Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.International Congress of Radiology International X-Ray Unit Committee, “International x-ray unit of intensity,” Br. J. Radiol. 1, 363364 (1928).
2.C. G. Orton, “Uses of therapeutic x rays in medicine,” Health Phys. 69, 662676 (1995).
3.K. C. Tsien, “The application of automatic computing machines for radiotherapy treatment planning,” Br. J. Radiol. 28, 432439 (1955).
4.J. S. Laughlin, “Realistic treatment planning,” Can. Mineral. 22, 716729 (1968).
5.R. Mohan, J. G. Holt, J. S. Laughlin, and K. Krippner, “Incorporation of a minicomputer as an intelligent terminal in a treatment planning system,” Radiology 110, 183190 (1974).
6.R. E. Bentley, “Digital computers in radiation treatment planning,” Br. J. Radiol. 37, 748755 (1964).
7.R. E. Bentley and J. Milan, “An interactive digital computer system for radiotherapy treatment planning,” Br. J. Radiol. 44, 826833 (1971).
8.J. R. Cunningham and J. Milan, “Radiation treatment planning using a display-oriented small computer” in Computers in Biomedical Research, edited by Stacey/Waxman (Academic, New York, 1969), Vol. 3, pp. 159179.
9.W. F. Holmes, “External beam treatment planning with the programmed console,” Radiology 94, 391400 (1970).
10.J. R. Cunningham, P. N. Shrivastava, and J. M. Wilkinson, “Program IRREG-calculation of dose from irregularly shaped radiation beams,” Comput. Programs Biomed. 2, 192199 (1972).
11.E. W. Webster and K. C. Tsien, Atlas of Radiation Dose Distribution, Volume I: Single-Field Isodose Charts (IAEA, Vienna, 1965).
12.M. Cohen and S. M. Martin, Atlas of Radiation Dose Distribution, Volume II: Multiple-Field Isodose Charts (IAEA, Vienna, 1966).
13.K. C. Tsien, J. R. Cunningham, D. J. Wright, D. E. A. Jones, and P. M. Pfalzner, Atlas of Radiation Dose Distribution, Volume III: Moving Field Isodose Charts (IAEA, Vienna, 1967).
14.M. Stovall, L. H. Lanzl, and W. S. Moos, Atlas of Radiation Dose Distributions. Volume IV. Brachytherapy Isodose Charts Sealed Radium Sources (IAEA, Vienna, 1972).
15.T. D. Sterling, H. Perry, and L. Katz, “Automation of radiation treatment planning V. Calculation and visualization of the total treatment volume,” Br. J. Radiol. 38, 826833 (1965).
16.J. van de Geijn, “The computation of two and three dimensional dose distributions in cobalt-60 teletherapy,” Br. J. Radiol. 1965, 369377 (1965).
17.L. E. Reinstein et al., “A computer-assisted three-dimensional treatment planning system,” Radiology 127, 259264 (1978).
18.D. McShan et al., “A computerized three-dimensional treatment planning system utilizing interactive colour graphics,” Br. J. Radiol. 52, 478481 (1979).
19.M. Goitein, “Applications in computed tomography in radiotherapy treatment planning” in Progress in Medical Radiation Physics, edited by C. G. Orton (Plenum, New York, 1982), pp. 195293.
20.M. Goitein et al., “Multi-dimensional treatment planning: II. Beam’s eye view, back projection, and projection through CT sections,” Int. J. Radiat. Oncol., Biol., Phys., 9, 789797 (1983).
21.G. W. Sherouse et al., 9th International Conference on the Use of Computers in Radiation Therapy (Scheveningen, The Netherlands, 1987).
22.G. W. Sherouse et al., “Virtual simulation in the clinical setting: some practical considerations,” Int. J. Radiat. Oncol., Biol., Phys. 19, 10591065 (1990).
23.M. M. Austin-Seymour et al., “Dose volume histogram analysis of liver radiation tolerance,” Int. J. Radiat. Oncol., Biol., Phys. 12, 2135 (1986).
