007).
http://dx.doi.org/10.1118/1.2731032
31.
31.S. Arakawa, W. Itoh, K. Kohda, and T. Suzuki, “Improvement of image quality in CR mammography by detection of emissions from dual sides of an imaging plate,” Proc. SPIE 3977, 590600 (2000).
http://dx.doi.org/10.1117/12.384536
32.
32.J. A. Seibert, J. M. Boone, V. N. Cooper, and K. K. Lindfors, “Cassette-based digital mammography,” Technol. Cancer Res. Treat. 3(5), 413427 (2004).
33.
33.C. Lawinski, A. MacKenzie, H. Cole, P. Blake, I. Honey, and A. Pascoal, Computed Radiography (CR) Systems for Mammography. A comparative technical report. MHRA 04107 (Medicines and Health Products Regulatory Agency (MHRA), London, 2004).
34.
34.E. D. Pisano and M. J. Yaffe, “Digital mammography,” Radiology 234(2), 353362 (2005).
http://dx.doi.org/10.1148/radiol.2342030897
35.
35.M. J. Yaffe and J. G. Mainprize, “Detectors for digital mammography,” Technol. Cancer Res. Treat. 3(4), 309324 (2004).
36.
36.S. Suryanarayanan, A. Karellas, S. Vedantham, I. Sechopoulos, and C. J. D’Orsi, “Detection of simulated microcalcifications in a phantom with digital mammography: Effect of pixel size,” Radiology 244(1), 130137 (2007).
http://dx.doi.org/10.1148/radiol.2441060977
37.
37.R. S. Saunders, Jr., J. A. Baker, D. M. Delong, J. P. Johnson, and E. Samei, “Does image quality matter¿ Impact of resolution and noise on mammographic task performance,” Med. Phys. 34(10), 39713981 (2007).
http://dx.doi.org/10.1118/1.2776253
38.
38.Y. Ei-Mohri, L. E. Antonuk, Q. Zhao, Y. Wang, Y. Li, H. Du, and A. Sawant, “Performance of a high fill factor, indirect detection prototype flat-panel imager for mammography,” Med. Phys. 34(1), 315327 (2007).
http://dx.doi.org/10.1118/1.2403967
39.
39.Y. El-Mohri, L. E. Antonuk, Q. Zhao, M. Maolinbay, X. Rong, K. W. Jee, S. Nassif, and C. Cionca, “A quantitative investigation of additive noise reduction for active matrix flat-panel imagers using compensation lines,” Med. Phys. 27(8), 18551864 (2000).
http://dx.doi.org/10.1118/1.1287053
40.
40.V. V. Nagarkar, S. V. Tipnis, V. B. Gaysinskiy, S. R. Miller, A. Karellas, and S. Vedantham, “New design of a structured CsI(Tl) screen for digital mammography,” Proc. SPIE 5030, 541546 (2003).
http://dx.doi.org/10.1117/12.480249
41.
41.A. Sawant, L. E. Antonuk, Y. El-Mohri, Q. Zhao, Y. Li, Z. Su, Y. Wang, J. Yamamoto, H. Du, I. Cunningham, M. Klugerman, and K. Shah, “Segmented crystalline scintillators: an initial investigation of high quantum efficiency detectors for megavoltage x-ray imaging,” Med. Phys. 32(10), 30673083 (2005).
http://dx.doi.org/10.1118/1.2008407
42.
42.A. W. Rau, L. Bakueva, and J. A. Rowlands, “The x-ray time of flight method for investigation of ghosting in amorphous selenium-based flat panel medical x-ray imagers,” Med. Phys. 32(10), 31603177 (2005).
http://dx.doi.org/10.1118/1.2042248
43.
43.W. Zhao, G. DeCrescenzo, S. O. Kasap, and J. A. Rowlands, “Ghosting caused by bulk charge trapping in direct conversion flat-panel detectors using amorphous selenium,” Med. Phys. 32(2), 488500 (2005).
http://dx.doi.org/10.1118/1.1843353
44.
44.A. K. Bloomquist, M. J. Yaffe, G. E. Mawdsley, D. M. Hunter, and D. J. Beideck, “Lag and ghosting in a clinical flat-panel selenium digital mammography system,” Med. Phys. 33(8), 29983005 (2006).
http://dx.doi.org/10.1118/1.2218315
45.
45.D. C. Hunt, K. Tanioka, and J. A. Rowlands, “X-ray imaging using avalanche multiplication in amorphous selenium: investigation of intrinsic avalanche noise,” Med. Phys. 34(12), 46544663 (2007).
http://dx.doi.org/10.1118/1.2799494
46.
46.D. L. Lee, “Selenium detector with a grid for selenium charge gain,” Proc. SPIE 5745, 216222 (2005).
47.
47.J. G. Mainprize, N. L. Ford, S. Yin, E. E. Gordon, W. J. Hamilton, T. O. Tumer, and M. J. Yaffe, “A CdZnTe slot-scanned detector for digital mammography,” Med. Phys. 29(12), 27672781 (2002).
http://dx.doi.org/10.1118/1.1523932
48.
48.G. Zentai, L. D. Partain, R. Pavlyuchkova, C. H. Proano, M. M. Schieber, and J. Thomas, “Dark current, sensitivity, and image lag comparison of mercuric iodide and lead iodide x-ray imagers,” Proc. SPIE 5541, 171178 (2004).
49.
49.Z. Su, L. E. Antonuk, Y. El-Mohri, L. Hu, H. Du, A. Sawant, Y. Li, Y. Wang, J. Yamamoto, and Q. Zhao, “Systematic investigation of the signal properties of polycrystalline HgI2 detectors under mammographic, radiographic, fluoroscopic and radiotherapy irradiation conditions,” Phys. Med. Biol. 50(12), 29072928 (2005).
http://dx.doi.org/10.1088/0031-9155/50/12/012
50.
50.T. Sakellaris, G. Spyrou, G. Tzanakos, and G. Panayiotakis, “Energy, angular and spatial distributions of primary electrons inside photoconducting materials for digital mammography: Monte Carlo simulation studies,” Phys. Med. Biol. 52(21), 64396460 (2007).
http://dx.doi.org/10.1088/0031-9155/52/21/007
51.
51.P. J. R. Leblans, L. Struye, and P. Willems, “New needle-crystalline CR detector,” Proc. SPIE 4320, 5967 (2001).
http://dx.doi.org/10.1117/12.430885
52.
52.R. Schaetzing, R. Fasbender, and P. Kersten, “New high-speed scanning technique for computed radiography,” Proc. SPIE 4682, 511520 (2002).
http://dx.doi.org/10.1117/12.465595
53.
53.S. Rivetti, N. Lanconelli, M. Bertolini, G. Borasi, D. Acchiappati, and A. Burani, “Performance evaluation of a direct computed radiography system by means of physical characterization and contrast detail analysis,” Proc. SPIE 6510, 65104M (2007).
http://dx.doi.org/10.1117/12.710523
54.
54.C. Herrmann, J. Frankenberger, G. Reiser, and J. Lamotte, “Optimization of a CR system comprising line-scanning and needle image plate technology with respect to examinations of extremities,” Proc. SPIE 6510, 65101B (2007).
http://dx.doi.org/10.1117/12.708368
55.
55.P. M. Shikhaliev, T. Xu, H. Le, and S. Molloi, “Scanning-slit photon counting x-ray imaging system using a microchannel plate detector,” Med. Phys. 31(5), 10611071 (2004).
http://dx.doi.org/10.1118/1.1695651
56.
56.J. Giersch, “Medical quantum X-ray imaging with 2D detectors,” Nucl. Instrum. Methods Phys. Res. A 551, 125138 (2005).
57.
57.M. Bech, O. Bunk, C. David, P. Kraft, C. Bronnimann, E. F. Eikenberry, and F. Pfeiffer, “X-ray imaging with the PILATUS 100k detector,” Appl. Radiat. Isot. 66(4), 474478 (2008).
58.
58.J. Karg, D. Niederlohner, J. Giersch, and G. Anton, “Using the Medipix2 detector for energy weighting,” Nucl. Instrum. Methods Phys. Res. A 546, 306311 (2005).
59.
59.P. Bernhardt, T. Mertelmeier, and M. Hoheisel, “X-ray spectrum optimization of full-field digital mammography: simulation and phantom study,” Med. Phys. 33(11), 43374349 (2006).
http://dx.doi.org/10.1118/1.2351951
60.
60.P. Toroi, F. Zanca, K. C. Young, C. van Ongeval, G. Marchal, and H. Bosmans, “Experimental investigation on the choice of the tungsten/rhodium anode/filter combination for an amorphous selenium-based digital mammography system,” Eur. Radiol. 17(9), 23682375 (2007).
61.
61.D. R. Dance, A. K. Thilander, M. Sandborg, C. L. Skinner, I. A. Castellano, and G. A. Carlsson, “Influence of anode/filter material and tube potential on contrast, signal-to-noise ratio and average absorbed dose in mammography: A Monte Carlo study,” Br. J. Radiol. 73(874), 10561067 (2000).
62.
62.B. Heddson, K. Ronnow, M. Olsson, and D. Miller, “Digital versus screen-film mammography: A retrospective comparison in a population-based screening program,” Eur. J. Radiol. 64(3), 419425 (2007).
63.
63.G. Gennaro and C. di Maggio, “Dose comparison between screen/film and full-field digital mammography,” Eur. Radiol. 16(11), 25592566 (2006).
64.
64.K. P. Hermann, S. Obenauer, K. Marten, S. Kehbel, U. Fischer, and E. Grabbe, “Average glandular dose with amorphous silicon full-field digital mammography-Clinical results,” Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 174(6), 696699 (2002).
65.
65.S. Weigel, R. Girnus, J. Czwoydzinski, T. Decker, S. Spital, and W. Heindel, “Digital mammography screening: average glandular dose and first performance parameters,” Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 179(9), 892895 (2007).
66.
66.G. Gennaro, L. Katz, H. Souchay, C. Alberelli, and C. di Maggio, “Are phantoms useful for predicting the potential of dose reduction in full-field digital mammography?,” Phys. Med. Biol. 50(8), 18511870 (2005).
http://dx.doi.org/10.1088/0031-9155/50/8/015
67.
67.E. Samei, R. S. Saunders, Jr., J. A. Baker, and D. M. Delong, “Digital mammography;: effects of reduced radiation dose on diagnostic performance,” Radiology 243(2), 396404 (2007).
http://dx.doi.org/10.1148/radiol.2432061065
68.