24.G. T. Y. Chen, “Dose-volume histograms in treatment planning,” Int. J. Radiat. Oncol., Biol., Phys. 14, 13191320 (1989).
25.R. E. Drzymala et al., “Integrated software tools for the evaluation of radiotherapy treatment plans,” Int. J. Radiat. Oncol., Biol., Phys. 30, 909919 (1994).
26.J. T. Lyman, “Complication probability as assessed from dose volume histograms,” Radiat. Res. 104, S13S19 (1985).
27.J. T. Lyman and A. B. Wolbarst, “Optimization of radiation therapy. III. A method of assessing complication probabilities from dose-volume histograms,” Int. J. Radiat. Oncol., Biol., Phys. 13, 103109 (1987).
28.G. J. Kutcher and C. Burman, “Calculation of complication probability factors for non-uniform normal tissue irradiation: The effective volume method.,” Int. J. Radiat. Oncol., Biol., Phys. 16, 16231630 (1989).
29.Computed Tomography in Radiation Therapy, edited by C. C. Ling, C. C. Rogers, and R. J. Morton (Raven, New York, 1983).
30.B. A. Fraass and D. L. McShan, 9th International Conference on the Use of Computers in Radiation Therapy (Scheveningen, The Netherlands, 1987).
31.J. A. Purdy et al., 9th International Conference on the Use of Computers in Radiation Therapy (Scheveningen, The Netherlands, 1987).
32.R. Mohan et al., “A comprehensive three-dimensional radiation treatment planning system,” Int. J. Radiat. Oncol., Biol., Phys. 15, 481495 (1988).
33.A. L. Boyer and E. C. Mok, “A photon dose distribution model employing convolution calculations,” Med. Phys. 12, 169177 (1985).
34.T. R. Mackie, J. W. Scrimger, and J. J. Battista, “A convolution method of calculating dose for x-rays,” Med. Phys. 12, 188196 (1985).
35.R. Mohan, C. Chui, and L. Lidofsky, “Differential pencil beam dose computation model for photons,” Med. Phys. 13, 6473 (1986).
36.K. R. Hogstrom, R. G. Kurup, A. S. Shui, and G. Starkschall, “A two-dimensional pencil beam algorithm for calculation of arc electron dose distributions,” Phys. Med. Biol. 34, 315341 (1989).
37.D. Jette and S. Walker, “Electron dose calculation using multiple-scattering theory: Evaluation of a new model for inhomogeneities,” Med. Phys. 19, 12411254 (1992).
38.T. R. Mackie, A. F. Bielajew, D. W. O. Rogers, and J. J. Battista, “Generation of photon energy deposition kernals using the EGS4 Monte Carlo code,” Phys. Med. Biol. 33, 120 (1988).
39.J. van de Geijn, “Revised and expanded version of EXTDOS, a program for treatment planning in external beam therapy,” Comput. Programs Biomed. 2, 169177 (1972).
40.E. Chaney, H. Fuchs, S. Pizer, J. Rosenman, G. W. Sherouse, E. Staab, and M. Varia, “A Three-Dimensional Imaging System for Radiotherapy Treatment Planning, Proceedings of the XIV International Conference on Medical and Biomedical Engineering and the VII International Conference on Medical Physics,” Med. Biol. Eng. Comput. 23, 951952 (1985).
41.A. R. Smith and J. Purdy, “Three Dimensional Photon Treatment Planning,” Int. J. Radiat. Oncol., Biol., Phys. 21 (1991).
42.M. E. Harmon, CART Special Issue, Nordic R&D Program on Computer Aided Radiotherapy (Oslo, Norway/Malmo, Sweden, 1987).
43.C. S. Hope and J. S. Orr, “Computer optimization of treatment planning,” Phys. Med. Biol. 10, 365373 (1965).
44.G. K. Bahr, J. G. Kereiakes, H. Horwitz, R. Finney, J. Galvin, and K. Goode, “The method of linear programming applied to radiation treatment planning,” Radiology 91, 686693 (1968).
45.A. T. Redpath, B. L. Vickery, and D. H. Wright., “A new technique for radiotherapy planning using quadratic programming,” Phys. Med. Biol. 21, 781791 (1976).
46.S. C. McDonald and P. Rubin, “Optimization of external beam radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 2, 307317 (1977).
47.M. Langer, E. K. Lee, J. O. Deasy, R. L. Rardin, and J. A. Deye, “Operations research applied to radiotherapy, an NCI-NSF-sponsored workshop February 7–9, 2002,” Int. J. Radiat. Oncol., Biol., Phys. 57, 762768 (2003).
48.Intensity Modulated Radiation Therapy Collaborative Working Group, “Intensity-modulated radiotherapy: Current status and issues of interest,” Int. J. Radiat. Oncol., Biol., Phys. 51, 880914 (2001).
49.S. Webb, “Historical perspective on IMRT,” in Intensity-Modulated Radiation Therapy—The State of the Art, edited by J. R. Palta and T. R. Mackie (Medical Physics, Madison, WI, 2003), pp. 123.
50.T. Bortfeld, “IMRT: A review and preview,” Phys. Med. Biol. 51, R363R379 (2006).
51.M. Langer, “What is different about IMRT?,” in Intensity-Modulated Radiation Therapy—The State of the Art, edited by J. R. Palta and T. R. Mackie (Medical Physics, Madison, WI, 2003), pp. 199220.
52.M. P. Carol, H. Targovnik, C. Campbell, A. Bleier, J. Strait, B. Rosen, P. Miller, D. Scherch, R. Huber, B. Thibadeau, D. Dawson, and D. Ruff, “An automatic 3D treatment planning and implementation system for optimized conformal therapy,” in European Association of Radiology, 5th Workshop Organized by Commission Informatique, edited by P. Minet (WHO Headquarters, Geneva, 1992,) pp. 173187.
53.C. C. Ling, C. Burman, C. S. Chui, G. J. Kutcher, S. A. Leibel, T. LoSasso, R. Mohan, T. Bortfeld, L. Reinstein, S. Spiro, X.-H. Wang, Q. Wu, M. Zelefsky, and Z. Fuks, “Conformal radiation treatment of prostate cancer using inversely-planned intensity-modulated photon beams produced with dynamic multileaf collimation,” Int. J. Radiat. Oncol., Biol., Phys. 35, 721730 (1996).
54.A. Brahme, J.-E. Roos, and I. Lax, “Solution of an integral equation encountered in radiation therapy,” Phys. Med. Biol. 27, 12211229 (1982).
55.A. Cormack, “A problem in rotation therapy with x-rays,” Int. J. Radiat. Oncol., Biol., Phys. 13, 623630 (1987).
56.N. H. Barth, “An inverse problem in radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 18, 425431 (1990).
57.A. Brahme, “Optimization of stationary and moving beam radiation therapy techniques,” Radiother. Oncol. 12, 129140 (1988).
58.T. Holmes, T. R. Mackie, D. Simpkin, and P. Reckwerdt, “A unified approach to the optimization of brachytherapy and external beam therapy,” Int. J. Radiat. Oncol., Biol., Phys. 20, 859873 (1991).
59.A. L. Boyer, G. E. Desobry, and N. H. Wells, “Potential and limitations of invariant kernel conformal therapy,” Med. Phys. 18, 703712 (1991).
60.T. Bortfeld, “Optimized planning using physical objectives and constraints,” Sems. Radiat. Oncol. 9, 2034 (1999).
61.S. Webb, “Optimization of conformal radiotherapy dose distributions by simulated annealing,” Phys. Med. Biol. 34, 13491370 (1989).
62.T. Bortfeld, J. Bürkelbach, R. Boesecke, and W. Schlegel, “Methods of image reconstruction from projections applied to conformation radiotherapy,” Phys. Med. Biol. 35, 14231434 (1990).