68.M. Ruschin, P. Timberg, M. Bath, B. Hemdal, T. Svahn, R. S. Saunders, E. Samei, I. Andersson, S. Mattsson, D. P. Chakrabort, and A. Tingber, “Dose dependence of mass and microcalcification detection in digital mammography: Free response human observer studies,” Med. Phys. 34(2), 400407 (2007).
http://dx.doi.org/10.1118/1.2405324
69.
69.J. M. Boone, “Normalized glandular dose (DgN) coefficients for arbitrary X-ray spectra in mammography: computer-fit values of Monte Carlo derived data,” Med. Phys. 29(5), 869875 (2002).
http://dx.doi.org/10.1118/1.1472499
70.
70.D. R. Dance, “Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose,” Phys. Med. Biol. 35(9), 12111219 (1990).
http://dx.doi.org/10.1088/0031-9155/35/9/002
71.
71.G. R. Hammerstein, D. W. Miller, D. R. White, M. E. Masterson, H. Q. Woodard, and J. S. Laughlin, “Absorbed radiation dose in mammography,” Radiology 130(2), 485491 (1979).
72.
72.X. Wu, E. L. Gingold, G. T. Barnes, and D. M. Tucker, “Normalized average glandular dose in molybdenum target-rhodium filter and rhodium target-rhodium filter mammography,” Radiology 193(1), 8389 (1994).
73.
73.K. A. Hatziioannou, K. Psarrakos, E. Molyvda-Athanasopoulou, G. Kitis, E. Papanastassiou, I. Sofroniadis, and O. Kimoundri, “Dosimetric considerations in mammography,” Eur. Radiol. 10(7), 11931196 (2000).
74.
74.R. H. Behrman, M. J. Homer, W. T. Yang, and G. J. Whitman, “Mammography and fetal dose,” Radiology 243(2), 605 (2007);
http://dx.doi.org/10.1148/radiol.2432060791
74.R. H. Behrman, M. J. Homer, W. T. Yang, and G. J. Whitman, Radiologyauthor reply 243(2), 605606 (2007).
http://dx.doi.org/10.1148/radiol.2432060791
75.
75.I. Sechopoulos, S. Suryanarayanan, S. Vedantham, C. J. D’Orsi, and A. Karellas, “Radiation Dose to Organs and Tissues from Mammography: Monte Carlo and Phantom Study,” Radiology 246(2), 434443 (2008).
76.
76.L. W. Bassett, D. M. Farria, S. Bansal, M. A. Farquhar, P. A. Wilcox, and S. A. Feig, “Reasons for failure of a mammography unit at clinical image review in the American College of Radiology Mammography Accreditation Program,” Radiology 215(3), 698702 (2000).
77.
77.P. S. Rezentes, A. de Almeida, and G. T. Barnes, “Mammography grid performance,” Radiology 210(1), 227232 (1999).
78.
78.D. P. Chakraborty, “The effect of the antiscatter grid on full-field digital mammography phantom images,” J. Digit Imaging 12(1), 1222 (1999).
79.
79.D. P. Chakraborty, “Effect of the antiscatter grid and target/filters in full-field digital mammography,” Proc. SPIE 3659, 878885 (1999).
80.
80.W. J. Veldkamp, M. A. Thijssen, and N. Karssemeijer, “The value of scatter removal by a grid in full field digital mammography,” Med. Phys. 30(7), 17121718 (2003).
http://dx.doi.org/10.1118/1.1584044
81.
81.G. Gennaro, L. Katz, H. Souchay, R. Klausz, C. Alberelli, and C. di Maggio, “Grid removal and impact on population dose in full-field digital mammography,” Med. Phys. 34(2), 547555 (2007).
http://dx.doi.org/10.1118/1.2426402
82.
82.A. H. Baydush, and C. E. Floyd, Jr., “Improved image quality in digital mammography with image processing,” Med. Phys. 27(7), 15031508 (2000).
http://dx.doi.org/10.1118/1.599016
83.
83.K. Nykanen and S. Siltanen, “X-ray scattering in full-field digital mammography,” Med. Phys. 30(7), 18641873 (2003).
http://dx.doi.org/10.1118/1.1584160
84.
84.D. E. G. Trotter, J. E. Tkaczyk, J. Kaufhold, B. E. H. Claus, and J. W. Eberhard, “Thickness-dependent scatter correction algorithm for digital mammography,” Proc. SPIE 4682, 469478 (2002).
http://dx.doi.org/10.1117/12.465591
85.
85.C. M. Sehgal, S. P. Weinstein, P. H. Arger, and E. F. Conant, “A review of breast ultrasound,” Journal of mammary gland biology and neoplasia 11(2), 113123 (2006).
86.
86.S. P. Weinstein, E. F. Conant, and C. Sehgal, “Technical advances in breast ultrasound imaging,” Semin Ultrasound CT MR 27(4), 273283 (2006).
87.
87.F. Forsberg, C. W. Piccoli, D. A. Merton, J. J. Palazzo, and A. L. Hall, “Breast lesions: imaging with contrast-enhanced subharmonic US—initial experience,” Radiology 244(3), 718726 (2007).
88.
88.T. M. Kolb, J. Lichy, and J. H. Newhouse, “Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: An analysis of 27,825 patient evaluations,” Radiology 225(1), 165175 (2002).
http://dx.doi.org/10.1148/radiol.2251011667
89.
89.W. A. Berg, J. D. Blume, J. B. Cormack, E. B. Mendelson, D. Lehrer, M. Bohm-Velez, E. D. Pisano, R. A. Jong, W. P. Evans, M. J. Morton, M. C. Mahoney, L. H. Larsen, R. G. Barr, D. M. Farria, H. S. Marques, and K. Boparai, “Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer,” JAMA, J. Am. Med. Assoc. 299(18), 21512163 (2008).
90.
90.A. Kapur, P. L. Carson, J. Eberhard, M. M. Goodsitt, K. Thomenius, M. Lokhandwalla, D. Buckley, M. A. Roubidoux, M. A. Helvie, R. C. Booi, G. L. LeCarpentier, R. Q. Erkamp, H. P. Chan, J. B. Fowlkes, J. A. Thomas, and C. E. Landberg, “Combination of digital mammography with semi-automated 3D breast ultrasound,” Technol. Cancer Res. Treat. 3(4), 325334 (2004).
91.
91.J. W. Eberhard, P. Staudinger, J. Smolenski, J. Ding, A. Schmitz, J. McCoy, M. Rumsey, A. Al-Khalidy, W. Ross, C. E. Landberg, B. E. Claus, P. Carson, M. M. Goodsitt, H. P. Chan, M. Roubidoux, J. A. Thomas, and J. Osland, “High-speed large angle mammography tomosynthesis system,” Proc. SPIE 6142, 61420C (2006).
http://dx.doi.org/10.1117/12.653298
92.
92.R. C. Booi, J. F. Krucker, M. M. Goodsitt, M. O’Donnell, A. Kapur, G. L. LeCarpentier, M. A. Roubidoux, J. B. Fowlkes, and P. L. Carson, “Evaluating thin compression paddles for mammographically compatible ultrasound,” Ultrasound Med. Biol. 33(3), 472482 (2007).
93.
93.S. P. Sinha, M. M. Goodsitt, M. A. Roubidoux, R. C. Booi, G. L. LeCarpentier, C. R. Thomenius, K. E. Thomenius, C. L. Chalek, and P. L. Carson, “Automated ultrasound scanning on a dual-modality breast imaging system: coverage and motion issues and solutions,” J. Ultrasound Med. 26(5), 645655 (2007).
94.
94.N. Duric, P. Littrup, A. Babkin, D. Chambers, S. Azevedo, R. Pevzner, M. Tokarev, E. Holsapple, O. Rama, and R. Duncan, “Development of ultrasound tomography for breast imaging: technical assessment,” Med. Phys. 32(5), 13751386 (2005).
http://dx.doi.org/10.1118/1.1897463
95.
95.N. Duric, P. Littrup, L. Poulo, A. Babkin, R. Pevzner, E. Holsapple, O. Rama, and C. Glide, “Detection of breast cancer with ultrasound tomography: First result with the Computed Ultrasound Risk Evaluation (CURE) prototype,” Med. Phys. 34(2), 773785 (2007).
http://dx.doi.org/10.1118/1.2432161
96.
96.R. Damadian, “Tumor detection by nuclear magnetic resonance,” Science 171(976), 11511153 (1971).
http://dx.doi.org/10.1126/science.171.3976.1151
97.
97.P. C. Lauterbur, “Image formation by induced local interactions: Examples employing nuclear magnetic resonance,” Nature (London) 242, 190191 (1973).
http://dx.doi.org/10.1038/242190a0
98.
98.P. Mansfield, P. G. Morris, R. Ordidge, R. E. Coupland, H. M. Bishop, and R. W. Blamey, “Carcinoma of the breast imaged by nuclear magnetic resonance (NMR),” Br. J. Radiol. 52(615), 242243 (1979).
99.
99.R. J. Ross, J. S. Thompson, K. Kim, and R. A. Bailey, “Nuclear magnetic resonance imaging and evaluation of human breast tissue: preliminary clinical trials,” Radiology 143(1), 195205 (1982).
100.
100.S. J. El Yousef, R. H. Duchesneau, R. J. Alfidi, J. R. Haaga, P. J. Bryan, and J. P. LiPuma, “Magnetic resonance imaging of the breast. Work in progress,” Radiology 150(3), 761766 (1984).
101.
101.S. J. El Yousef, R. J. Alfidi, R. H. Duchesneau, C. A. Hubay, J. R. Haaga, P. J. Bryan, J. P. LiPuma, and A. E. Ament, “Initial experience with nuclear magnetic resonance (NMR) imaging of the human breast,” J. Comput. Assist. Tomogr. 7(2), 215218 (1983).
102.
102.C. B. Stelling, P. C. Wang, A. Lieber, S. S. Mattingly, W. O. Griffen, and D. E. Powell, “Prototype coil for magnetic resonance imaging of the female breast. Work in progress,” Radiology 154(2), 457462 (1985).
103.
103.R. C. Brasch, H. J. Weinmann, and G. E. Wesbey, “Contrast-enhanced NMR imaging: animal studies using gadolinium-DTPA complex,” AJR, Am. J. Roentgenol. 142(3), 625630 (1984).
104.
104.D. H. Carr, J. Brown, G. M. Bydder, R. E. Steiner, H. J. Weinmann, U. Speck, A. S. Hall, and I. R. Young, “Gadolinium-DTPA as a contrast agent in MRI: Initial clinical experience in 20 patients,” AJR, Am. J. Roentgenol. 143(2), 215224 (1984).