63.Y. Censor, M. D. Altschuler, and W. D. Powlis, “A computational solution of the inverse problem in radiation-therapy treatment planning,” Appl. Math. Comput. 25, 5787 (1988).
64.D. J. Convery and M. E. Rosenbloom, “The generation of intensity-modulated fields for conformal radiotherapy by dynamic collimation,” Phys. Med. Biol. 37, 13591374 (1992).
65.J. M. Galvin, X.-G. Chen, and R. M. Smith, “Combining multileaf fields to modulate fluence distributions,” Int. J. Radiat. Oncol., Biol., Phys. 27, 697705 (1993).
66.T. Bortfeld, D. L. Kahler, T. J. Waldron, and A. L. Boyer, “X-ray field compensation with multileaf collimators,” Int. J. Radiat. Oncol., Biol., Phys. 28, 723730 (1994).
67.R. Svensson, P. Källman, and A. Brahme, “An analytical solution for the dynamic control of multileaf collimators,” Phys. Med. Biol. 39, 3761 (1994).
68.S. V. Spirou and C. S. Chui, “Generation of arbitrary fluence profiles by dynamic jaws or multileaf collimators,” Med. Phys. 21, 10311041 (1994).
69.W. De Gersem, F. Claus, C. De Wagter, B. Van Duyse, and W. De Neve, “Leaf position optimization for step-and-shoot IMRT,” Int. J. Radiat. Oncol., Biol., Phys. 51, 13711388 (2001).
70.D. M. Shepard, M. A. Earl, X. A. Li, S. Naqvi, and C. Yu, “Direct aperture optimization: A turnkey solution for step-and-shoot IMRT,” Med. Phys. 29, 10071018 (2002).
71.C. X. Yu, “Intensity-modulated arc therapy with dynamic multileaf collimation: An alternative to tomotherapy,” Phys. Med. Biol. 40, 14351449 (1995).
72.C. Cameron, “Sweeping-window arc therapy: An implementation of rotational IMRT with automatic beam-weight calculation,” Phys. Med. Biol. 50, 43174336 (2005).
73.S. Ulrich, S. Nill, and U. Oelfke, “Development of an optimization concept for arc-modulated cone beam therapy,” Phys. Med. Biol. 52, 40994119 (2007).
74.K. Otto, “Volumetric modulated arc therapy: IMRT in a single gantry arc,” Med. Phys. 35, 310317 (2008).
75.T. R. Mackie, T. Holmes, S. Swerdloff, P. Reckwerdt, J. O. Deasy, J. Yang, B. Paliwal, and T. Kinsella, “Tomotherapy—A new concept for the delivery of dynamic conformal radiotherapy,” Med. Phys. 20, 17091719 (1993).
76.J. D. Bourland and E. L. Chaney, “A finite-size pencil beam model for photon dose calculations in three dimensions,” Med. Phys. 19, 14011412 (1992).
77.R. Svensson, M. Asell, P. Nafstadius, and A. Brahme, “Target, purging magnet and electron collector design for scanned high-energy photon beams,” Phys. Med. Biol. 43, 10911112 (1998).
78.S. Webb, “A new concept of multileaf collimator (the shuttling MLC)—An interpreter for high-efficiency IMRT,” Phys. Med. Biol. 45, 33433358 (2000).
79.A. Lomax, “Intensity modulation methods for proton radiotherapy,” Phys. Med. Biol. 44, 185205 (1999).
80.U. Oelfke and T. Bortfeld, “Intensity modulated radiotherapy with charged particle beams: Studies of inverse treatment planning for rotation therapy,” Med. Phys. 27, 12461257 (2000).
81.A. J. Lomax, T. Boehringer, A. Coray, E. Egger, G. Goitein, M. Grossmann, P. Juelke, S. Lin, E. Pedroni, B. Rohrer, W. Roser, B. Rossi, B. Siegenthaler, O. Stadelmann, H. Stauble, C. Vetter, and L. Wisser, “Intensity modulated proton therapy: A clinical example,” Med. Phys. 28, 317324 (2001).
82.A. Trofimov, E. Rietzel, H. M. Lu, B. Martin, S. Jiang, G. T. Chen, and T. Bortfeld, “Temporo-spatial IMRT optimization: concepts, implementation and initial results,” Phys. Med. Biol. 50, 27792798 (2005).
83.J. G. Li and L. Xing, “Inverse planning incorporating organ motion,” Med. Phys. 27, 15731578 (2000).
84.M. Birkner, D. Yan, M. Alber, J. Liang, and F. Nusslin, “Adapting inverse planning to patient and organ geometrical variation: algorithm and implementation,” Med. Phys. 30, 28222831 (2003).
85.D. L. McShan, M. L. Kessler, K. Vineberg, and B. A. Fraass, “Inverse plan optimization accounting for random geometric uncertainties with a multiple instance geometry approximation (MIGA),” Med. Phys. 33, 15101521 (2006).
86.A. E. Lujan, E. W. Larsen, J. M. Balter, and R. K. Ten Haken, “A method for incorporating organ motion due to breathing into 3D dose calculations,” Med. Phys. 26, 715720 (1999).
87.J. Lof, B. K. Lind, and A. Brahme, “An adaptive control algorithm for optimization of intensity modulated radiotherapy considering uncertainties in beam profiles, patient set-up and internal organ motion,” Phys. Med. Biol. 43, 16051628 (1998).
88.J. Unkelbach and U. Oelfke, “Inclusion of organ movements in IMRT treatment planning via inverse planning based on probability distributions,” Phys. Med. Biol. 49, 40054029 (2004).
89.J. Unkelbach and U. Oelfke, “Incorporating organ movements in IMRT treatment planning for prostate cancer: Minimizing uncertainties in the inverse planning process,” Med. Phys. 32, 24712483 (2005).
90.M. G. Witte, J. van der Geer, C. Schneider, J. V. Lebesque, M. Alber, and M. van Herk, “IMRT optimization including random and systematic geometric errors based on the expectation of TCP and NTCP,” Med. Phys. 34, 35443555 (2007).
91.T. C. Chan, T. Bortfeld, and J. N. Tsitsiklis, “A robust approach to IMRT optimization,” Phys. Med. Biol. 51, 25672583 (2006).
92.D. Pflugfelder, J. J. Wilkens, and U. Oelfke, “Worst case optimization: A method to account for uncertainties in the optimization of intensity modulated proton therapy,” Phys. Med. Biol. 53, 16891700 (2008).
93.J. Unkelbach, T. C. Chan, and T. Bortfeld, “Accounting for range uncertainties in the optimization of intensity modulated proton therapy,” Phys. Med. Biol. 52, 27552773 (2007).
94.M. Chu, Y. Zinchenko, S. G. Henderson, and M. B. Sharpe, “Robust optimization for intensity modulated radiation therapy treatment planning under uncertainty,” Phys. Med. Biol. 50, 54635477 (2005).
95.A. Olafsson and S. J. Wright, “Efficient schemes for robust IMRT treatment planning,” Phys. Med. Biol. 51, 56215642 (2006).
96.C. Baum, M. Alber, M. Birkner, and F. Nusslin, “Robust treatment planning for intensity modulated radiotherapy of prostate cancer based on coverage probabilities,” Radiother. Oncol. 78, 2735 (2006).
97.M. Y. Sir, S. M. Pollock, M. A. Epelman, K. L. Lam, and R. K. Ten Haken, “Ideal spatial radiotherapy dose distributions subject to positional uncertainties,” Phys. Med. Biol. 51, 63296347 (2006).
98.Y. Yu, “Multiobjective decision theory for computational optimization in radiation therapy,” Med. Phys. 24, 14451454 (1997).
99.D. Craft, T. Halabi, H. A. Shih, and T. Bortfeld, “An approach for practical multiobjective IMRT treatment planning,” Int. J. Radiat. Oncol., Biol., Phys. 69, 16001607 (2007).