105.
105.D. H. Carr, J. Brown, G. M. Bydder, H. J. Weinmann, U. Speck, D. J. Thomas, and I. R. Young, “Intravenous chelated gadolinium as a contrast agent in NMR imaging of cerebral tumours,” Lancet 1(8375), 484486 (1984).
106.
106.M. Laniado, H. J. Weinmann, W. Schorner, R. Felix, and U. Speck, “First use of GdDTPA/dimeglumine in man,” Physiol. Chem. Phys. Med. NMR 16(2), 157165 (1984).
107.
107.H. J. Weinmann, R. C. Brasch, W. R. Press, and G. E. Wesbey, “Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent,” AJR, Am. J. Roentgenol. 142(3), 619624 (1984).
108.
108.H. J. Weinmann, M. Laniado, and W. Mutzel, “Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers,” Physiol. Chem. Phys. Med. NMR 16(2), 167172 (1984).
109.
109.S. H. Heywang, D. Hahn, H. Schmidt, I. Krischke, W. Eiermann, R. Bassermann, and J. Lissner, “MR imaging of the breast using gadolinium-DTPA,” J. Comput. Assist. Tomogr. 10(2), 199204 (1986).
110.
110.W. A. Kaiser and E. Zeitler, “MR imaging of the breast: fast imaging sequences with and without Gd-DTPA. Preliminary observations,” Radiology 170(3 Pt 1), 681686 (1989).
111.
111.J. Frahm, A. Haase, and D. Matthaei, “Rapid NMR imaging of dynamic processes using the FLASH technique,” Magn. Reson. Med. 3(2), 321327 (1986).
112.
112.J. Frahm, A. Haase, and D. Matthaei, “Rapid three-dimensional MR imaging using the FLASH technique,” J. Comput. Assist. Tomogr. 10(2), 363368 (1986).
113.
113.A. Haase, D. Matthaei, W. Hanicke, and J. Frahm, “Dynamic digital subtraction imaging using fast low-angle shot MR movie sequence,” Radiology 160(2), 537541 (1986).
114.
114.J. Folkman and M. Klagsbrun, “Angiogenic factors,” Science 235(4787), 442447 (1987).
http://dx.doi.org/10.1126/science.2432664
115.
115.F. L. Flanagan, J. G. Murray, P. Gilligan, J. P. Stack, and J. T. Ennis, “Digital subtraction in Gd-DTPA enhanced imaging of the breast,” Clin. Radiol. 50(12), 848854 (1995).
116.
116.C. D. Lehman, C. Gatsonis, C. K. Kuhl, R. E. Hendrick, E. D. Pisano, L. Hanna, S. Peacock, S. F. Smazal, D. D. Maki, T. B. Julian, E. R. DePeri, D. A. Bluemke, and M. D. Schnall, “MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer,” N. Engl. J. Med. 356(13), 12951303 (2007).
117.
117.L. Liberman, E. A. Morris, C. M. Kim, J. B. Kaplan, A. F. Abramson, J. H. Menell, K. J. Van Zee, and D. D. Dershaw, “MR imaging findings in the contralateral breast of women with recently diagnosed breast cancer,” AJR, Am. J. Roentgenol. 180(2), 333341 (2003).
118.
118.S. G. Lee, S. G. Orel, I. J. Woo, E. Cruz-Jove, M. E. Putt, L. J. Solin, B. J. Czerniecki, and M. D. Schnall, “MR imaging screening of the contralateral breast in patients with newly diagnosed breast cancer: Preliminary results,” Radiology 226(3), 773778 (2003).
119.
119.C. D. Lehman, J. D. Blume, D. Thickman, D. A. Bluemke, E. Pisano, C. Kuhl, T. B. Julian, N. Hylton, P. Weatherall, M. O’Loughlin, S. J. Schnitt, C. Gatsonics, and M. D. Schnall, “Added cancer yield of MRI in screening the contralateral breast of women recently diagnosed with breast cancer: Results from the International Breast Magnetic Resonance Consortium (IBMC) trial,” J. Surg. Oncol. 92(1), 915 (2005);
http://dx.doi.org/10.1002/jso.20350
119.C. D. Lehman, J. D. Blume, D. Thickman, D. A. Bluemke, E. Pisano, C. Kuhl, T. B. Julian, N. Hylton, P. Weatherall, M. O’Loughlin, S. J. Schnitt, C. Gatsonics, and M. D. Schnall, J. Surg. Oncol.discussion 92(1), 1516 (2005).
120.
120.E. Warner, D. B. Plewes, R. S. Shumak, G. C. Catzavelos, L. S. Di Prospero, M. J. Yaffe, V. Goel, E. Ramsay, P. L. Chart, D. E. Cole, G. A. Taylor, M. Cutrara, T. H. Samuels, J. P. Murphy, J. M. Murphy, and S. A. Narod, “Comparison of breast magnetic resonance imaging, mammography, and ultrasound for surveillance of women at high risk for hereditary breast cancer,” J. Clin. Oncol. 19(15), 35243531 (2001).
121.
121.M. J. Stoutjesdijk, C. Boetes, G. J. Jager, L. Beex, P. Bult, J. H. Hendriks, R. J. Laheij, L. Massuger, L. E. van Die, T. Wobbes, and J. O. Barentsz, “Magnetic resonance imaging and mammography in women with a hereditary risk of breast cancer,” J. Natl. Cancer Inst. 93(14), 10951102 (2001).
122.
122.C. K. Kuhl, S. Schrading, C. C. Leutner, N. Morakkabati-Spitz, E. Wardelmann, R. Fimmers, W. Kuhn, and H. H. Schild, “Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer,” J. Clin. Oncol. 23(33), 84698476 (2005).
123.
123.C. K. Kuhl, R. K. Schmutzler, C. C. Leutner, A. Kempe, E. Wardelmann, A. Hocke, M. Maringa, U. Pfeifer, D. Krebs, and H. H. Schild, “Breast MR imaging screening in 192 women proved or suspected to be carriers of a breast cancer susceptibility gene: Preliminary results,” Radiology 215(1), 267279 (2000).
124.
124.C. D. Lehman, J. D. Blume, P. Weatherall, D. Thickman, N. Hylton, E. Warner, E. Pisano, S. J. Schnitt, C. Gatsonis, M. Schnall, G. A. DeAngelis, P. Stomper, E. L. Rosen, M. O’Loughlin, S. Harms, and D. A. Bluemke, “Screening women at high risk for breast cancer with mammography and magnetic resonance imaging,” Cancer 103(9), 18981905 (2005).
125.
125.L. Liberman, E. A. Morris, C. L. Benton, A. F. Abramson, and D. D. Dershaw, “Probably benign lesions at breast magnetic resonance imaging: Preliminary experience in high-risk women,” Cancer 98(2), 377388 (2003).
126.
126.L. Liberman, E. A. Morris, D. D. Dershaw, A. F. Abramson, and L. K. Tan, “Ductal enhancement on MR imaging of the breast,” AJR, Am. J. Roentgenol. 181(2), 519525 (2003).
127.
127.M. M. Tilanus-Linthorst, I. M. Obdeijn, K. C. Bartels, H. J. de Koning, and M. Oudkerk, “First experiences in screening women at high risk for breast cancer with MR imaging,” Breast Cancer Res. Treat. 63(1), 5360 (2000).
128.
128.E. A. Morris, L. Liberman, D. J. Ballon, M. Robson, A. F. Abramson, A. Heerdt, and D. D. Dershaw, “MRI of occult breast carcinoma in a high-risk population,” AJR, Am. J. Roentgenol. 181(3), 619626 (2003).
129.
129.M. Kriege, C. T. Brekelmans, C. Boetes, P. E. Besnard, H. M. Zonderland, I. M. Obdeijn, R. A. Manoliu, T. Kok, H. Peterse, M. M. Tilanus-Linthorst, S. H. Muller, S. Meijer, J. C. Oosterwijk, L. V. Beex, R. A. Tollenaar, H. J. de Koning, E. J. Rutgers, and J. G. Klijn, “Efficacy of MRI and mammography for breast-cancer screening in women with a familiar or genetic predisposition,” N. Engl. J. Med. 351(5), 427437 (2004).
http://dx.doi.org/10.1056/NEJMoa031759
130.
130.M. O. Leach, C. R. Boggis, A. K. Dixon, D. F. Easton, R. A. Eeles, D. G. Evans, F. J. Gilbert, I. Griebsch, R. J. Hoff, P. Kessar, S. R. Lakhani, S. M. Moss, A. Nerurkar, A. R. Padhani, L. J. Pointon, D. Thompson, and R. M. Waren, “Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: A prospective multicentre cohort study (MARIBS),” Lancet 365(9473), 17691778 (2005).
http://dx.doi.org/10.1016/S0140-6736(05)66481-1
131.
131.F. Sardanelli, F. Podo, G. D’Agnolo, A. Verdecchia, M. Santaquilani, R. Musumeci, G. Trecate, S. Manoukian, S. Morassut, C. de Giacomi, M. Federico, L. Cortesi, S. Corcione, S. Cirillo, V. Marra, A. Cilotti, C. Di Maggio, A. Fausto, L. Preda, C. Zuiani, A. Contegiacomo, A. Orlacchio, M. Calabrese, L. Bonomo, E. Di Cesare, M. Tonutti, P. Panizza, and A. Del Maschio, “Multicenter comparative multimodality surveillance of women at genetic-familial high risk for breast cancer (HIBCRIT study): Interim results,” Radiology 242(3), 698715 (2007).
132.
132.D. Saslow, C. Boetes, W. Burke, S. Harms, M. O. Leach, C. D. Lehman, E. Morris, E. Pisano, M. Schnall, S. Sener, R. A. Smith, E. Warner, M. Yaffe, K. S. Andrews, and C. A. Russell, “American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography,” Ca-Cancer J. Clin. 57(2), 7589 (2007).
133.
133.N. H. Peters, I. H. Borel Rinkes, N. P. Zuithoff, W. P. Mali, K. G. Moons, and P. H. Peeters, “Meta-analysis of MR imaging in the diagnosis of breast lesions,” Radiology 246(1), 116124 (2008).
134.
134.ACR, ACR Breast Imaging Reporting and Data Systems (BI-RADS): Breast Imaging Atlas (American College of Radiology, Reston, VA, 2003).
135.
135.C. Kuhl, “The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice,” Radiology 244(2), 356378 (2007).
http://dx.doi.org/10.1148/radiol.2442051620
136.
136.C. K. Kuhl, “Current status of breast MR imaging. Part 2. Clinical applications,” Radiology 244(3), 672691 (2007).
137.
137.M. F. Bellin, J. A. Jakobsen, I. Tomassin, H. S. Thomsen, S. K. Morcos, H. S. Thomsen, S. K. Morcos, T. Almen, P. Aspelin, M. F. Bellin, W. Clauss, H. Flaten, N. Grenier, J. M. Idee, J. A. Jakobsen, G. P. Krestin, F. Stacul, and J. A. Webb, “Contrast medium extravasation injury: Guidelines for prevention and management,” Eur. Radiol. 12(11), 28072812 (2002).
138.
138.FDA, US Public Health Advisory: Update on Magnetic Resonance Imaging (MRI) Contrast Agents Containing Gadolinium and Nephrogenic Fibrosing Dermopathy, Date created: December 22, 2006; updated May 23, 2007. http://www.fda.gov/Cder/Drug/advisory/gadolinium_agents_20061222.htm [Accessed: April 29, 2008].
139.
139.I. S. Gribbestad, B. Sitter, S. Lundgren, J. Krane, and D. Axelson, “Metabolite composition in breast tumors examined by proton nuclear magnetic resonance spectroscopy,” Anticancer Res. 19(3A), 17371746 (1999).
140.
140.A. Barzilai, A. Horowitz, A. Geier, and H. Degani, “Phosphate metabolites and steroid hormone receptors of benign and malignant breast tumors. A nuclear magnetic resonance study,” Cancer 67(11), 29192925 (1991).
141.
141.J. S. Cohen, “Phospholipid and energy metabolism of cancer cells monitored by 31P magnetic resonance spectroscopy: possible clinical significance,” Mayo Clin. Proc. 63(12), 11991207 (1988).
142.
142.R. Kalra, K. E. Wade, L. Hands, P. Styles, R. Camplejohn, M. Greenall, G. E. Adams, A. L. Harris, and G. K. Radda, “Phosphomonoester is associated with proliferation in human breast cancer: a 31P MRS study,” Br. J. Cancer 67(5), 11451153 (1993).
143.
143.J. M. Park and J. H. Park, “Human in-vivo 31P MR spectroscopy of benign and malignant breast tumors,” Korean J Radiol 2(2), 8086 (2001).
144.
144.K. A. Kvistad, I. J. Bakken, I. S. Gribbestad, B. Ehrnholm, S. Lundgren, H. E. Fjosne, and O. Haraldseth, “Characterization of neoplastic and normal human breast tissues with in vivo (1)H MR spectroscopy,” J. Magn. Reson Imaging 10(2), 159164 (1999).
145.
145.J. R. Roebuck, K. M. Cecil, M. D. Schnall, and R. E. Lenkinski, “Human breast lesions: characterization with proton MR spectroscopy,” Radiology 209(1), 269275 (1998).
146.
146.I. S. Gribbestad, T. E. Singstad, G. Nilsen, H. E. Fjosne, T. Engan, O. A. Haugen, and P. A. Rinck, “In vivo 1H MRS of normal breast and breast tumors using a dedicated double breast coil,” J. Magn. Reson Imaging 8(6), 11911197 (1998).
147.
147.D. K. Yeung, H. S. Cheung, and G. M. Tse, “Human breast lesions: characterization with contrast-enhanced in vivo proton MR spectroscopy—initial results,” Radiology 220(1), 4046 (2001).
148.
148.R. Katz-Brull, P. T. Lavin, and R. E. Lenkinski, “Clinical utility of proton magnetic resonance spectroscopy in characterizing breast lesions,” J. Natl. Cancer Inst. 94(16), 11971203 (2002).
149.
149.H. M. Baek, H. J. Yu, J. H. Chen, O. Nalcioglu, and M. Y. Su, “Quantitative correlation between (1)H MRS and dynamic contrast-enhanced MRI of human breast cancer,” Magn. Reson. Imaging 26(4), 523531 (2008).
150.
150.M. Y. Su, H. M. Baik, H. J. Yu, J. H. Chen, R. S. Mehta, and O. Nalcioglu, “Comparison of choline and pharmacokinetic parameters in breast cancer measured by MR spectroscopic imaging and dynamic contrast enhanced MRI,” Technol. Cancer Res. Treat. 5(4), 401410 (2006).
151.
151.S. Meisamy, P. J. Bolan, E. H. Baker, M. G. Pollema, C. T. Le, F. Kelcz, M. C. Lechner, B. A. Luikens, R. A. Carlson, K. R. Brandt, K. K. Amrami, M. T. Nelson, L. I. Everson, T. H. Emory, T. M. Tuttle, D. Yee, and M. Garwood, “Adding in vivo quantitative 1H MR spectroscopy to improve diagnostic accuracy of breast MR imaging: Preliminary results of observer performance study at ,” Radiology 236(2), 465475 (2005).
152.
152.W. Huang, P. R. Fisher, K. Dulaimy, L. A. Tudorica, B. O’Hea, and T. M. Button, “Detection of breast malignancy: Diagnostic MR protocol for improved specificity,” Radiology 232(2), 585591 (2004).
153.
153.L. Bartella, S. B. Thakur, E. A. Morris, D. D. Dershaw, W. Huang, E. Chough, M. C. Cruz, and L. Liberman, “Enhancing nonmass lesions in the breast: Evaluation with proton (1H) MR spectroscopy,” Radiology 245(1), 8087 (2007).
http://dx.doi.org/10.1148/radiol.2451061639
154.
154.E. O. Aboagye and Z. M. Bhujwalla, “Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells,” Cancer Res. 59(1), 8084 (1999).
155.
155.M. Kumar, N. R. Jagannathan, V. Seenu, S. N. Dwivedi, P. K. Julka, and G. K. Rath, “Monitoring the therapeutic response of locally advanced breast cancer patients: Sequential in vivo proton MR spectroscopy study,” J. Magn. Reson Imaging 24(2), 325332 (2006).
156.
156.N. R. Jagannathan, M. Kumar, V. Seenu, O. Coshic, S. N. Dwivedi, P. K. Julka, A. Srivastava, and G. K. Rath, “Evaluation of total choline from in-vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer,” Br. J. Cancer 84(8), 10161022 (2001).
157.
157.H. M. Baek, J. H. Chen, O. Nalcioglu, and M. Y. Su, “Proton MR spectroscopy for monitoring early treatment response of breast cancer to neo-adjuvant chemotherapy,” Ann. Oncol. 19(5), 10221024 (2008).
158.
158.D. J. Manton, A. Chaturvedi, A. Hubbard, M. J. Lind, M. Lowry, A. Maraveyas, M. D. Pickles, D. J. Tozer, and L. W. Turnbull, “Neoadjuvant chemotherapy in breast cancer: Early response prediction with quantitative MR imaging and spectroscopy,” Br. J. Cancer 94(3), 427435 (2006).
159.
159.S. Meisamy, P. J. Bolan, E. H. Baker, R. L. Bliss, E. Gulbahce, L. I. Everson, M. T. Nelson, T. H. Emory, T. M. Tuttle, D. Yee, and M. Garwood, “Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo (1)H MR spectroscopy--a pilot study at 4 T,” Radiology 233(2), 424431 (2004).
160.
160.M. A. Jacobs, P. B. Barker, P. A. Bottomley, Z. Bhujwalla, and D. A. Bluemke, “Proton magnetic resonance spectroscopic imaging of human breast cancer: a preliminary study,” J. Magn. Reson Imaging 19(1), 6875 (2004).
161.
161.M. A. Jacobs, R. Ouwerkerk, A. C. Wolff, V. Stearns, P. A. Bottomley, P. B. Barker, P. Argani, N. Khouri, N. E. Davidson, Z. M. Bhujwalla, and D. A. Bluemke, “Multiparametric and multinuclear magnetic resonance imaging of human breast cancer: current applications,” Technol. Cancer Res. Treat. 3(6), 543550 (2004).
162.
162.J. Hu, Y. Yu, Z. Kou, W. Huang, Q. Jiang, Y. Xuan, T. Li, V. Sehgal, C. Blake, E. M. Haacke, and R. L. Soulen, “A high spatial resolution (1)H magnetic resonance spectroscopic imaging technique for breast cancer with a short echo time,” Magn. Reson. Imaging 26(3), 360366 (2008).
163.
163.I. S. Haddadin, A. McIntosh, S. Meisamy, C. Corum, A. L. Snyder, N. J. Powell, M. T. Nelson, D. Yee, M. Garwood, and P. J. Bolan, “Metabolite quantification and high-field MRS in breast cancer,” NMR Biomed. (to be published).
164.
164.G. M. Tse, D. K. Yeung, A. D. King, H. S. Cheung, and W. T. Yang, “In vivo proton magnetic resonance spectroscopy of breast lesions: An update,” Breast Cancer Res. Treat. 104(3), 249255 (2007).
165.
165.P. Stanwell and C. Mountford, “In vivo proton MR spectroscopy of the breast,” Radiographics 27(Suppl 1), S253S266 (2007).
166.
166.A. B. Wolbarst and W. R. Hendee, “Evolving and experimental technologies in medical imaging,” Radiology 238(1), 1639 (2006).
167.
167.M. Liberman, F. Sampalis, D. S. Mulder, and J. S. Sampalis, “Breast cancer diagnosis by scintimammography: a meta-analysis and review of the literature,” Breast Cancer Res. Treat. 80(1), 115126 (2003).
168.
168.I. Khalkhali, J. Villanueva-Meyer, S. L. Edell, J. L. Connolly, S. J. Schnitt, J. K. Baum, M. J. Houlihan, R. M. Jenkins, and S. B. Haber, “Diagnostic accuracy of 99mTc-sestamibi breast imaging: multicenter trial results,” J. Nucl. Med. 41(12), 19731979 (2000).
169.
169.C. B. Hruska, M. K. O’Connor, and D. A. Collins, “Comparison of small field of view gamma camera systems for scintimammography,” Nucl. Med. Commun. 26(5), 441445 (2005).
http://dx.doi.org/10.1097/00006231-200505000-00008
170.
170.B. Mueller, M. K. O’Conner, I. Blevis, D. J. Rhodes, R. Smith, D. A. Collins, and S. W. Phillips, “Evaluation of a small cadmium zinc telluride detector for scintimammography,” J. Nucl. Med. 44(4), 602609 (2003).
171.
171.M. K. O’Connor, S. W. Phillips, C. B. Hruska, D. J. Rhodes, and D. A. Collins, “Molecular breast imaging: advantages and limitations of a scintimammographic technique in patients with small breast tumors,” Breast J. 13(1), 311 (2007).
http://dx.doi.org/10.1111/j.1524-4741.2006.00356.x
172.
172.R. F. Brem, J. A. Rapelyea, G. Zisman, K. Mohtashemi, J. Raub, C. B. Teal, S. Majewski, and B. L. Welch, “Occult breast cancer: scintimammography with high-resolution breast-specific gamma camera in women at high risk for breast cancer,” Radiology 237(1), 274280 (2005).
173.
173.A. Spanu, P. Cottu, A. Manca, F. Chessa, D. Sanna, and G. Madeddu, “Scintimammography with dedicated breast camera in unifocal and multifocal/multicentric primary breast cancer detection: a comparative study with SPECT,” Int. J. Oncol. 31(2), 369377 (2007).
174.
174.M. P. Tornai, J. E. Bowsher, C. N. Archer, J. Peter, R. J. Jaszczak, L. R. MacDonald, B. E. Patt, and J. S. Iwanczyk, “A 3D gantry single photon emission tomograph with hemispherical coverage for dedicated breast imaging,” Nucl. Instrum. Methods Phys. Res. A 497(1), 157167 (2003).
http://dx.doi.org/10.1016/S0168-9002(02)01906-X
175.
175.C. N. Brzymialkiewicz, M. P. Tornai, R. L. McKinley, and J. E. Bowsher, “Evaluation of fully 3-D emission mammotomography with a compact cadmium zinc telluride detector,” IEEE Trans. Med. Imaging 24(7), 868877 (2005).
http://dx.doi.org/10.1109/TMI.2005.852501
176.
176.M. L. Bradshaw, R. L. McKinley, E. Samei, C. N. Archer, and M. P. Tornai, “Initial x-ray design considerations for application specific emission and transmission tomography (ASETT) of the breast,” Proceedings of the Annual Meeting of the Society of Nuclear Medicine, New Orleans, Louisiana, J. Nucl. Med. 44(5), 287P (2003).
177.
177.K. Yutani, E. Shiba, H. Kusuoka, M. Tatsumi, T. Uehara, T. Taguchi, S. I. Takai, and T. Nishimura, “Comparison of FDG-PET with MIBI-SPECT in the detection of breast cancer and axillary lymph node metastasis,” J. Comput. Assist. Tomogr. 24(2), 274280 (2000).
178.
178.M. F. Smith, S. Majewski, A. G. Weisenberger, D. A. Kieper, R. R. Raylman, and T. G. Turkington, “Analysis of factors affecting positron emission mammography (PEM) image formation.,” IEEE Trans. Nucl. Sci. 50, 5359 (2003).
http://dx.doi.org/10.1109/TNS.2002.807942
179.
179.R. R. Raylman, S. Majewski, M. F. Smith, J. Proffitt, W. Hammond, A. Srinivasan, J. McKisson, V. Popov, A. Weisenberger, C. O. Judy, B. Kross, S. Ramasubramanian, L. E. Banta, P. E. Kinahan, and K. Champley, “The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): Design, construction and phantom-based measurements,” Phys. Med. Biol. 53(3), 637653 (2008).
http://dx.doi.org/10.1088/0031-9155/53/3/009
180.
180.N. K. Doshi, Y. Shao, R. W. Silverman, and S. R. Cherry, “Design and evaluation of an LSO PET detector for breast cancer imaging,” Med. Phys. 27(7), 15351543 (2000).
http://dx.doi.org/10.1118/1.599019
181.
181.P. A. Dokhale, R. W. Silverman, K. S. Shah, R. Grazioso, R. Farrell, J. Glodo, M. A. McClish, G. Entine, V. H. Tran, and S. R. Cherry, “Performance measurements of a depth-encoding PET detector module based on position-sensitive avalanche photodiode read-out,” Phys. Med. Biol. 49(18), 42934304 (2004).
http://dx.doi.org/10.1088/0031-9155/49/18/007
182.
182.J. Zhang, P. D. Olcott, G. Chinn, A. M. Foudray, and C. S. Levine, “Study of the performance of a novel resolution dual-panel PET camera design dedicated to breast cancer imaging using Monte Carlo simulation,” Med. Phys. 34(2), 689702 (2007).
http://dx.doi.org/10.1118/1.2409480
183.
183.C. J. Thompson, K. Murthy, I. N. Weinberg, and F. Mako, “Feasibility study for positron emission mammography,” Med. Phys. 21(4), 529538 (1994).
http://dx.doi.org/10.1118/1.597169
184.
184.K. Murthy, M. Aznar, A. M. Bergman, C. J. Thompson, J. L. Robar, R. Lisbona, A. Loutfi, and J. H. Gagnon, “Positron emission mammographic instrument: initial results,” Radiology 215(1), 280285 (2000).
185.
185.K. Murthy, M. Aznar, C. J. Thompson, A. Loutfi, R. Lisbona, and J. H. Gagnon, “Results of preliminary clinical trials of the positron emission mammography system PEM-I: A dedicated breast imaging system producing glucose metabolic images using FDG,” J. Nucl. Med. 41(11), 18511858 (2000).
186.
186.R. R. Raylman, S. Majewski, R. Wojcik, A. G. Weisenberger, B. Kross, V. Popov, and H. A. Bishop, “The potential role of positron emission mammography for detection of breast cancer. A phantom study,” Med. Phys. 27(8), 19431954 (2000).
http://dx.doi.org/10.1118/1.1287439
187.
187.A. Motta, A. D. Guerra, N. Belcari, S. Moehrs, D. Panetta, S. Righi, and D. Valentini, “Fast 3D-EM reconstruction using Planograms for stationary planar positron emission mammography camera,” Comput. Med. Imaging Graph. 29(8), 587596 (2005).
188.
188.P. Amaral, B. Carriço, M. Ferreira, R. Moura, C. Ortigão, P. Rodrigues, J. C. Da Silva, A. Trindade, and J. Varela, “Performance and quality control of clear-PEM detector modules,” Nucl. Instrum. Methods Phys. Res. A 580(2), 11231126 (2007).
189.
189.E. L. Rosen, T. G. Turkington, M. S. Soo, J. A. Baker, and R. E. Coleman, “Detection of primary breast carcinoma with a dedicated, large-field-of-view FDG PET mammography device: Initial experience,” Radiology 234(2), 527534 (2005).
190.
190.W. A. Berg, I. N. Weinberg, D. Narayanan, M. E. Lobrano, E. Ross, L. Amodei, L. Tafra, L. P. Adler, J. Uddo, W. Stein, 3rd, and E. A. Levine, “High-resolution fluorodeoxyglucose positron emission tomography with compression (‘positron emission mammography’) is highly accurate in depicting primary breast cancer,” Breast J. 12(4), 309323 (2006).
http://dx.doi.org/10.1111/j.1075-122X.2006.00269.x
191.
191.F. Benard and E. Turcotte, “Imaging in breast cancer: Single-photon computed tomography and positron-emission tomography,” Breast Cancer Res 7(4), 153162 (2005).
192.
192.A. E. Burgess, F. L. Jacobson, and P. F. Judy, “Human observer detection experiments with mammograms and power-low noise,” Med. Phys. 28(4), 419437 (2001).
http://dx.doi.org/10.1118/1.1355308
193.
193.A. E. Burgess, X. Li, and C. K. Abbey, “Visual signal detectability with two noise components: Anomalous masking effects,” J. Opt. Soc. Am. A 14(9), 24202442 (1997).
194.
194.D. P. Chakraborty and H. L. Kundel, “Anomalous nodule visibility effects in mammography images,” Proc. SPIE 4324, 6876 (2001).
http://dx.doi.org/10.1117/12.431174
195.
195.H. P. Chan, M. M. Goodsitt, L. M. Hadjiiski, J. E. Bailey, K. Klein, K. L. Darner, and B. Sahiner, “Effects of magnification and zooming on depth perception in digital stereomammography: An observer performance study,” Phys. Med. Biol. 48(22), 37213734 (2003).
http://dx.doi.org/10.1088/0031-9155/48/22/007
196.
196.M. M. Goodsitt, H. P. Chan, K. L. Darner, and L. M. Hadjiiski, “The effects of stereo shift angle, geometric magnification and display zoom on depth measurements in digital stereomammography,” Med. Phys. 29(11), 27252734 (2002).
http://dx.doi.org/10.1118/1.1517615
197.
197.H. P. Chan, M. M. Goodsitt, M. A. Helvie, L. M. Hadjiiski, J. T. Lydick, M. A. Roubidoux, J. E. Bailey, A. Nees, C. E. Blane, and B. Sahiner, “ROC study of the effect of stereoscopic imaging on assessment of breast lesions,” Med. Phys. 32(4), 10011009 (2005).
http://dx.doi.org/10.1118/1.1870172
198.
198.D. J. Getty et al., “Improved accuracy of lesion detection in breast cancer screening with stereoscopic digital mammography [abstract],” in 93rd Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA). RSNA Scientific Assembly and Annual Meeting Program 2007, pp.381382.
199.
199.A. D. Maidment, P. R. Bakic, and M. Albert, “Effects of quantum noise and binocular summation on dose requirements in stereoradiography,” Med. Phys. 30(12), 30613071 (2003).
http://dx.doi.org/10.1118/1.1621869
200.
200.D. J. Getty and P. J. Green, “Clinical medical applications for stereoscopic 3D displays,” J. Soc. Inf. Disp. 15(6), 377384 (2007).
http://dx.doi.org/10.1889/1.2749323
201.
201.M. Bissonnette, M. Hansroul, E. Masson, S. Savard, S. Cadieux, P. Warmoes, D. Gravel, J. Agopyan, B. Polischuk, W. Haerer, T. Mertelmeier, J. Y. Lo, Y. Chen, JTr. Dobbins, J. L. Jesneck, and S. Singh, “Digital breast tomosynthesis using an amorphous selenium flat panel detector,” Proc. SPIE 5745, 529540 (2005).
http://dx.doi.org/10.1117/12.601622
202.
202.B. Ren, C. Ruth, J. Stein, A. Smith, I. Shaw, and Z. Jing, “Design and performance of the prototype full field breast tomosynthesis system with selenium based flat panel detector,” Proc. SPIE 5745, 550561 (2005).
http://dx.doi.org/10.1117/12.595833
203.
203.A. D. Maidment, C. Ullberg, K. Lindman, L. Adelöw, J. Egerström, M. Eklund, T. Francke, U. Jordung, T. Kristoffersson, L. Lindqvist, D. Marchal, H. Olla, E. Penton, J. Rantanen, S. Solokov, N. Weber, and H. Westerberg, “Evaluation of a photon-counting breast tomosynthesis imaging system,” Proc. SPIE 6142, 61420B (2006).
http://dx.doi.org/10.1117/12.654651
204.
204.L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. OpsahlOng, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Q. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital Tomosynthesis in breast imaging,” Radiology 205(2), 399406 (1997).
205.
205.S. Suryanarayanan, A. Karellas, S. Vedantham, S. P. Baker, S. J. Glick, C. J. D’Orsi, and R. L. Webber, “Evaluation of linear and nonlinear tomosynthetic reconstruction methods in digital mammography,” Acad. Radiol. 8(3), 219224 (2001).
206.
206.S. Suryanarayanan, A. Karellas, S. Vedantham, S. J. Glick, C. J. D’Orsi, S. P. Baker, and R. L. Webber, “Comparison of tomosynthesis methods used with digital mammography,” Acad. Radiol. 7(12), 10851097 (2000).
207.
207.W. Zhao, B. Zhao, P. R. Fisher, P. Warmoes, T. Mertelmeier, and J. Orman, “Optimization of detector operation and imaging geometry for breast tomosynthesis,” Proc. SPIE 6510, 65101M (2007).
http://dx.doi.org/10.1117/12.713718
208.
208.B. Zhao and W. Zhao, “Imaging performance of an amorphous selenium digital mammography detector in a breast tomosynthesis system,” Med. Phys. 35(5), 19781987 (2008).
http://dx.doi.org/10.1118/1.2903425
209.
209.A. Badano, I. S. Kyprianou, R. J. Jennings, and J. Sempau, “Anisotropic imaging performance in breast tomosynthesis,” Med. Phys. 34(11), 40764091 (2007).
http://dx.doi.org/10.1118/1.2779943
210.
210.J. G. Mainprize, A. K. Bloomquist, M. P. Kempston, and M. J. Yaffe, “Resolution at oblique incidence angles of a flat panel imager for breast tomosynthesis,” Med. Phys. 33(9), 31593164 (2006).
http://dx.doi.org/10.1118/1.2241994
211.
211.I. Sechopoulos, S. Suryanarayanan, S. Vedantham, C. D’Orsi, and A. Karellas, “Computation of the glandular radiation dose in digital tomosynthesis of the breast,” Med. Phys. 34(1), 221232 (2007).
http://dx.doi.org/10.1118/1.2400836
212.
212.J. Zhou, B. Zhao, and W. Zhao, “A computer simulation platform for the optimization of a breast tomosynthesis system,” Med. Phys. 34(3), 10981109 (2007).
http://dx.doi.org/10.1118/1.2558160
213.
213. S. J. Glick and X. Gong, “Optimal spectra for indirect detector breast tomosynthesis,” Proc. SPIE 6142, 61421L (2006).
http://dx.doi.org/10.1117/12.649547
214.
214.T. Wu, B. Liu, R. Moore, and D. B. Kopans, “Optimal acquisition techniques for digital breast tomosynthesis screening,” Proc. SPIE 6142, 61425E (2006).
http://dx.doi.org/10.1117/12.652289
215.
215.I. Sechopoulos, S. Suryanarayanan, S. Vedantham, C. J. D’Orsi, and A. Karellas, “Scatter radiation in digital tomosynthesis of the breast,” Med. Phys. 34(2), 564576 (2007).
http://dx.doi.org/10.1118/1.2428404
216.
216.F. Diekmann, H. Meyer, S. Diekmann, S. Puong, S. Muller, U. Bick, and P. Rogalla, “Thick slices from tomosynthesis data sets: Phantom study for the evaluation of different algorithms,” J. Digit Imaging (to be published).
217.
217.Y. Chen, J. Y. Lo, and J. T. Dobbins, 3rd, “Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: Relevance to morphology of structures such as microcalcifications,” Med. Phys. 34(10), 38853892 (2007).
http://dx.doi.org/10.1118/1.2776256
218.
218.Y. Zhang, H. P. Chan, B. Sahiner, J. Wei, M. M. Goodsitt, L. M. Hadjiiski, J. Ge, and C. Zhou, “A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis,” Med. Phys. 33(10), 37813795 (2006).
http://dx.doi.org/10.1118/1.2237543
219.
219.T. Wu, R. H. Moore, and D. B. Kopans, “Voting strategy for artifact reduction in digital breast tomosynthesis,” Med. Phys. 33(7), 24612471 (2006).
http://dx.doi.org/10.1118/1.2207127
220.
220.J. T. Rakowski and M. J. Dennis, “A comparison of reconstruction algorithms for C-arm mammography tomosynthesis,” Med. Phys. 33(8), 30183032 (2006).
http://dx.doi.org/10.1118/1.2219090
221.
221.T. Mertelmeier, J. Orman, W. Haerer, and M. K. Dudam, “Optimizing filtered backprojection reconstruction for a breast tomosynthesis prototype device,” Proc. SPIE 6142, 61420F (2006).
http://dx.doi.org/10.1117/12.651380
222.
222.Y. Chen, J. Y. Lo, J. A. Baker, and J. Tr. Dobbins, “Gaussian frequency blending algorithm with matrix inversion tomosynthesis (MITS) and filtered back projection (FBP) for better digital breast tomosynthesis reconstruction,” Proc. SPIE 6142, 61420E (2006).
http://dx.doi.org/10.1117/12.652264
223.
223.S. P. Poplack, T. D. Tosteson, C. A. Kogel, and H. M. Nagy, “Digital breast tomosynthesis: initial experience in 98 women with abnormal digital screening mammography,” AJR, Am. J. Roentgenol. 189(3), 616623 (2007).
http://dx.doi.org/10.2214/AJR.07.2231
224.
224.C. Badea, Z. Kolitsi, and N. Pallikarakis, “A wavelet-based method for removal of out-of-plane structures in digital tomosynthesis,” Comput. Med. Imaging Graph. 22(4), 309315 (1998).
http://dx.doi.org/10.1016/S0895-6111(98)00037-8
225.
225.Z. Kolitsi, G. Panayiotakis, and N. Pallikarakis, “A method for selective removal of out-of-plane structures in digital tomosynthesis,” Med. Phys. 20(1), 4750 (1993).
http://dx.doi.org/10.1118/1.597060
226.
226.J. Ge, H. P. Chan, Y. Zhang, B. Sahiner, J. Wei, and L. M. Hadjiiski, “Digital tomosynthesis mammography: An interplane artifact reduction method for microcalcifications on reconstructed slices based on 3D geometrical information,” in 92nd Scientific Assembly and Annual Meeting of the RSNA. RSNA Scientific Assembly and Annual Meeting Program 2006, p. 230.
227.
227.R. H. Moore et al., “Initial callback rates for conventional and digital breast tomosynthesis mammography comparison in the screening setting,” in 93rd Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA). Scientific Assembly and Annual Meeting Program 2007, p. 381.
228.
228.R. W. Redington and J. L. Henkes, Jr., “Mammography,” U.S. Patent, No. 3,973,126, General Electric Co., Shenectady, NY, August 3, 1976.
229.
229.C. H. Chang, J. L. Sibala, S. L. Fritz, S. J. Dwyer, 3rd, A. W. Templeton, F. Lin, and W. R. Jewell, “Computed tomography in detection and diagnosis of breast cancer,” Cancer 46(4 Suppl), 939946 (1980).
230.
230.C. H. Chang, D. E. Nesbit, D. R. Fisher, S. L. Fritz, S. J. Dwyer, 3rd, A. W. Templeton, F. Lin, and W. R. Jewell, “Computed tomographic mammography using a conventional body scanner,” AJR, Am. J. Roentgenol. 138(3), 553558 (1982).
231.
231.V. Raptopoulos, J. K. Baum, M. Hochman, A. Karellas, M. J. Houlihan, and C. J. D’Orsi, “High resolution CT mammography of surgical biopsy specimens,” J. Comput. Assist. Tomogr. 20(2), 179184 (1996).
http://dx.doi.org/10.1097/00004728-199603000-00003
232.
232.J. M. Boone, T. R. Nelson, K. K. Lindfors, and J. A. Seibert, “Dedicated breast CT: radiation dose and image quality evaluation,” Radiology 221(3), 657667 (2001).
http://dx.doi.org/10.1148/radiol.2213010334
233.
233.J. M. Boone, N. Shah, and T. R. Nelson, “A comprehensive analysis of DgN(CT) coefficients for pendant-geometry cone-beam breast computed tomography,” Med. Phys. 31(2), 226235 (2004).
http://dx.doi.org/10.1118/1.1636571
234.
234.S. C. Thacker and S. J. Glick, “Normalized glandular dose (DgN) coefficients for flat-panel CT breast imaging,” Phys. Med. Biol. 49(24), 54335444 (2004).
http://dx.doi.org/10.1088/0031-9155/49/24/003
235.
235.I. Sechopoulos, S. Vedantham, S. Suryanarayanan, C. J. D’Orsi, and A. Karellas, “Monte Carlo and phantom study of the radiation dose to the body from dedicated CT of the breast,” Radiology 247(1), 98105 (2008).
236.
236.A. L. Kwan, J. M. Boone, and N. Shah, “Evaluation of x-ray scatter properties in a dedicated cone-beam breast CT scanner,” Med. Phys. 32(9), 29672975 (2005).
http://dx.doi.org/10.1118/1.1954908
237.
237.B. Liu, S. J. Glick, and C. Groiselle, “Characterization of scatter radiation in cone beam CT mammography,” Proc. SPIE 5745, 818827 (2005).
238.
238.B. Chen and R. Ning, “Cone-beam volume CT breast imaging: feasibility study,” Med. Phys. 29(5), 755770 (2002).
http://dx.doi.org/10.1118/1.1461843
239.
239.J. M. Boone, Breast CT: Its prospect for breast cancer screening and diagnosis, in Advances in breast imaging: Physics, Technology and Clinical Applications, Categorical Course in Diagnostic Radiology Physics, edited by A. Karellas and M. L. Giger (Radiological Society of North America (RSNA), Oak Brook, IL, 2004).
240.
240.R. L. McKinley, C. N. Bryzmialkiewicz, P. Madhav, and M. P. Tornai, “Investigation of cone-beam acquisitions implemented using a novel dedicated mammotomography system with unique arbitrary orbit capability,” Proc. SPIE 5745, 609617 (2005).
http://dx.doi.org/10.1117/12.596089
241.
241.K. Zeng, H. Yu, L. L. Fajardo, and G. Wang, “Cone-beam mammo-computed tomography from data along two tilting arcs,” Med. Phys. 33(10), 36213633 (2006).
http://dx.doi.org/10.1118/1.2336510
242.
242.J. M. Boone, A. L. Kwan, J. A. Seibert, N. Shah, K. K. Lindfors, and T. R. Nelson, “Technique factors and their relationship to radiation dose in pendant geometry breast CT,” Med. Phys. 32(12), 37673776 (2005).
http://dx.doi.org/10.1118/1.2128126
243.
243.S. J. Glick, S. Thacker, X. Gong, and B. Liu, “Evaluating the impact of X-ray spectral shape on image quality in flat-panel CT breast imaging,” Med. Phys. 34(1), 524 (2007).
http://dx.doi.org/10.1118/1.2388574
244.
244.R. L. McKinley, M. P. Tornai, E. Samei, and M. L. Bradshaw, “Simulation study of a quasi-monochromatic beam for x-ray computed mammotomography,” Med. Phys. 31(4), 800813 (2004).
http://dx.doi.org/10.1118/1.1668371
245.
245.A. L. Kwan, J. M. Boone, K. Yang, and S. Y. Huang, “Evaluation of the spatial resolution characteristics of a cone-beam breast CT scanner,” Med. Phys. 34(1), 275281 (2007).
http://dx.doi.org/10.1118/1.2400830
246.
246.J. Zhong, R. Ning, and D. Conover, “Image denoising based on multiscale singularity detection for cone beam CT breast imaging,” IEEE Trans. Med. Imaging 23(6), 696703 (2004).
http://dx.doi.org/10.1109/TMI.2004.826944
247.
247.M. C. Altunbas, C. C. Shaw, L. Chen, C. Lai, X. Liu, T. Han, and T. Wang, “A post-reconstruction method to correct cupping artifacts in cone beam breast computed tomography,” Med. Phys. 34(7), 31093118 (2007).
http://dx.doi.org/10.1118/1.2748106
248.
248.W. T. Yang, S. Carkaci, L. Chen, C. J. Lai, A. Sahin, G. J. Whitman, and C. C. Shaw, “Dedicated cone-beam breast CT: Feasibility study with surgical mastectomy specimens,” AJR, Am. J. Roentgenol. 189(6), 13121315 (2007).
249.
249.J. M. Boone, A. L. Kwan, K. Yang, G. W. Burkett, K. K. Lindfors, and T. R. Nelson, “Computed tomography for imaging the breast,” Journal of mammary gland biology and neoplasia 11(2), 103111 (2006).
250.
250.K. K. Lindfors, J. M. Boone, T. R. Nelson, K. Yang, A. L. Kwan, and D. F. Miller, “Dedicated breast CT: Initial clinical experience,” Radiology 246(3), '725733 (2008).
http://dx.doi.org/10.1148/radiol.2463070410
251.
251.D. J. Crotty, P. Madhav, R. L. McKinley, and M. P. Tornai, “Investigating novel patient bed designs for use in a hybrid dual modality dedicated 3D breast imaging system,” Proc. SPIE 6510, 65101H (2007).
http://dx.doi.org/10.1117/12.713764
252.
252.R. Ning, D. Conover, Y. Yu, Y. Zhang, W. Cai, R. Betancourt-Benitez, and X. Lu, “A novel cone beam breast CT scanner: system evaluation,” Proc. SPIE 6510, 651030 (2007).
http://dx.doi.org/10.1117/12.710340
253.
253.X. Gong, A. A. Vedula, and S. J. Glick, “Microcalcification detection using cone-beam CT mammography with a flat-panel imager,” Phys. Med. Biol. 49(11), 21832195 (2004).
http://dx.doi.org/10.1088/0031-9155/49/11/005
254.
254.C. J. Lai, C. C. Shaw, L. Chen, M. C. Altunbas, X. Liu, T. Han, T. Wang, W. T. Yang, G. J. Whitman, and S. J. Tu, “Visibility of microcalcification in cone beam breast CT: Effects of X-ray tube voltage and radiation dose,” Med. Phys. 34(7), 29953004 (2007).
http://dx.doi.org/10.1118/1.2745921
255.
255.A. L. Kwan, K. Yang, K. K. Lindfors, T. R. Nelson, and J. M. Boone, “Visualization of micro-calcifications in a prototype breast CT [abstract],” Med. Phys. 33, 1990 (2006).
256.
256.P. M. Shikhaliev, “Tilted angle CZT detector for photon counting/energy weighting x-ray and CT imaging,” Phys. Med. Biol. 51(17), 42674287 (2006).
http://dx.doi.org/10.1088/0031-9155/51/17/010
257.
257.S. Rudin, A. T. Kuhls, G. K. Yadava, G. C. Josan, Y. Wu, R. N. Chityala, H. S. Rangwala, N. C. Ionita, K. R. Hoffmann, and D. R. Bednarek, “New light-amplifier-based detector designs for high spatial resolution and high sensitivity CBCT mammography and fluoroscopy,” Proc. SPIE 6142, 61421R (2006).
http://dx.doi.org/10.1117/12.649501
258.
258.S. J. Glick, “Breast CT,” Annu. Rev. Biomed. Eng. 9, 501526 (2007).
http://dx.doi.org/10.1146/annurev.bioeng.9.060906.151924
259.
259.X. Gong, S. J. Glick, B. Liu, A. A. Vedula, and S. Thacker, “A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging,” Med. Phys. 33(4), 10411052 (2006).
http://dx.doi.org/10.1118/1.2174127
260.
260.A. C. Watt, L. V. Ackerman, P. C. Shetty, M. Burke, M. Flynn, C. Grodsinsky, G. Fine, and S. Wilderman, “Differentiation between benign and malignant disease of the breast using digital subtraction angiography of the breast,” Cancer 56(6), 12871292 (1985).
261.
261.A. C. Watt, L. V. Ackerman, J. P. Windham, P. C. Shetty, M. W. Burke, M. J. Flynn, C. Grodinsky, G. Fine, and S. J. Wilderman, “Breast lesions: Differential diagnosis using digital subtraction angiography,” Radiology 159(1), 3942 (1986).
262.
262.J. M. Lewin, P. K. Isaacs, V. Vance, and F. J. Larke, “Dual-energy contrast-enhanced digital subtraction mammography: feasibility,” Radiology 229(1), 261268 (2003).
http://dx.doi.org/10.1148/radiol.2291021276
263.
263.R. A. Jong, M. J. Yaffe, M. Skarpathiotakis, R. S. Shumak, N. M. Danjoux, A. Gunesekara, and D. B. Plewes, “Contrast-enhanced digital mammography: Initial clinical experience,” Radiology 228(3), 842850 (2003).
http://dx.doi.org/10.1148/radiol.2283020961
264.
264.F. Diekmann, S. Diekmann, F. Jeunehomme, S. Muller, B. Hamm, and U. Bick, “Digital mammography using iodine-based contrast media: Initial clinical experience with dynamic contrast medium enhancement,” Invest. Radiol. 40(7), 397404 (2005).
http://dx.doi.org/10.1097/01.rli.0000167421.83203.4e
265.
265.F. Diekmann, S. Diekmann, M. Taupitz, U. Bick, K. J. Winzer, C. Huttner, S. Muller, F. Jeunehomme, and B. Hamm, “Use of iodine-based contrast media in digital full-field mammography—initial experience,” Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 175(3), 342345 (2003).
266.
266.C. Dromain, C. Balleyguier, S. Muller, M. C. Mathieu, F. Rochard, P. Opolon, and R. Sigal, “Evaluation of tumor angiogenesis of breast carcinoma using contrast-enhanced digital mammography,” AJR, Am. J. Roentgenol. 187(5), W528537 (2006).
267.
267.M. Skarpathiotakis, M. J. Yaffe, A. K. Bloomquist, D. Rico, S. Muller, A. Rick, and F. Jeunehomme, “Development of contrast digital mammography,” Med. Phys. 29(10), 24192426 (2002).
http://dx.doi.org/10.1118/1.1510128
268.
268.M. Saito, “Dual-energy approach to contrast-enhanced mammography using the balanced filter method: spectral optimization and preliminary phantom measurement,” Med. Phys. 34(11), 42364246 (2007).
http://dx.doi.org/10.1118/1.2790841
269.
269.P. Baldelli, A. Bravin, C. Di Maggio, G. Gennaro, A. Sarnelli, A. Taibi, and M. Gambaccini, “Evaluation of the minimum iodine concentration for contrast-enhanced subtraction mammography,” Phys. Med. Biol. 51(17), 42334251 (2006).
http://dx.doi.org/10.1088/0031-9155/51/17/008
270.
270.F. Diekmann, A. Sommer, R. Lawaczeck, S. Diekmann, H. Pietsch, U. Speck, B. Hamm, and U. Bick, “Contrast-to-noise ratios of different elements in digital mammography: evaluation of their potential as new contrast agents,” Invest. Radiol. 42(5), 319325 (2007).
http://dx.doi.org/10.1097/01.rli.0000258682.99546.9f
271.
271.R. Lawaczeck, F. Diekmann, S. Diekmann, B. Hamm, U. Bick, W. R. Press, H. Schirmer, K. Schon, and H. J. Weinmann, “New contrast media designed for x-ray energy subtraction imaging in digital mammography,” Invest. Radiol. 38(9), 602608 (2003).
272.
272.S. Suryanarayanan, I. Sechopoulos, S. Vedantham, and A. Karellas, “Feasibility of low dose x-ray contrast enhanced digital mammography with gold nanoparticles,” Med. Phys. 34(6), 2360 (2007).
273.
273.S. C. Chen, A. K. Carton, M. Albert, E. F. Conant, M. D. Schnall, and A. D. Maidment, “Initial clinical experience with contrast-enhanced digital breast tomosynthesis,” Acad. Radiol. 14(2), 229238 (2007).
274.
274.S. Puong, X. Bouchevreau, N. Duchateau, R. Iordache, and S. Muller, “Optimization of beam parameters and iodine quantification in dual-energy contrast enhanced digital breast tomosynthesis,” Proc. SPIE 6913, 69130Z (2008).
http://dx.doi.org/10.1117/12.770148
275.
275.R. Saunders, E. Samei, C. Badea, H. Yuan, K. Ghaghada, Y. Qi, L. W. Hedlund, and S. Mukundan, “Optimization of dual energy contrast enhanced breast tomosynthesis for improved mammographic lesion detection and diagnosis,” Proc. SPIE 6913, 69130Y (2008).
http://dx.doi.org/10.1117/12.772042
276.
276.C. T. Badea, E. Samei, K. Ghaghada, R. Saunders, H. Yuan, Y. Qi, L. W. Hedlund, and S. Mukundan, “Utility of a prototype liposomal contrast agent for x-ray imaging of breast cancer: A proof of concept using micro-CT in small animals,” Proc. SPIE 6913, 691303 (2008).
http://dx.doi.org/10.1117/12.772307
277.
277.G. H. Simon, Y. Fu, K. Berejnoi, L. S. Fournier, V. Lucidi, B. Yeh, D. M. Shames, and R. C. Brasch, “Initial computed tomography imaging experience using a new macromolecular iodinated contrast medium in experimental breast cancer,” Invest. Radiol. 40(9), 614620 (2005).
278.
278.S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature (London) 384, 335338 (1996).
http://dx.doi.org/10.1038/384335a0
279.
279.Y. Suzuki, N. Yagi, and K. Uesugi, “X-ray refraction-enhanced imaging and a method for phase retrieval for a simple object,” J. Synchrotron Radiat. 9(Pt 3), 160165 (2002).
http://dx.doi.org/10.1107/S090904950200554X
280.
280.D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmur, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 20152025 (1997).
http://dx.doi.org/10.1088/0031-9155/42/11/001
281.
281.M. O. Hasnah, Z. Zhong, O. Oltulu, E. Pisano, R. E. Johnston, D. Sayers, W. Thomlinson, and D. Chapman, “Diffraction enhanced imaging contrast mechanisms in breast cancer specimens,” Med. Phys. 29(10), 22162221 (2002).
http://dx.doi.org/10.1118/1.1507782
282.
282.E. D. Pisano, R. E. Johnston, D. Chapman, J. Geradts, M. V. Iacocca, C. A. Livasy, D. B. Washburn, D. E. Sayers, Z. Zhong, M. Z. Kiss, and W. C. Thomlinson, “Human breast cancer specimens: diffraction-enhanced imaging with histologic correlation—improved conspicuity of lesion detail compared with digital radiography,” Radiology 214(3), 895901 (2000).
283.
283.S. Fiedler, A. Bravin, J. Keyrilainen, M. Fernandez, P. Suortti, W. Thomlinson, M. Tenhunen, P. Virkkunen, and M. Karjalainen-Lindsberg, “Imaging lobular breast carcinoma: comparison of synchrotron radiation DEI-CT technique with clinical CT, mammography and histology,” Phys. Med. Biol. 49(2), 175188 (2004).
http://dx.doi.org/10.1088/0031-9155/49/2/001
284.
284.X. Wu and H. Liu, “A new theory of phase-contrast x-ray imaging based on Wigner distributions,” Med. Phys. 31(9), 23782384 (2004).
http://dx.doi.org/10.1118/1.1776672
285.
285.X. Wu and H. Liu, “Clinical implementation of x-ray phase-contrast imaging: theoretical foundations and design considerations,” Med. Phys. 30(8), 21692179 (2003).
http://dx.doi.org/10.1118/1.1593836
286.
286.X. Wu and H. Liu, “Clarification of aspects in in-line phase-sensitive x-ray imaging,” Med. Phys. 34(2), 737743 (2007).
http://dx.doi.org/10.1118/1.2431475
287.
287.F. Meng, A. Yan, G. Zhou, X. Wu, and H. Liu, “Development of a dual-detector X-ray imaging system for phase retrieval study,” Nucl. Instrum. Methods Phys. Res. B 254(2), 300306 (2007).
288.
288.A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44(11), 20822093 (2005).
http://dx.doi.org/10.1364/AO.44.002082
289.
289.S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat. 4(5), 513526 (2005).
290.
290.S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt. 44(10), 18581869 (2005).
http://dx.doi.org/10.1364/AO.44.001858
291.
291.N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9(3), 534540 (2004).
http://dx.doi.org/10.1117/1.1695560
292.
292.R. L. van Veen, H. J. Sterenborg, A. W. Marinelli, and M. Menke-Pluymers, “Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography,” J. Biomed. Opt. 9(6), 11291136 (2004).
http://dx.doi.org/10.1117/1.1803547
293.
293.C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12(5), 051903 (2007).
http://dx.doi.org/10.1117/1.2798595
294.
294.V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4(4), 347354 (2002).
http://dx.doi.org/10.1038/sj.neo.7900244
295.
295.B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. B. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: Implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10(5), 051504 (2005).
http://dx.doi.org/10.1117/1.2098627
296.
296.B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 88288833 (2006).
http://dx.doi.org/10.1073/pnas.0509636103
297.
297.C. M. Carpenter, B. W. Pogue, S. Jiang, H. Dehghani, X. Wang, K. D. Paulsen, W. A. Wells, J. Forero, C. Kogel, J. B. Weaver, S. P. Poplack, and P. A. Kaufman, “Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size,” Opt. Lett. 32(8), 933935 (2007).
http://dx.doi.org/10.1364/OL.32.000933
298.
298.V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 27672772 (2000).
http://dx.doi.org/10.1073/pnas.040570597
299.
299.X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. L. Fajardo, and H. Jiang, “Differentiation of cysts from solid tumors in the breast with diffuse optical tomography,” Acad. Radiol. 11(1), 5360 (2004).
300.
300.B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Research 7(6), 279285 (2005).
301.
301.N. Shah, J. Gibbs, D. Wolverton, A. Cerussi, N. Hylton, and B. J. Tromberg, “Combined diffuse optical spectroscopy and contrast-enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study,” J. Biomed. Opt. 10(5), 051503 (2005).
http://dx.doi.org/10.1117/1.2070147
302.
302.D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: A case study,” J. Biomed. Opt. 9(1), 230238 (2004).
http://dx.doi.org/10.1117/1.1629681
303.
303.G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52(12), 36193641 (2007).
http://dx.doi.org/10.1088/0031-9155/52/12/018
304.
304.C. Li, H. Zhao, B. Anderson, and H. Jiang, “Multispectral breast imaging using a ten-wavelength, source/detector channels silicon photodiode-based diffuse optical tomography system,” Med. Phys. 33(3), 627636 (2006).
http://dx.doi.org/10.1118/1.2171508
305.
305.Q. Zhu, N. Chen, and S. H. Kurtzman, “Imaging tumor angiogenesis by use of combined near-infrared diffusive light and ultrasound,” Opt. Lett. 28, 337339 (2003).
http://dx.doi.org/10.1364/OL.28.000337
306.
306.B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 24432451 (2008).
http://dx.doi.org/10.1118/1.2919078
307.
307.A. Stojadinovic, A. Nissan, C. D. Shriver, E. A. Mittendorf, M. D. Akin, V. Dickerson, S. Lenington, L. D. Platt, T. Stavros, S. R. Goldstein, O. Moskovitz, Z. Gallimidi, S. I. Fields, A. Yeshaya, T. M. Allweis, R. Manassa, T. Pappo, R. X. Ginor, R. B. D’Agostino, and D. Gur, “Electrical impedance scanning as a new breast cancer risk stratification tool for young women,” J. Surg. Oncol. 97(2), 112120 (2008).
308.
308.P. M. Meaney, M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, C. A. Kogel, S. P. Poplack, and K. D. Paulsen, “Initial clinical experience with microwave breast imaging in women with normal mammography,” Acad. Radiol. 14(2), 207218 (2007).
309.
309.M. Lazebnik, L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, “A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries,” Phys. Med. Biol. 52(10), 26372656 (2007).
http://dx.doi.org/10.1088/0031-9155/52/10/001
310.
310.M. Lazebnik, D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, “A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries,” Phys. Med. Biol. 52(20), 60936115 (2007).
http://dx.doi.org/10.1088/0031-9155/52/20/002
311.
311.S. P. Poplack, T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, C. A. Kogel, S. K. Soho, J. J. Gibson, and K. D. Paulsen, “Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms,” Radiology 243(2), 350359 (2007).
http://dx.doi.org/10.1148/radiol.2432060286
312.
312.R. J. Brenner and Y. Parisky, “Alternative breast-imaging approaches,” Radiol. Clin. North Am. 45(5), 907923 (2007).
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/35/11/10.1118/1.2986144
Loading
/content/aapm/journal/medphys/35/11/10.1118/1.2986144
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/35/11/10.1118/1.2986144
2008-10-14
2016-07-28

Abstract

Breast imaging is largely indicated for detection, diagnosis, and clinical management of breast cancer and for evaluation of the integrity of breast implants. In this work, a prospective view of techniques for breast cancerdetection and diagnosis is provided based on an assessment of current trends. The potential role of emerging techniques that are under various stages of research and development is also addressed. It appears that the primary imaging tool for breast cancer screening in the next decade will be high-resolution, high-contrast, anatomical x-ray imaging with or without depth information. MRI and ultrasonography will have an increasingly important adjunctive role for imaging high-risk patients and women with dense breasts. Pilot studies with dedicated breast CT have demonstrated high-resolution three-dimensional imaging capabilities, but several technological barriers must be overcome before clinical adoption. Radionuclide based imaging techniques and x-ray imaging with intravenously injected contrast offer substantial potential as a diagnostic tools and for evaluation of suspicious lesions. Developing optical and electromagnetic imaging techniques hold significant potential for physiologic information and they are likely to be of most value when integrated with or adjunctively used with techniques that provide anatomic information. Experimental studies with breast specimens suggest that phase-sensitive x-ray imaging techniques can provide edge enhancement and contrast improvement but more research is needed to evaluate their potential role in clinical breast imaging. From the technological perspective, in addition to improvements within each modality, there is likely to be a trend towards multi-modality systems that combine anatomic with physiologic information. We are also likely to transition from a standardized screening, where all women undergo the same imaging exam (mammography), to selection of a screening modality or modalities based an individual-risk or other classification.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/35/11/1.2986144.html;jsessionid=ocr32AdWqBlTPzZaMOLrD1SS.x-aip-live-02?itemId=/content/aapm/journal/medphys/35/11/10.1118/1.2986144&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/35/11/10.1118/1.2986144&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/35/11/10.1118/1.2986144'
Right1,Right2,Right3,