100.M. Monz, K. H. Kufer, T. R. Bortfeld, and C. Thieke, “Pareto navigation-algorithmic foundation of interactive multi-criteria IMRT planning,” Phys. Med. Biol. 53, 985998 (2008).
101.J. J. Wilkens, J. R. Alaly, K. Zakarian, W. L. Thorstad, and J. O. Deasy, “IMRT treatment planning based on prioritizing prescription goals,” Phys. Med. Biol. 52, 16751692 (2007).
102.K. W. Jee, D. L. McShan, and B. A. Fraass, “Lexicographic ordering: intuitive multicriteria optimization for IMRT,” Phys. Med. Biol. 52, 18451861 (2007).
103.L. Y. Klepper, “Linear programming in selecting optimal conditions for radiation treatments,” Medskaga Radiol. 14, 6976 (1969).
104.C. S. Hope and O. Cain, “A computer program for optimized stationary beam treatment planning using score functions,” Prog. Biomed. 2, 221231 (1972).
105.R. Van der Laarse and J. Strackee, “Pseudo optimization of radiotherapy treatment planning,” Br. J. Radiol. 49, 450457 (1976).
106.R. E. M. Cooper, “A gradient method of optimizing external beam radiotherapy treatment plans,” Radiology 128, 235243 (1978).
107.B. W. Worthley, “Dosage prescription in radiotherapy using a slide rule based on dose-time-fractionation relationships,” Australas Radiol. 12, 160170 (1968).
108.S. Graffman et al., “Cell kinetic approach to optimizing dose distribution in radiation therapy,” Acta Radiol. 14, 5462 (1975).
109.V. D. Mistry and W. L. DeGinder, “Optimization of external beam radiotherapy: quantitative study of relative radiation effects and isoeffect patterns using PC-12 computer,” Int. J. Radiat. Oncol., Biol., Phys. 4, 10811094 (1978).
110.C. G. Orton and F. Ellis, “A simplification in the use of the NSD concept in practical radiotherapy,” Br. J. Radiol. 46, 529537 (1973).
111.F. Ellis, “Dose, time and fractionation: A clinical hypothesis,” Clin. Radiol. 20, 17 (1969).
112.A. Dritschilo et al., “The complication probability factor: A method for selection of radiation treatment plans,” Br. J. Radiol. 51, 370374 (1978).
113.A. B. Wolbarst et al., “Optimized radiotherapy treatment planning using the complication probability factor (CPF),” Int. J. Radiat. Oncol., Biol., Phys. 6, 723728 (1980).
114.Evaluation of Treatment Planning for Particle Beam Radiotherapy, edited by S. Zink (National Cancer Institute, Bethesda, MD, 1987).
115.T. S. Hong, W. A. Tome, R. J. Chappell, and P. M. Harari, “Variations in target delineation for head and neck IMRT: An international multi-institutional study,” Int. J. Radiat. Oncol., Biol., Phys. 60, S157S158 (2004).
116.Proceedings of the Conference on the Time-Dose Relationships in Clinical Therapy, edited by W. L. Caldwell and D. D. Tolbert (Madison Printing & Pub. Co, Middleton, WI, 1974).
117.Optimization of Cancer Radiotherapy, AAPM Proceedings No. 5, edited by B. R. Paliwal, D. E. Herbert, and C. G. Orton (Medical Physics Pub., Madison, WI, 1984).
118.Prediction of Response in Radiation Therapy: The Physical and Biological Basis, Analytical Models and Modelling,” 3rd International Conference on Dose, Time, and Fractionation in Radiation Oncology, AAPM Proceedings No. 7, edited by B. R. Paliwal, J. F. Fowler, D. Herbert, T. J. Kinsella, and C. G. Orton (Amercian Institute of Physics, New York, 1988).
119.Prediction of Response in Radiation Therapy: Radiosensitivity, Repopulation, AAPM Proceedings No. 9, edited by B. R. Paliwal, D. Herbert, J. F. Fowler, and T. J. Kinsella (American Institute Physics, New York, 1993).
120.“Volume & Kinetics in Tumor Control & Normal Tissue Complications,” 5th International Conference on Dose, Time, and Fractionation in Radiation Oncology, AAPM Proceedings No. 10, edited by B. R. Paliwal, J. F. Fowler, D. E. Herbert, and M. P. Mehta (American Institute of Physics, New York, 1998).
121.Biological & Physical Basis of IMRT & Tomotherapy,” 6th International Conference on Dose, Time, and Fractionation in Radiation Oncology, edited by B. R. Paliwal, D. E. Herbert, J. F. Fowler, and M. Mehta, AAPM Proceedings No. 12, (Medical Physics Pub., Madison, WI, 2002).
122.Physical, Chemical and Biological Targeting in Radiation Oncology,” 7th International Conference on Dose, Time and Fractionation in Radiation Oncology, AAPM Proceedings No. 14, edited by M. Mehta, B. R. Paliwal, and S. M. Bentzen, 2006.
123.Advances in Radiation Therapy Treatment Planning, AAPM Monograph No. 9 (1982 Summer School), edited by A. E. Wright and A. Boyer, (American Institute of Physics, New York, 1983).
124.Radiation Oncology Physics (1986 Summer School), edited by J. G. Kereiakes, H. R. Elson, and C. G. Born (American Institute of Physics, New York, 1986).
125.A. Purdy, Advances in Radiation Oncology Physics: Dosimetry, Treatment Planning, and Brachytherapy (1990 Summer School), AAPM Monograph No. 19 (CD-ROM Format) (Medical Physics Pub., Madison, WI, 2007).
126.Teletherapy: Present and Future, 1996 AAPM Summer School, edited by R. Urtasun, J. A. Purdy, G. Starkschall, G. Chen, and M. L. Kessler (Amercian Institute of Physics, New York, 1996).
127.General Practice of Radiation Oncology Physics in the 21st Century, 2000 Summer School, AAPM Monograph No. 26, edited by A. Shiu and D. Mellenberg (Medical Physics Pub., Madison, WI, 2000).
128.Intensity-Modulated Radiation Therapy: The State of the Art, 2003 Summer School, AAPM Monograph No. 29, edited by J. R. Palta and T. R. Mackie (Medical Physics Pub., Madison, WI, 2003).
129.AAPM Biological Effects Committee Task Group No. 1, Quality Assessment and Improvement of Dose Response Models: Some Effects of Study Weaknesses on Study Findings, AAPM Report No. 43, 1993,
130.AAPM Radiation Therapy Committee Task Group No. 23, Radiation Treatment Planning Dosimetry Verification, AAPM Report No. 55, 1995,
131.B. Fraass, K. Doppke, M. Hunt, G. Kutcher, G. Starkschall, R. Stern, and J. Van Dyk, “Quality Assurance for Clinical Radiotherapy Treatment Planning, AAPM Report No. 62,” Med. Phys. 25, 17731829 (1998);
132.G. A. Ezzell et al., “Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT subcommittee of the AAPM radiation therapy committee, AAPM Report No. 82,” Med. Phys. 30, 20892115 (2003);

Data & Media loading...


Article metrics loading...



Developments in radiotherapy treatment planning and optimization by medical physicists and the American Association of Physicists in Medicine are reviewed, with emphasis on recent work in optimization. It is shown that medical physicists have played a vital role in the creation of innovative treatment planning techniques throughout the past century, most significantly since the advent of computerized tomography for three-dimensional (3D) imaging and high-powered computers capable of 3D planning and optimization. Some early advances in 3D planning made by physicists include development of novel planning algorithms, beam’s-eye-view, virtual simulation, dose-volume histogram analysis tools, and bioeffect modeling. Most of the recent developments have been driven by the need to develop treatment planning for conformal radiotherapy, especially intensity modulated radiation therapy. These advances include inverse planning, handling the effects of motion and uncertainty, biological planning, and multicriteria optimization.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd