1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Anniversary Paper: History and status of CAD and quantitative image analysis: The role of and AAPM
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/35/12/10.1118/1.3013555
1.
1.H. L. Kundel and D. J. Wright, “The influence of prior knowledge on visual search strategies during the viewing of chest radiographs,” Radiology 93, 315320 (1969).
2.
2.H. L. Kundel, G. Revesz, M. C. Ziskin, and F. J. Shea, “The image and its influence on quantitative radiological data,” Invest. Radiol. 7, 187205 (1972).
3.
3.H. L. Kundel and G. Revesz, “Lesion conspicuity, structured noise, and film reader error,” AJR, Am. J. Roentgenol. 126, 12331238 (1976).
4.
4.D. P. Carmody, C. F. Nodine, and H. L. Kundel, “An analysis of perceptual and cognitive factors in radiographic interpretation,” Perception 9, 339344 (1980).
5.
5.H. L. Kundel and W. R. Hendee, “The perception of radiologic image information. Report of an NCI workshop on April 15-16, 1985,” Invest. Radiol. 20, 874877 (1985).
6.
6.C. F. Nodine, H. L. Kundel, C. Mello-Thoms, S. P. Weinstein, S. G. Orel, D. C. Sullivan, and E. F. Conant, “How experience and training influence mammography expertise,” Acad. Radiol. 6, 575585 (1999).
7.
7.L. B. Lusted, “Medical electronics,” N. Engl. J. Med. 252, 580585 (1955).
8.
8.G. S. Lodwick, T. E. Keats, and J. P. Dorst, “The coding of roentgen images for computer analysis as applied to lung cancer,” Radiology 81, 185200 (1963).
9.
9.H. C. Becker, N. J. Nettleton, P. H. Meyers, J. W. Sweeney, and C. M. Nice, “Digital computer determination of a medical diagnostic index directly from chest x-ray images,” IEEE Trans. Biomed. Eng. 11, 6772 (1964).
10.
10.P. H. Meyers, C. M. Nice, H. C. Becker, W. J. Nettleton, J. W. Sweeney, and G. R. Mechstroth, “Automated computer analysis of radiographic images,” Radiology 83, 10291033 (1964).
11.
11.F. Winsberg, M. Elkin, J. Macy, V. Bordaz, and W. Weymouth, “Detection of radiographic abnormalities in mammograms by means of optical scanning and computer analysis,” Radiology 89, 211215 (1967).
12.
12.F. Roellinger, Jr., A. Kahveci, J. Chang, C. Harlow, S. Dwyer III, and G. Lodwick, “Computer analysis of chest radiographs,” Comput. Graph. Image Process. 2, 232251 (1973).
13.
13.J. Toriwaki, Y. Suenaga, T. Negoro, and T. Fukumura, “Pattern recognition of chest x-ray images,” Comput. Graph. Image Process. 2, 252271 (1973).
14.
14.R. Kruger, W. Thompson, and A. Turner, “Computer diagnosis of pneumoconiosis,” IEEE Trans. Syst. Man Cybern. SMC-4, 4050 (1974).
15.
15.C. Kimme, B. J. O’Laughlin, and J. Sklansky, Automatic Detection of Suspicious Abnormalities in Breast Radiographs (Academic Press, New York, 1975), pp. 427447.
16.
16.W. Spiesberger, “Mammogram inspection by computer,” IEEE Trans. Biomed. Eng. 26, 213219 (1979).
17.
17.J. Reiber, C. Kooijman, C. Slager, J. Gerbrands, J. Schuurbiers, A. den Boer, W. Wijns, and S. P. Hugenholta, “Coronary artery dimensions from cineangiograms—Methodology and validation of a computer-assisted analysis procedure,” IEEE Trans. Med. Imaging 3, 131141 (1984).
18.
18.H. Fujita, K. Doi, L. E. Fencil, and K. G. Chua, “Image feature analysis and computer-aided diagnosis in digital radiography. 2. Computerized determination of vessel sizes in digital subtraction angiography,” Med. Phys. 14, 549556 (1987).
http://dx.doi.org/10.1118/1.596066
19.
19.H.-P. Chan, K. Doi, S. Galhotra, C. J. Vyborny, H. MacMahon, and P. M. Jokich, “Image feature analysis and computer-aided diagnosis in digital radiography. 1. Automated detection of microcalcifications in mammography,” Med. Phys. 14, 538548 (1987).
http://dx.doi.org/10.1118/1.596065
20.
20.M. L. Giger, K. Doi, and H. MacMahon, “Computerized detection of lung nodules in digital chest radiographs,” Proc. SPIE 767, 384386 (1987).
21.
21.M. L. Giger, K. Doi, and H. MacMahon, “Image feature analysis and computer aided diagnosis in digital radiography. 3. Automated detection of nodules in peripheral lung fields,” Med. Phys. 15, 158166 (1988).
http://dx.doi.org/10.1118/1.596247
22.
22.K. Doi, H.-P. Chan, and M. Giger, “Method and system for enhancement and detection of abnormal anatomic regions in a digital image.” University of Chicago, U. S. Pat. No. 4907156, March 1990.
23.
23.M. L. Giger, “Computer-aided diagnosis,” in Syllabus: A Categorical Course in Physics. Technical Aspects of Breast Imaging, A. G. Haus and M. J. Yaffe, eds. (RSNA Publications, Oak Brook, IL, 1993), pp. 272298.
24.
24.C. J. Vyborny and M. L. Giger, “Computer vision and artificial intelligence in mammography,” AJR, Am. J. Roentgenol. 162, 699708 (1994).
25.
25.M. Giger and H. MacMahon, “Image processing and computer-aided diagnosis,” Radiol. Clin. North Am. 34, 565596 (1996).
26.
26.K. Doi, H. MacMahon, M. Giger, and K. Hoffmann, Proceedings of the First International Workshop on Computer-Aided Diagnosis in Medical Imaging (Elsevier, New York, 1999).
27.
27.M. L. Giger, Z. Huo, M. A. Kupinski, and C. J. Vyborny, “Computer-aided diagnosis in mammography,” in Handbook of Medical Imaging, M. Sonka and J. M. Fitzpatrick, eds. (The Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, 2000), pp. 9151004.
28.
28.Y. Jiang, “Classification of breast lesions in mammograms.” in Handbook of Medical Imaging, Processing and Analysis, I. Bankman, ed. (Academic Press, New York, 2000), pp. 341358.
29.
29.C. J. Vyborny, M. L. Giger, and R. M. Nishikawa, “Computer-aided detection and diagnosis of breast cancer,” Radiol. Clin. North Am. 38, 725740 (2000).
http://dx.doi.org/10.1016/S0033-8389(05)70197-4
30.
30.B. van Ginneken, B. M. ter Haar Romeny, and M. A. Viergever, “Computer-aided diagnosis in chest radiography: A survey,” IEEE Trans. Med. Imaging 20, 12281241 (2001).
http://dx.doi.org/10.1109/42.974918
31.
31.M. Giger, “Computerized image analysis in breast cancer detection and diagnosis,” Seminars in Breast Disease 5, 199210 (2002).
32.
32.E. Krupinski, “The future of image perception in radiology: Synergy between humans and computers,” Acad. Radiol. 10, 13 (2003).
33.
33.H. P. Chan, B. Sahiner, and L. M. Hadjiiski, “Computer-aided diagnosis in screening mammography,” in Advances in Breast Imaging: Physics, Technology, and Clinical Applications—Categorical Course in Diagnostic Radiology Physics, A. Karellas and M. L. Giger, eds. (RSNA, Oak Brook, IL, 2004), pp. 191204.
34.
34.I. Sluimer, A. Schilham, M. Prokop, and B. van Ginneken, “Computer analysis of computed tomography scans of the lung: A survey,” IEEE Trans. Med. Imaging 25, 385405 (2006).
http://dx.doi.org/10.1109/TMI.2005.862753
35.
35.K. Doi, “Computer-aided diagnosis in medical imaging: historical review, current status and future potential,” Comput. Med. Imaging Graph. 31, 198211 (2007).
http://dx.doi.org/10.1016/j.compmedimag.2007.02.002
36.
36.R. M. Nishikawa, “Current status and future directions of computer-aided diagnosis in mammography,” Comput. Med. Imaging Graph. 31, 224235 (2007).
http://dx.doi.org/10.1016/j.compmedimag.2007.02.009
37.
37.H. P. Chan, L. Hadjiisk, C. Zhou, and B. Sahiner, “Computer-aided diagnosis of lung cancer and pulmonary embolism in computed tomography—A review,” Acad. Radiol. 15, 535555 (2008).
38.
38.D. M. Green and J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).
39.
39.J. A. Swets and R. M. Pickett, Evaluation of Diagnostic Systems: Methods from Signal Detection Theory (Academic Press, New York, 1982).
40.
40.K. Rossmann, “Comparison of several methods for evaluation image quality of radiographic screen-film system,” Am. J. Roentgenol., Radium Ther. Nucl. Med. 97, 772775 (1966).
41.
41.K. Rossmann, “Image quality,” Radiol. Clin. North Am. 7, 419433 (1969).
42.
42.D. J. Goodenough, K. Rossmann, and L. B. Lusted, “Radiographic applications of signal detection theory,” Radiology 105, 199200 (1972).
43.
43.J. C. Dainty and R. Shaw, Image Science (Academic Press, New York, 1974).
44.
44.R. F. Wagner, “Toward a unified view of radiological imaging systems. Part II: Noisy images,” Med. Phys. 4, 279296 (1977).
http://dx.doi.org/10.1118/1.594362
45.
45.C. E. Metz, “ROC methodology in radiologic imaging,” Invest. Radiol. 21, 720733 (1986).
http://dx.doi.org/10.1097/00004424-198609000-00009
46.
46.H. H. Barrett and K. Myers, Foundations of Image Science (Wiley, New York, 2004).
47.
47.R. F. Wagner, K. E. Weaver, E. W. Denny, and R. G. Bostrom, “Toward a unified view of radiological imaging systems. Part I: Noiseless images,” Med. Phys. 1, 1124 (1974).
http://dx.doi.org/10.1118/1.1637272
48.
48.J. M. Sandrik and R. F. Wagner, “Absolute measures of physical image quality: Measurement and application to radiographic magnification,” Med. Phys. 9, 540549 (1982).
http://dx.doi.org/10.1118/1.595099
49.
49.M. L. Giger and K. Doi, “Investigation of basic imaging properties of digital radiography. Part 1: Modulation transfer function,” Med. Phys. 11, 287295 (1984).
http://dx.doi.org/10.1118/1.595629
50.
50.M. L. Giger, K. Doi, and C. E. Metz, “Investigation of basic imaging properties of digital radiography. Part 2: Noise Wiener spectrum,” Med. Phys. 11, 797805 (1984).
http://dx.doi.org/10.1118/1.595583
51.
51.L.-N. D. Loo, K. Doi, and C. E. Metz, “A comparison of physical image quality indices and observer performance in the radiographic detection of nylon beads,” Phys. Med. Biol. 29, 837856 (1984).
http://dx.doi.org/10.1088/0031-9155/29/7/007
52.
52.M. L. Giger and K. Doi, “Investigation of basic imaging properties in digital radiography. 3. Effect of pixel size on SNR and threshold contrast,” Med. Phys. 12, 201208 (1985).
http://dx.doi.org/10.1118/1.595708
53.
53.M. J. Tapiovaara and R. J. Wagner, “SNR and DQE analysis of broad-spectrum x-ray imaging,” Phys. Med. Biol. 30, 519529 (1985).
http://dx.doi.org/10.1088/0031-9155/30/6/002
54.
54.L. W. Bassett, D. H. Bunnell, R. Jahanshahi, R. H. Gold, R. D. Arndt, and J. Linsman, “Breast cancer detection: One versus two views,” Radiology 165, 9597 (1987).
55.
55.B. J. Hillman, L. L. Fajardo, T. B. Hunter, B. Mockbee, C. E. Cook, R. M. Hagman, J. C. Bjelland, C. S. Frey, and C. J. Harris, “Mammogram interpretation by physician assistants,” AJR, Am. J. Roentgenol. 149, 907911 (1987).
56.
56.M. G. Wallis, M. T. Walsh, and J. R. Lee, “A review of false negative mammography in a symptomatic population,” Clin. Radiol. 44, 1315 (1991).
http://dx.doi.org/10.1016/S0009-9260(05)80218-1
57.
57.R. E. Bird, T. W. Wallace, and B. C. Yankaskas, “Analysis of cancers missed at screening mammography,” Radiology 184, 613617 (1992).
58.
58.J. A. Harvey, L. L. Fajardo, and C. A. Innis, “Previous mammograms in patients with impalpable breast carcinomas: Retrospective vs blinded interpretation,” AJR, Am. J. Roentgenol. 161, 11671172 (1993).
59.
59.C. A. Beam, P. M. Layde, and D. C. Sullivan, “Variability in the interpretation of screening mammograms by US radiologists—Findings from a national sample,” Arch. Intern Med. 156, 209213 (1996).
http://dx.doi.org/10.1001/archinte.156.2.209
60.
60.J. G. Elmore, C. Y. Nakano, T. D. Koepsell, L. M. Desnick, C. J. D’Orsi, and D. F. Ransohoff, “International variation in screening mammography interpretations in community-based programs,” J. Natl. Cancer Inst. 95, 13841393 (2003).
61.
61.R. L. Birdwell, D. M. Ikeda, K. F. O’Shaughnessy, and E. A. Sickles, “Mammographic characteristics of 115 missed cancers later detected with screening mammography and the potential utility of computer-aided detection,” Radiology 219, 192202 (2001).
62.
62.M. Giger, Z. Huo, M. Kupinski, and C. Vyborny, “Computer-aided diagnosis in mammography,” in Handbook of Medical Imaging Volume II: Medical Imaging Processing and Analysis, M. Sonka and M. Fitzpatrick eds. (SPIE, Bellingham, WA, 2000).
63.
63.R. Nishikawa, “Current status and future directions of computer-aided diagnosis in mammography,” Comput. Med. Imaging Graph. 31, 224235 (2007).
http://dx.doi.org/10.1016/j.compmedimag.2007.02.009
64.
64.J. L. Semmlow, A. Shadagopappan, L. V. Ackerman, W. Hand, and F. S. Alcorn, “A fully automated system for screening mammograms,” Comput. Biomed. Res. 13, 350362 (1980).
http://dx.doi.org/10.1016/0010-4809(80)90027-0
65.
65.B. W. Fam, S. L. Olson, P. F. Winter, and F. J. Scholz, “Algorithm for the detection of fine clustered calcifications on film mammograms,” Radiology 169, 333337 (1988).
66.
66.D. H. Davies and D. R. Dance, “Automatic computer detection of clustered calcifications in digital mammograms,” Phys. Med. Biol. 35, 11111118 (1990).
http://dx.doi.org/10.1088/0031-9155/35/8/007
67.
67.S. Astley, I. Hutt, S. Adamson, P. Miller, P. Rose, C. Boggis, C. Taylor, T. Valentine, J. Davies, and J. Armstrong, “Automation in mammography: Computer vision and human perception,” Proc. SPIE 1905, 716730 (1993).
http://dx.doi.org/10.1117/12.148683
68.
68.I. N. Bankman, W. A. Christens-Barry, D. W. Kim, I. N. Weinberg, O. B. Gatewood, and W. R. Brody, “Automated recognition of microcalcification clusters in mammograms,” Proc. SPIE 1905, 731738 (1993).
http://dx.doi.org/10.1117/12.148684
69.
69.N. Karssemeijer, “Recognition of clustered microcalcifications using a random field model,” Proc. SPIE 1905, 776786 (1993).
http://dx.doi.org/10.1117/12.148689
70.
70.R. M. Nishikawa, M. L. Giger, K. Doi, C. J. Vyborny, R. A. Schmidt, C. E. Metz, Y. Wu, F.-F. Yin, Y. Jiang, Z. Huo, P. Lu, W. Zhang, T. Ema, U. Bick, J. Papaioannou, and R. H. Nagel, “Computer-aided detection and diagnosis of masses and clustered microcalcifications from digital mammograms,” Proc. SPIE 1905, 422432 (1993).
http://dx.doi.org/10.1117/12.148655
71.
71.L. Shen, R. M. Rangayyan, and J. E. L. Desautels, “Automatic detection and classification system for calcifications in mammograms,” Proc. SPIE 1905, 799805 (1993).
http://dx.doi.org/10.1117/12.148691
72.
72.L. P. Clarke, M. Kallergi, W. Qian, H. D. Li, R. A. Clark, and M. L. Silbiger, “Tree-structured non-linear filter and wavelet transform for microcalcification segmentation in digital mammography,” Cancer Lett. 77, 173181 (1994).
73.
73.W. Qian, L. P. Clarke, M. Kallergi, and R. A. Clark, “Tree-structured nonlinear filters in digital mammography,” IEEE Trans. Med. Imaging 13, 2536 (1994).
http://dx.doi.org/10.1109/42.276142
74.
74.W. Zhang, K. Doi, M. L. Giger, Y. Wu, R. M. Nishikawa, and R. A. Schmidt, “Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network,” Med. Phys. 21, 517524 (1994).
http://dx.doi.org/10.1118/1.597177
75.
75.H.-P. Chan, S.-C. B. Lo, B. Sahiner, K. L. Lam, and M. A. Helvie, “Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network,” Med. Phys. 22, 15551567 (1995).
http://dx.doi.org/10.1118/1.597428
76.
76.B. Zheng, Y.-H. Chang, M. Staiger, W. Good, and D. Gur, “Computer-aided detection of clustered microcalcifications in digitized mammograms,” Acad. Radiol. 2, 655662 (1995).
77.
77.R. N. Strickland and H. Hahn, “Wavelet transforms for detecting microcalcifications in mammograms,” IEEE Trans. Med. Imaging 15, 218229 (1996).
http://dx.doi.org/10.1109/42.491423
78.
78.H. Yoshida, K. Doi, R. M. Nishikawa, M. L. Giger, and R. A. Schmidt, “An improved computer-assisted diagnostic scheme using wavelet transform for detecting clustered microcalcifications in digital mammograms,” Acad. Radiol. 3, 621627 (1996).
79.
79.M. A. Gavrielides, J. Y. Lo, R. Vargas-Voracek, and J. C. E. Floyd, “Segmentation of suspicious clustered microcalcifications in mammograms,” Med. Phys. 27, 1322 (2000).
http://dx.doi.org/10.1118/1.598852
80.
80.S. Yu and L. Guan, “A CAD system for the automatic detection of clustered microcalcifications in digitized mammograms,” IEEE Trans. Med. Imaging 19, 115126 (2000).
http://dx.doi.org/10.1109/42.836371
81.
81.I. El-Naqa, Y. Yang, R. M. Nishikawa, and M. N. Wernick, “A support vector machine approach for detection of microcalcifications,” IEEE Trans. Med. Imaging 21, 15521563 (2002).
http://dx.doi.org/10.1109/TMI.2002.806569
82.
82.M. Salfity, R. Nishikawa, Y. Jiang, and J. Papaioannou, “The use of a priori information to improve the detection of microcalcifications on mammograms,” Med. Phys. 30, 823831 (2002).
http://dx.doi.org/10.1118/1.1559884
83.
83.J. Ge, B. Sahiner, L. M. Hadjiiski, H.-P. Chan, J. Wei, M. A. Helvie, and C. Zhou, “Computer aided detection of clusters of microcalcifications on full field digital mammograms,” Med. Phys. 33, 29752988 (2006).
http://dx.doi.org/10.1118/1.2211710
84.
84.B. Sahiner, H.-P. Chan, L. M. Hadjiiski, M. A. Helvie, C. Paramagul, J. Ge, J. Wei, and C. Zhou, “Joint two-view information for computerized detection of microcalcifications on mammograms,” Med. Phys. 33, 25742585 (2006).
http://dx.doi.org/10.1118/1.2208919
85.
85.C. Kimme, B. J. O’Loughlin, and J. Sklansky, “Automatic detection of suspicious abnormalities in breast radiographs,” in Data Structures, Computer Graphics, and Pattern Recognition, K. S. Fu, T. L. Kunii, and A. Klinger, eds. (Academic Press, New York, 1975), pp. 427447.
86.
86.S. M. Lai, X. Li, and W. F. Bischof, “On techniques for detecting circumscribed masses in mammograms,” IEEE Trans. Med. Imaging 8, 377386 (1989).
http://dx.doi.org/10.1109/42.41491
87.
87.D. Brzakovic, X. M. Luo, and P. Brzakovic, “An approach to automated detection of tumors in mammograms,” IEEE Trans. Med. Imaging 9, 233241 (1990).
http://dx.doi.org/10.1109/42.57760
88.
88.T. K. Lau and W. F. Bischof, “Automated detection of breast tumors using the asymmetry approach,” Comput. Biomed. Res. 24, 273295 (1991).
http://dx.doi.org/10.1016/0010-4809(91)90049-3
89.
89.F.-F. Yin, M. L. Giger, K. Doi, C. E. Metz, C. J. Vyborny, and R. A. Schmidt, “Computerized detection of masses in digital mammograms: Analysis of bilateral subtraction images,” Med. Phys. 18, 955963 (1991).
http://dx.doi.org/10.1118/1.596610
90.
90.S. L. Ng and W. F. Bischof, “Automated detection and classification of breast tumors,” Comput. Biomed. Res. 25, 218237 (1992).
http://dx.doi.org/10.1016/0010-4809(92)90040-H
91.
91.F.-F. Yin, M. L. Giger, C. J. Vyborny, K. Doi, and R. A. Schmidt, “Comparison of bilateral-subtraction and single-image processing techniques in the computerized detection of mammographic masses,” Invest. Radiol. 28, 473481 (1993).
92.
92.W. P. Kegelmeyer, J. M. Pruneda, P. D. Bourland, A. Hillis, M. W. Riggs, and M. L. Nipper, “Computer-aided mammographic screening for spiculated lesions,” Radiology 191, 331337 (1994).
93.
93.A. Laine, S. Schuler, J. Fan, and W. Huda, “Mammographic feature enhancement by multiscale analysis,” IEEE Trans. Med. Imaging 13, 725740 (1994).
http://dx.doi.org/10.1109/42.363095
94.
94.H. D. Li, M. Kallergi, L. P. Clarke, V. K. Jain, and R. A. Clarke, “Markov random field for tumor detection in digital mammograms,” IEEE Trans. Med. Imaging 14, 565576 (1995).
http://dx.doi.org/10.1109/42.414622
95.
95.B. Zheng, Y. H. Chang, and D. Gur, “Computerized detection of masses in digitized mammograms using single-image segmentation and a multilayer topographic feature analysis,” Acad. Radiol. 2, 959966 (1995).
96.
96.N. Karssemeijer and G. te Brake, “Detection of stellate distortions in mammograms,” IEEE Trans. Med. Imaging 15, 611619 (1996).
http://dx.doi.org/10.1109/42.538938
97.
97.N. Petrick, H. P. Chan, D. Wei, B. Sahiner, M. A. Helvie, and D. D. Adler, “Automated detection of breast masses on mammograms using adaptive contrast enhancement and texture classification,” Med. Phys. 23, 16851696 (1996).
http://dx.doi.org/10.1118/1.597756
98.
98.D. Wei, H. P. Chan, N. Petrick, B. Sahiner, M. A. Helvie, D. D. Adler, and M. M. Goodsitt, “False-positive reduction technique for detection of masses on digital mammograms: Global and local multiresolution texture analysis,” Med. Phys. 24, 903914 (1997).
http://dx.doi.org/10.1118/1.598011
99.
99.A. J. Mendez, P. G. Tahoces, M. J. Lado, M. Souto, and J. J. Vidal, “Computer-aided diagnosis: Automatic detection of malignant masses in digitized mammograms,” Med. Phys. 25, 957964 (1998).
http://dx.doi.org/10.1118/1.598274
100.
100.H. Kobatake, M. Murakami, H. Takeo, and S. Nawano, “Computer detection of malignant tumors on digital mammograms,” IEEE Trans. Med. Imaging 18, 369378 (1999).
http://dx.doi.org/10.1109/42.774164
101.
101.N. Petrick, H. P. Chan, B. Sahiner, and M. A. Helvie, “Combined adaptive enhancement and region-growing segmentation of breast masses on digitized mammograms,” Med. Phys. 26, 16421654 (1999).
http://dx.doi.org/10.1118/1.598658
102.
102.G. M. te Brake and N. Karssemeijer, “Single and multiscale detection of masses in digital mammograms,” IEEE Trans. Med. Imaging 18, 628639 (1999).
http://dx.doi.org/10.1109/42.790462
103.
103.G. M. te Brake, N. Karssemeijer, and J. Hendriks, “An automatic method to discriminate malignant masses from normal tissue in digital mammograms,” Phys. Med. Biol. 45, 28432857 (2000).
http://dx.doi.org/10.1088/0031-9155/45/10/308
104.
104.Y. Hatanaka, T. Hara, H. Fujita, S. Kasai, T. Endo, and T. Iwase, “Development of an automated method for detecting mammographic masses with a partial loss of region,” IEEE Trans. Med. Imaging 20, 12091214 (2001).
http://dx.doi.org/10.1109/42.974916
105.
105.N. R. Mudigonda, R. M. Rangayyan, and J. E. L. Desautels, “Detection of breast masses in mammograms by density slicing and texture flow-field analysis,” IEEE Trans. Med. Imaging 20, 12151227 (2001).
http://dx.doi.org/10.1109/42.974917
106.
106.S. C. B. Lo, H. Li, Y. Wang, L. Kinnard, and M. T. Freedman, “A multiple circular path convolution neural network system for detection of mammographic masses,” IEEE Trans. Med. Imaging 21, 150158 (2002).
http://dx.doi.org/10.1109/42.993133
107.
107.N. Petrick, H. P. Chan, B. Sahiner, M. A. Helvie, S. Paquerault, and L. M. Hadjiiski, “Breast cancer detection: Evaluation of a mass detection algorithm for computer-aided diagnosis: Experience in 263 patients,” Radiology 224, 217224 (2002).
http://dx.doi.org/10.1148/radiol.2241011062
108.
108.A. H. Baydush, D. M. Catarious, C. K. Abbey, and C. E. Floyd, “Computer aided detection of masses in mammography using subregion Hotelling observers,” Med. Phys. 30, 17811787 (2003).
http://dx.doi.org/10.1118/1.1582011
109.
109.G. D. Tourassi, R. Vargas-Voracek, David M. Catarious, Jr., and Carey E. Floyd, Jr., “Computer-assisted detection of mammographic masses: A template matching scheme based on mutual information,” Med. Phys. 30, 21232130 (2003).
http://dx.doi.org/10.1118/1.1589494
110.
110.J. Wei, H.-P. Chan, B. Sahiner, L. M. Hadjiiski, M. A. Helvie, M. A. Roubidoux, C. Zhou, and J. Ge, “Dual system approach to computer-aided detection of breast masses on mammograms,” Med. Phys. 33, 41574168 (2006).
http://dx.doi.org/10.1118/1.2357838
111.
111.J. Wei, L. M. Hadjiiski, B. Sahiner, H. Chan, J. Ge, M. A. Roubidoux, M. A. Helvie, C. Zhou, Y. Wu, C. Paramagul, and Y. Zhang, “Computer aided detection systems for breast masses: Comparison of performances on full-field digital mammograms and digitized screen-film mammograms,” Acad. Radiol. 6, 659669 (2007).
112.
112.M. P. Sampat, A. C. Bovik, G. J. Whitman, and M. K. Markey, “A model-based framework for the detection of spiculated masses on mammography,” Med. Phys. 35, 21102123 (2008).
http://dx.doi.org/10.1118/1.2890080
113.
113.G. D. Tourassi, B. Harrawood, S. Singh, J. Y. Lo, and C. E. Floyd, “Evaluation of information-theoretic similarity measures for content-based retrieval and detection of masses in mammograms,” Med. Phys. 34, 140150 (2007).
http://dx.doi.org/10.1118/1.2401667
114.
114.H.-P. Chan, K. Doi, C. J. Vyborny, R. A. Schmidt, C. E. Metz, K. L. Lam, T. Ogura, Y. Wu, and H. MacMahon, “Improvement in radiologists’ detection of clustered microcalcifications on mammograms: The potential of computer-aided diagnosis,” Invest. Radiol. 25, 11021110 (1990).
http://dx.doi.org/10.1097/00004424-199010000-00006
115.
115.C. Metz, “Fundamental ROC analysis,” in Handbook of Medical Imaging, Volume I: Physics and Psychophysics, J. Beutel, H. Kundel, and R. Van Metter, eds. (SPIE Press, Bellingham, 2000), pp. 751769.
116.
116.M. A. Helvie, L. Hadjiiski, E. Makariou, H.-P. Chan, N. Petrick, B. Sahiner, S.-C. B. Lo, M. Freedman, D. Adler, J. Bailey, C. Blane, D. Hoff, K. Hunt, L. Joynt, K. Klein, C. Paramagul, S. K. Patterson, and M. A. Roubidoux, “Sensitivity of noncommercial computer-aided detection system for mammographic breast cancer detection,” Radiology 231, 208214 (2004).
http://dx.doi.org/10.1148/radiol.2311030429
117.
117.E. Thurfjell, A. Taube, and L. Tabar, “One-view versus 2-view mammography screening—A prospective population-based study,” Acta Radiol. 35, 340344 (1994).
118.
118.R. G. Blanks, M. G. Wallis, and R. M. Given-Wilson, “Observer variability in cancer detection during routine repeat (incident) mammographic screening in a study of two versus one view mammography,” J. Med. Screen 6, 152158 (1999).
119.
119.B. Sahiner, N. Petrick, H. P. Chan, S. Paquerault, M. A. Helvie, and L. M. Hadjiiski, “Recognition of lesion correspondence on two mammographic views—A new method of false-positive reduction for computerized mass detection,” Proc. SPIE 4322, 649655 (2001).
http://dx.doi.org/10.1117/12.431139
120.
120.S. Paquerault, N. Petrick, H. P. Chan, B. Sahiner, and M. A. Helvie, “Improvement of computerized mass detection on mammograms: Fusion of two-view information,” Med. Phys. 29, 238247 (2002).
http://dx.doi.org/10.1118/1.1446098
121.
121.B. Zheng, J. K. Leader, G. S. Abrams, A. H. Lu, L. P. Wallace, G. S. Maitz, and D. Gur, “Multiview-based computer-aided detection scheme for breast masses,” Med. Phys. 33, 31353143 (2006).
http://dx.doi.org/10.1118/1.2237476
122.
122.S. v. Engeland, and N. Karssemeijer, “Combining two mammographic projections in a computer aided mass detection method,” Med. Phys. 34, 898905 (2007).
http://dx.doi.org/10.1118/1.2436974
123.
123.F.-F. Yin, M. L. Giger, K. Doi, C. J. Vyborny, and R. A. Schmidt, “Computerized detection of masses in digital mammograms: Automated alignment of breast images and its effect on bilateral-subtraction technique,” Med. Phys. 21, 445452 (1994).
http://dx.doi.org/10.1118/1.597307
124.
124.L. M. Hadjiiski, H. P. Chan, B. Sahiner, N. Petrick, and M. A. Helvie, “Automated registration of breast lesions in temporal pairs of mammograms for interval change analysis—Local affine transformation for improved localization,” Med. Phys. 28, 10701079 (2001).
http://dx.doi.org/10.1118/1.1376134
125.
125.Y.-T. Wu, J. Wei, L. M. Hadjiiski, B. Sahiner, C. Zhou, J. Ge, J. Shi, Y. Zhang, and H. P. Chan, “Bilateral analysis based false positive reduction for computer-aided mass detection,” Med. Phys. 34, 33343344 (2007).
http://dx.doi.org/10.1118/1.2756612
126.
126.W. Zouras, M. Giger, P. Lu, D. Wolverton, C. Vyborny, and K. Doi, “Investigation of temporal subtraction scheme for computerized detection of breast masses.” Proceedings of Digital Mammography ‘96 Annual Meeting (1996).
127.
127.S. Sanjay-Gopal, H. P. Chan, T. Wilson, M. Helvie, N. Petrick, and B. Sahiner, “A regional registration technique for automated interval change analysis of breast lesions on mammograms,” Med. Phys. 26, 26692679 (1999).
http://dx.doi.org/10.1118/1.598806
128.
128.S. Timp, S. Van Engeland, and N. Karssemeijer, “A regional registration method to find corresponding mass lesions in temporal mammogram pairs,” Med. Phys. 32, 26292638 (2005).
http://dx.doi.org/10.1118/1.1984323
129.
129.P. L. Carson, G. L. LeCarpentier, M. A. Roubidoux, R. Q. Erkamp, J. B. Fowlkes, and M. M. Goodsitt, “Physics and technology of breast US imaging including automated three-dimensional US,” in Advances in Breast Imaging: Physics, Technology, and Clinical Applications—Categorical Course in Diagnostic Radiology Physics, A. Karellas and M. L. Giger, eds. (RSNA, Oak Brook, IL, 2004), pp. 223232.
130.
130.L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, F. C. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wirth, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399406 (1997).
131.
131.S. Suryanarayanan, A. Karellas, S. Vedantham, S. P. Baker, S. J. Glick, C. J. D’Orsi, and R. L. Webber, “Evaluation of linear and nonlinear tomosynthetic reconstruction methods in digital mammography,” Acad. Radiol. 8, 219224 (2001).
132.
132.E. A. Rafferty, D. Georgian-Smith, D. B. Kopans, D. A. Hall, R. Moore, and T. Wu, “Comparison of full-field digital tomosynthesis with two view conventional film screen mammography in the prediction of lesion malignancy,” Radiology 225(P), 268268 (2002).
133.
133.T. Wu, A. Stewart, M. Stanton, T. McCauley, W. Phillips, D. B. Kopans, R. H. Moore, J. W. Eberhard, B. Opsahl-Ong, L. Niklason, and M. B. Williams, “Tomographic mammography using a limited number of low-dose cone-beam projection images,” Med. Phys. 30, 365380 (2003).
http://dx.doi.org/10.1118/1.1543934
134.
134.Y. Zhang, H.-P. Chan, B. Sahiner, J. Wei, M. M. Goodsitt, L. M. Hadjiiski, J. Ge, and C. Zhou, “A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis,” Med. Phys. 33, 37813795 (2006).
http://dx.doi.org/10.1118/1.2237543
135.
135.R. A. Jong, M. J. Yaffe, M. Skarpathiotakis, R. S. Shumak, N. M. Danjoux, A. Gunesekara, and D. B. Plewes, “Contrast-enhanced digital mammography: Initial clinical experience,” Radiology 228, 842850 (2003).
http://dx.doi.org/10.1148/radiol.2283020961
136.
136.J. M. Lewin, P. K. Isaacs, V. Vance, and F. J. Larke, “Dual-energy contrast-enhanced digital subtraction mammography: Feasibility,” Radiology 229, 261268 (2003).
http://dx.doi.org/10.1148/radiol.2291021276
137.
137.J. M. Boone, T. R. Nelson, K. K. Lindfors, and J. A. Seibert, “Dedicated breast CT: Radiation dose and image quality evaluation,” Radiology 221, 657667 (2001).
http://dx.doi.org/10.1148/radiol.2213010334
138.
138.B. Chen and R. Ning, “Cone-beam volume CT breast imaging: Feasibility study,” Med. Phys. 29, 755770 (2002).
http://dx.doi.org/10.1118/1.1461843
139.
139.A. L. C. Kwan, J. M. Boone, K. Yang, and S.-Y. Huang, “Evaluation of the spatial resolution characteristics of a cone-beam breast CT scanner,” Med. Phys. 34, 275281 (2007).
http://dx.doi.org/10.1118/1.2400830
140.
140.H. P. Chan, J. Wei, B. Sahiner, E. A. Rafferty, T. Wu, M. A. Roubidoux, R. H. Moore, D. B. Kopans, L. M. Hadjiiski, and M. A. Helvie, “Computerized detection of masses on digital tomosynthesis mammograms—A preliminary study,” Proceedings of IWDM, 2004, pp. 199202.
141.
141.I. Reiser, R. M. Nishikawa, M. L. Giger, T. Wu, E. A. Rafferty, R. Moore, and D. B. Kopans, “Computerized mass detection for digital breast tomosynthesis directly from the projection images,” Med. Phys. 33, 482491 (2006).
http://dx.doi.org/10.1118/1.2163390
142.
142.S. Katsuragawa, K. Doi, and H. MacMahon, “Image feature analysis and computer-aided diagnosis in digital radiography. Detection and characterization of interstitial lung disease in digital chest radiographs,” Med. Phys. 15, 311319 (1988).
http://dx.doi.org/10.1118/1.596224
143.
143.M. L. Giger, N. Ahn, K. Doi, H. MacMahon, and C. E. Metz, “Computerized detection of pulmonary nodules in digital chest images: Use of morphological filters in reducing false-positive detections,” Med. Phys. 17, 861865 (1990).
http://dx.doi.org/10.1118/1.596478
144.
144.M. L. Giger, K. Doi, H. MacMahon, C. E. Metz, and F.-F. Yin, “Computer-aided detection of pulmonary nodules in digital chest images,” Radiographics 10, 4152 (1990).
145.
145.S. C. Lo, S. L. Lou, J. S. Lin, M. T. Freedman, and S. K. Mun, “Artificial convolution neural network techniques and applications to lung nodule detection,” IEEE Trans. Med. Imaging 14, 711718 (1995).
http://dx.doi.org/10.1109/42.476112
146.
146.Z. Yue, A. Goshtasby, and L. Ackerman, “Automatic detection of rib borders in chest radiographs,” IEEE Trans. Med. Imaging 14, 525536 (1995).
http://dx.doi.org/10.1109/42.414618
147.
147.X. W. Xu, K. Doi, T. Kobayashi, H. MacMahon, and M. L. Giger, “Development of an improved CAD scheme for automated detection of lung nodules in digital chest images,” Med. Phys. 24, 13951403 (1997).
http://dx.doi.org/10.1118/1.598028
148.
148.F. Mao, W. Qian, J. Gaviria, and L. P. Clarke, “Fragmentary window filtering for multiscale lung nodule detection: Preliminary study,” Acad. Radiol. 5, 306311 (1998).
149.
149.M. G. Penedo, M. J. Carreira, A. Mosquera, and D. Cabello, “Computer-aided diagnosis: A neural-network-based approach to lung nodule detection,” IEEE Trans. Med. Imaging 17, 872880 (1998).
http://dx.doi.org/10.1109/42.746620
150.
150.K. T. Bae, J. S. Kim, Y. H. Na, K. G. Kim, and J. H. Kim, “Pulmonary nodules: Automated detection on CT images with morphologic matching algorithm—Preliminary results,” Radiology 236, 286293 (2005).
151.
151.K. Suzuki, J. Shiraishi, H. Abe, H. MacMahon, and K. Doi, “False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network,” Acad. Radiol. 12, 191201 (2005).
152.
152.J. Shiraishi, F. Li, and K. Doi, “Computer-aided diagnosis for improved detection of lung nodules by use of PA and lateral chest radiographs,” Acad. Radiol. 14, 2837 (2007).
153.
153.T. Ishida, S. Katsuragawa, T. Kobayashi, H. MacMahon, and K. Doi, “Computerized analysis of interstitial disease in chest radiographs: Improvement of geometric-pattern feature analysis,” Med. Phys. 24, 915924 (1997).
http://dx.doi.org/10.1118/1.598012
154.
154.S. Sanada, K. Doi, and H. MacMahon, “Image feature analysis and computer-aided diagnosis in digital radiography. Automated detection of pneumothorax in chest images,” Med. Phys. 19, 11531160 (1992).
http://dx.doi.org/10.1118/1.596790
155.
155.A. Kano, K. Doi, H. MacMahon, D. D. Hassell, and M. L. Giger, “Digital image subtraction of temporally sequential chest images for detection of interval change,” Med. Phys. 21, 453461 (1994).
http://dx.doi.org/10.1118/1.597308
156.
156.T. Ishida, S. Katsuragawa, K. Nakamura, H. MacMahon, and K. Doi, “Iterative image warping technique for temporal subtraction of sequential chest radiographs to detect interval change,” Med. Phys. 26, 13201329 (1999).
http://dx.doi.org/10.1118/1.598627
157.
157.S. G. Armato, D. J. Doshi, R. Engelmann, P. Caligiuri, and H. MacMahon, “Temporal subtraction of dual-energy chest radiographs,” Med. Phys. 33, 19111919 (2006).
http://dx.doi.org/10.1118/1.2163387
158.
158.T. Kobayashi, X.-W. Xu, H. MacMahon, C. E. Metz, and K. Doi, “Effect of a computer-aided diagnosis scheme on radiologists’ performance in detection of lung nodules on radiographs,” Radiology 199, 843848 (1996).
159.
159.H. MacMahon, R. Engelmann, F. M. Behlen, K. R. Hoffmann, T. Ishida, C. Roe, C. E. Metz, and K. Doi, “Computer-aided diagnosis of pulmonary nodules: Results of a large-scale observer test,” Radiology 213, 723726 (1999).
160.
160.S. Kakeda, J. Moriya, H. Sato, T. Aoki, H. Watanabe, H. Nakata, N. Oda, S. Katsuragawa, K. Yamamoto, and K. Doi, “Improved detection of lung nodules with aid of computerized detection method: Evaluation of a commercial computer-aided diagnosis system,” AJR, Am. J. Roentgenol. 182, 505510 (2004).
161.
161.S. Sakai, H. Soeda, N. Takahashi, T. Okafuji, T. Yoshitake, H. Yabuuchi, I. Yoshino, K. Yamamoto, H. Honda, and K. Doi, “Computer-aided nodule detection on digital chest radiography: Validation test on consecutive T1 cases of resectable lung cancer,” J. Digit Imaging 19, 376382 (2006).
162.
162.C. I. Henschke, D. I. McCauley, D. F. Yankelevitz, D. P. Naidich, G. McGuinness, O. S. Miettinen, D. M. Libby, M. W. Pasmantier, J. Koizumi, N. K. Altorki, and J. P. Smith, “Early lung cancer action project: Overall design and findings from baseline screening,” Lancet 354, 99105 (1999).
http://dx.doi.org/10.1016/S0140-6736(99)06093-6
163.
163.M. L. Giger, K. T. Bae, and H. MacMahon, “Computerized detection of pulmonary nodules in computed tomography images,” Invest. Radiol. 29, 459465 (1994).
http://dx.doi.org/10.1097/00004424-199404000-00013
164.
164.S. G. Armato, M. L. Giger, and H. MacMahon, “Automated detection of lung nodules in CT scans: Preliminary results,” Med. Phys. 28, 15521561 (2001).
http://dx.doi.org/10.1118/1.1387272
165.
165.M. S. Brown, M. F. McNitt-Gray, J. G. Goldin, R. D. Suh, J. W. Sayre, and D. R. Aberle, “Patient-specific models for lung nodule detection and surveillance in CT images,” IEEE Trans. Med. Imaging 20, 12421250 (2001).
http://dx.doi.org/10.1109/42.974919
166.
166.S. Armato, F. Li, M. Giger, H. MacMahon, S. Sone, and K. Doi, “Lung cancer: Performance of automated lung nodule detection applied to cancers missed in a CT screening program,” Radiology 225, 685692 (2002).
167.
167.M. N. Gurcan, B. Sahiner, N. Petrick, H. P. Chan, E. A. Kazerooni, P. N. Cascade, and L. Hadjiiski, “Lung nodule detection on thoracic computed tomography images: Preliminary evaluation of a computer-aided diagnosis system,” Med. Phys. 29, 25522558 (2002).
http://dx.doi.org/10.1118/1.1515762
168.
168.K. Suzuki, S. G. Armato III, F. Li, S. Sone, and K. Doi, “Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography,” Med. Phys. 30, 16021617 (2003).
http://dx.doi.org/10.1118/1.1580485
169.
169.W. Sensakovic, S. Armato III, A. Starkey, and J. Ogarek, “Automated matching of temporally sequential CT sections,” Med. Phys. 31, 34173424 (2004).
http://dx.doi.org/10.1118/1.1812611
170.
170.Z. Ge, B. Sahiner, H. P. Chan, L. M. Hadjiiski, P. N. Cascade, N. Bogot, E. A. Kazerooni, J. Wei, and C. Zhou, “Computer aided detection of lung nodules: False positive reduction using a 3D gradient field method and 3D ellipsoid fitting,” Med. Phys. 32, 24432454 (2005).
http://dx.doi.org/10.1118/1.1944667
171.
171.K. Peldschus, P. Herzog, S. A. Wood, J. I. Cheema, P. Costello, and U. J. Schoepf, “Computer-aided diagnosis as a second reader—Spectrum of findings in CT studies of the chest interpreted as normal,” Chest 128, 15171523 (2005).
http://dx.doi.org/10.1378/chest.128.3.1517
172.
172.G. D. Rubin, J. K. Lyo, D. S. Paik, A. J. Sherbondy, L. C. Chow, A. N. Leung, R. Mindelzun, P. K. Schraedley-Desmond, S. E. Zinck, D. P. Naidich, and S. Napel, “Pulmonary nodules on multi-detector row CT scans: Performance comparison of radiologists and computer-aided detection,” Radiology 234, 274283 (2005).
http://dx.doi.org/10.1148/radiol.2341040589
173.
173.B. Sahiner, Z. Ge, H. Chan, L. M. Hadjiiski, N. Bogot, P. Cascade, and E. Kazerooni, “False positive reduction using Hessian features in computer-aided detection of pulmonary nodules on thoracic CT images.” Proceedings of the SPIE—Medical Imaging Annual Meeting 2005.
174.
174.K. Marten and C. Engelke, “Computer-aided detection and automated CT volumetry of pulmonary nodules,” Eur. Radiol. 17, 888901 (2007).
175.
175.S. G. Armato, G. McLennan, M. F. McNitt-Gray, C. R. Meyer, D. Yankelevitz, D. R. Aberle, C. I. Henschke, E. A. Hoffman, E. A. Kazerooni, H. MacMahon, A. P. Reeves, B. Y. Croft, and L. P. Clarke, “Lung image database consortium: Developing a resource for the medical imaging research community,” Radiology 232, 739748 (2004).
http://dx.doi.org/10.1148/radiol.2323032035
176.
176.K. Awai, K. Murao, A. Ozawa, M. Komi, H. Hayakawa, S. Hori, and Y. Nishimura, “Pulmonary nodules at chest CT: Effect of computer-aided diagnosis on radiologists’ detection performance,” Radiology 230, 347352 (2004).
http://dx.doi.org/10.1148/radiol.2302030049
177.
177.J. W. Lee, J. M. Goo, H. J. Lee, J. H. Kim, S. Kim, and Y. T. Kim, “The potential contribution of a computer-aided detection system for lung nodule detection in multidetector row computed tomography,” Invest. Radiol. 39, 649655 (2004).
http://dx.doi.org/10.1097/00004424-200411000-00001
178.
178.K. Marten, T. Seyfarth, F. Auer, E. Wiener, A. Grillhösl, S. Obenauer, E. J. Rummeny, and C. Engelke, “Computer-assisted detection of pulmonary nodules: Performance evaluation of an expert knowledge-based detection system in consensus reading with experienced and inexperienced chest radiologists,” Eur. Radiol. 14, 19301938 (2004).
179.
179.M. S. Brown, J. G. Goldin, S. Rogers, H. J. Kim, R. D. Suh, M. F. McNitt-Gray, S. K. Shah, D. Truong, K. Brown, and J. W. Sayre, “Computer-aided lung nodule detection in CT results of large-scale observer test,” Acad. Radiol. 12, 681686 (2005).
180.
180.F. Li, Q. Li, R. Engelmann, M. Aoyama, S. Sone, H. MacMahon, and K. Doi, “Improving radiologists’ recommendations with computer-aided diagnosis for management of small nodules detected by CT,” Acad. Radiol. 13, 943950 (2006).
181.
181.B. Sahiner, L. M. Hadjiiski, H. P. Chan, J. Shi, P. N. Cascade, E. A. Kazerooni, C. Zhou, J. Wei, A. R. Chughtai, C. Poopat, T. Song, J. Stojanovska, L. Frank, and A. Attili, “Effect of CAD on radiologists’ detection of lung nodules on thoracic CT scans: Observer performance study,” Proc. SPIE 6515, 1D11D7 (2007).
182.
182.B. Acar, C. F. Beaulieu, S. B. Gokturk, C. Tomasi, D. S. Paik, R. B. Jeffrey, J. Yee, and S. Napel, “Edge displacement field-based classification for improved detection of polyps in CT colonography,” IEEE Trans. Med. Imaging 21, 14611467 (2002).
http://dx.doi.org/10.1109/TMI.2002.806405
183.
183.J. Nappi and H. Yoshida, “Automated detection of polyps with CT colonography: Evaluation of volumetric features for reduction of false-positive findings,” Acad. Radiol. 9, 386397 (2002).
184.
184.H. Yoshida, J. Nappi, P. MacEneaney, D. Rubin, and A. Dachman, “Computer-aided diagnosis scheme for detection of polyps at CT colonography,” Radiographics 22, 963979 (2002).
185.
185.R. M. Summers, A. K. Jerebko, M. Franaszek, J. D. Malley, and C. D. Johnson, “Colonic polyps: Complementary role of computer-aided detection in CT colonography,” Radiology 225, 391399 (2002).
http://dx.doi.org/10.1148/radiol.2252011619
186.
186.J. J. Nappi, H. Frimmel, A. H. Dachman, and H. Yoshida, “Computerized detection of colorectal masses in CT colonography based on fuzzy merging and wall-thickening analysis,” Med. Phys. 31, 860872 (2004).
http://dx.doi.org/10.1118/1.1668591
187.
187.R. M. Summers, J. H. Yao, and C. D. Johnson, “CT colonography with computer-aided detection: Automated recognition of ileocecal valve to reduce number of false-positive detections,” Radiology 233, 266272 (2004).
http://dx.doi.org/10.1148/radiol.2331031326
188.
188.L. Bogoni, P. Cathier, M. Dundar, A. Jerebko, S. Lakare, J. Liang, S. Periaswamy, M. E. Baker, and M. MacAri, “Computer-aided detection (CAD) for CT colonography: A tool to address a growing need,” Br. J. Radiol. 78, S57S62 (2005).
189.
189.Z. G. Wang, Z. R. Liang, L. H. Li, X. Li, B. Li, J. Anderson, and D. Harrington, “Reduction of false positives by internal features for polyp detection in CT-based virtual colonoscopy,” Med. Phys. 32, 36023616 (2005).
http://dx.doi.org/10.1118/1.2122447
190.
190.R. Shi, P. Schraedley-Desmond, S. Napel, E. W. Olcott, R. B. Jeffrey, J. Yee, M. E. Zalis, D. Margolis, D. S. Paik, A. J. Sherbondy, P. Sundaram, and C. F. Beaulieu, “CT colonography: Influence of 3D viewing and polyp candidate features on interpretation with computer-aided detection,” Radiology 239, 768776 (2006).
191.
191.K. Suzuki, H. Yoshida, J. Nappi, and A. Dachman, “Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: Suppression of rectal tubes,” Med. Phys. 33, 38143824 (2006).
http://dx.doi.org/10.1118/1.2349839
192.
192.S. A. Taylor, S. Halligan, D. Burling, M. E. Roddie, L. Honeyfield, J. McQuillan, H. Amin, and J. Dehmeshki, “Computer-assisted reader software versus expert reviewers for polyp detection on CT colonography,” AJR, Am. J. Roentgenol. 186, 696702 (2006).
193.
193.L. X. Zhao, C. P. Botha, J. O. Bescos, R. Truyen, F. M. Vos, and F. H. Post, “Lines of curvature for polyp detection in virtual colonoscopy,” IEEE Trans. Vis. Comput. Graph. 12, 885892 (2006).
http://dx.doi.org/10.1109/TVCG.2006.158
194.
194.A. Mani, S. Napel, D. S. Paik, R. B. Jeffrey, J. Yee, E. W. Olcott, R. Prokesch, M. Davila, P. Schraedley-Desmond, and C. F. Beaulieu, “Computed tomography colonography: Feasibility of computer-aided polyp detection in a ‘first reader’ paradigm,” J. Comput. Assist. Tomogr. 28, 318326 (2004).
http://dx.doi.org/10.1097/00004728-200405000-00003
195.
195.A. Okamura, A. H. Dachman, N. Parsad, J. Näppi, and H. Yoshida, “Evaluation of the effect of CAD on observers’ performance in detection of polyps in CT colonography,” in CARS 2004. Computer Assisted Radiology and Surgery, Proc. 18th International Congress and Exhibition, H. U. Lemke, M. W. Vannier, K. Inamura, A. G. Farman, K. Doi, and J. H. C. Reiber, eds. (Elsevier, Chicago, IL, 2004), pp. 989992.
196.
196.S. Halligan, D. G. Altman, S. Mallett, S. A. Taylor, D. Burling, M. Roddie, L. Honeyfield, J. McQuillan, H. Amin, and J. Dehmeshki, “Computed tomographic colonography: Assessment of radiologist performance with and without computer-aided detection,” Gastroenterology 131, 16901699 (2006).
197.
197.D. J. Getty, R. M. Pickett, C. J. D’Orsi, and J. A. Swets, “Enhanced interpretation of diagnostic images,” Invest. Radiol. 23, 240252 (1988).
http://dx.doi.org/10.1097/00004424-198804000-00002
198.
198.C. J. D’Orsi, D. J. Getty, J. A. Swets, R. M. Pickett, S. E. Seltzer, and B. J. McNeil, “Reading and decision aids for improved accuracy and standardization of mammographic diagnosis,” Radiology 184, 619622 (1992).
199.
199.Y. Wu, M. L. Giger, K. Doi, C. J. Vyborny, R. A. Schmidt, and C. E. Metz, “Artificial neural networks in mammography: Application to decision making in the diagnosis of breast cancer,” Radiology 187, 8187 (1993).
200.
200.C. E. J. Floyd, J. Lo, A. J. Yun, D. C. Sullivan, and P. J. Kornguth, “Prediction of breast cancer malignancy using an artificial neural network,” Cancer 74, 29442948 (1994).
201.
201.J. A. Baker, P. J. Kornguth, J. Y. Lo, M. E. Williford, and C. E. Floyd, Jr., “Breast cancer: Prediction with artificial neural network based on BI-RADS standardized lexicon,” Radiology 196, 817822 (1995).
202.
202.J. Y. Lo, J. A. Baker, P. J. Kornguth, J. D. Iglehart, and C. E. Floyd, Jr., “Predicting breast cancer invasion with artificial neural networks on the basis of mammographic features,” Radiology 203, 159163 (1997).
203.
203.C. E. Floyd, Jr., J. Y. Lo, and G. D. Tourassi, “Case-based reasoning computer algorithm that uses mammographic findings for breast biopsy decisions,” AJR, Am. J. Roentgenol. 175, 13471352 (2000).
204.
204.M. K. Markey, J. Y. Lo, and C. E. Floyd, Jr., “Differences between computer-aided diagnosis of breast masses and that of calcifications,” Radiology 223, 489493 (2002).
http://dx.doi.org/10.1148/radiol.2232011257
205.
205.C. D’Orsi et al., Breast Imaging Reporting and Data System (BI-RADS), 4th ed. (American College of Radiology, Reston, VA, 2003).
206.
206.S. Gupta, P. F. Chyn, and M. K. Markey, “Breast cancer CADx based on BI-RAds descriptors from two mammographic views,” Med. Phys. 33, 18101817 (2006).
http://dx.doi.org/10.1118/1.2188080
207.
207.A. Stavros et al., “Solid breast nodules: Use of sonography to distinguish between benign and malignant lesions,” Radiology 196, 123134 (1995).
208.
208.B. Garra, B. Krasner, S. Horii, S. Ascher, S. Mun, and R. Zeman, “Improving the distinction between benign and malignant breast lesions: The value of sonographic texture analysis,” Ultrason. Imaging 15, 267285 (1993).
http://dx.doi.org/10.1006/uimg.1993.1017
209.
209.M. L. Giger, C. J. Vyborny, and R. A. Schmidt, “Computerized characterization of mammographic masses: Analysis of spiculation,” Cancer Lett. 77, 201211 (1994).
210.
210.Z. Huo, M. L. Giger, C. J. Vyborny, U. Bick, P. Lu, D. E. Wolverton, and R. A. Schmidt, “Analysis of spiculation in the computerized classification of mammographic masses,” Med. Phys. 22, 15691579 (1995).
http://dx.doi.org/10.1118/1.597626
211.
211.Y. Jiang, R. M. Nishikawa, D. E. Wolverton, M. L. Giger, K. Doi, C. J. Vyborny, and R. A. Schmidt, “Automated feature analysis and classification of malignant and benign clustered microcalcifications,” Radiology 198, 671678 (1996).
212.
212.C. Kocur, S. Rogers, L. Myers, T. Burns, M. Kabrisky, J. Hoffmeister, K. Bauer, and J. Steppe, “Using neural networks to select wavelet features for breast cancer diagnosis,” IEEE Eng. Med. Biol. Mag. 15, 94102 (1996).
213.
213.J.-L. Viton, M. Rasigni, G. Rasigni, and A. Llebaria, “Method for characterizing masses on digital mammograms,” Opt. Eng. (Bellingham) 35, 34533459 (1996).
http://dx.doi.org/10.1117/1.601107
214.
214.H. P. Chan, B. Sahiner, N. Petrick, M. A. Helvie, K. L. Lam, D. D. Adler, and M. M. Goodsitt, “Computerized classification of malignant and benign microcalcifications on mammograms: Texture analysis using an artificial neural network,” Phys. Med. Biol., 42, 549567 (1997).
http://dx.doi.org/10.1088/0031-9155/42/3/008
215.
215.K. G. Gilhuijs, M. L. Giger, and U. Bick, “Computerized analysis of breast lesions in three dimensions using dynamic magnetic-resonance imaging,” Med. Phys. 25, 16471654 (1998).
http://dx.doi.org/10.1118/1.598345
216.
216.Z. Huo et al., “Automated computerized classification of malignant and benign mass lesions on digitized mammograms,” Acad. Radiol. 5, 155168 (1998).
217.
217.M. Kupinski and M. L. Giger, “Automated seeded lesion segmentation on digital mammograms,” IEEE Trans. Med. Imaging 17, 510517 (1998).
http://dx.doi.org/10.1109/42.730396
218.
218.B. Sahiner, H. P. Chan, N. Petrick, M. A. Helvie, and M. M. Goodsitt, “Computerized characterization of masses on mammograms: The rubber band straightening transform and texture analysis,” Med. Phys. 25, 516526 (1998).
http://dx.doi.org/10.1118/1.598228
219.
219.D. R. Chen, R. F. Chang, and Y. L. Huang, “Computer-aided diagnosis applied to US of solid breast nodules by using neural networks,” Radiology 213, 407412 (1999).
220.
220.M. L. Giger, H. Al-Hallaq, Z. Huo, C. Moran, D. E. Wolverton, C. W. Chan, and W. Zhong, “Computerized analysis of lesions in US images of the breast,” Acad. Radiol. 6, 665674 (1999).
221.
221.Z. Huo, M. L. Giger, and C. E. Metz, “Effect of dominant features on neural network performance in the classification of mammographic lesions,” Phys. Med. Biol. 44, 25792595 (1999).
http://dx.doi.org/10.1088/0031-9155/44/10/315
222.
222.Y. Jiang, R. M. Nishikawa, R. A. Schmidt, C. E. Metz, M. L. Giger, and K. Doi, “Improving breast cancer diagnosis with computer-aided diagnosis,” Acad. Radiol. 6, 2233 (1999).
223.
223.A. I. Penn, L. Bolinger, M. D. Schnall, and M. H. Loew, “Discrimination of MR images of breast masses with fractal-interpolation function models,” Acad. Radiol. 6, 156163 (1999).
224.
224.P. Taylor, J. Fox, and A. T. Pokropek, “The development and evaluation of CADMIUM: A prototype system to assist in the interpretation of mammograms,” Med. Image Anal. 3, 321337 (1999).
225.
225.Z. Huo, M. L. Giger, C. J. Vyborny, D. E. Wolverton, and C. E. Metz, “Computerized classification of benign and malignant masses on digitized mammograms: A study of robustness,” Acad. Radiol. 7, 10771084 (2000).
226.
226.L. Hadjiiski, B. Sahiner, H. P. Chan, N. Petrick, M. A. Helvie, and M. Gurcan, “Analysis of temporal changes of mammographic features: Computer-aided classification of malignant and benign breast masses,” Med. Phys. 28, 23092317 (2001).
http://dx.doi.org/10.1118/1.1412242
227.
227.K. Horsch, M. L. Giger, L. A. Venta, and C. J. Vyborny, “Automatic segmentation of breast lesions on ultrasound,” Med. Phys. 28, 16521659 (2001).
http://dx.doi.org/10.1118/1.1386426
228.
228.Z. Huo, M. L. Giger, and C. J. Vyborny, “Computerized analysis of multiple-mammographic views: Potential usefulness of special view mammograms in computer-aided diagnosis,” IEEE Trans. Med. Imaging 20, 12851292 (2001).
http://dx.doi.org/10.1109/42.974923
229.
229.B. Sahiner, H. P. Chan, N. Petrick, M. A. Helvie, and L. M. Hadjiiski, “Improvement of mammographic mass characterization using spiculation meausures and morphological features,” Med. Phys. 28, 14551465 (2001).
http://dx.doi.org/10.1118/1.1381548
230.
230.B. Sahiner, N. Petrick, H. P. Chan, L. M. Hadjiiski, C. Paramagul, M. A. Helvie, and M. N. Gurcan, “Computer-aided characterization of mammographic masses: Accuracy of mass segmentation and its effects on characterization,” IEEE Trans. Med. Imaging 20, 12751284 (2001).
http://dx.doi.org/10.1109/42.974922
231.
231.K. Gilhuijs, E. Deurloo, S. Muller, J. Peterse, and L. Schultze Kool, “Breast MR imaging in women at increased lifetime risk of breast cacer: Clinical system for computerized assessment of breast lesions—Initial results,” Radiology 225, 907916 (2002).
http://dx.doi.org/10.1148/radiol.2253011582
232.
232.K. Horsch, M. L. Giger, L. A. Venta, and C. J. Vyborny, “Computerized diagnosis of breast lesions on ultrasound,” Med. Phys. 29, 157164 (2002).
http://dx.doi.org/10.1118/1.1429239
233.
233.K. Drukker, M. L. Giger, and E. B. Mendelson, “Computerized analysis of shadowing on breast ultrasound for improved lesion detection,” Med. Phys. 30, 18331842 (2003).
http://dx.doi.org/10.1118/1.1584042
234.
234.P. Sajda, C. Spence, and L. Parra, “A multi-scale probabilistic network model for detection, synthesis and compression in mammographic image analysis,” Med. Image Anal. 7, 187204 (2003).
235.
235.W. Chen, M. L. Giger, L. Lan, and U. Bick, “Computerized interpretation of breast MRI: Investigation of enhancement-variance dynamics,” Med. Phys. 31, 10761082 (2004).
http://dx.doi.org/10.1118/1.1695652
236.
236.K. Drukker, M. L. Giger, C. J. Vyborny, and E. B. Mendelson, “Computerized detection and classification of cancer on breast ultrasound,” Acad. Radiol. 11, 526535 (2004).
237.
237.K. Horsch, M. L. Giger, C. J. Vyborny, and L. A. Venta, “Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography,” Acad. Radiol. 11, 272280 (2004).
238.
238.M. Kallergi, “Computer-aided diagnosis of mammographic microcalcification clusters,” Med. Phys. 31, 314326 (2004).
http://dx.doi.org/10.1118/1.1637972
239.
239.B. Sahiner, H. P. Chan, M. A. Roubidoux, M. A. Helvie, L. M. Hadjiiski, A. Ramachandran, C. Paramagul, G. L. LeCarpentier, A. Nees, and C. Blane, “Computerized characterization of breast masses on three-dimensional ultrasound volumes,” Med. Phys. 31, 744754 (2004).
http://dx.doi.org/10.1118/1.1649531
240.
240.K. Drukker, M. Giger, and C. Metz, “Robustness of computerized lesion detection and classification scheme across different breast ultrasound platforms,” Radiology 237, 834840 (2005).
http://dx.doi.org/10.1148/radiol.2373041418
241.
241.K. Drukker, K. Horsch, and M. Giger, “Multimodality computerized diagnosis of breast lesions using mammography and sonography,” Acad. Radiol. 12, 970979 (2005).
242.
242.W. Chen, M. L. Giger, and U. Bick, “A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images,” Acad. Radiol. 13, 6372 (2006).
243.
243.W. Chen, M. L. Giger, U. Bick, and G. M. Newstead, “Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI,” Med. Phys. 33, 28782887 (2006).
http://dx.doi.org/10.1118/1.2210568
244.
244.K. Horsch, M. L. Giger, C. J. Vyborny, L. Lan, E. B. Mendelson, and R. E. Hendrick, “Classification of breast lesions with multimodality computer-aided diagnosis: Observer study results on an independent clinical data set,” Radiology 240, 357368 (2006).
http://dx.doi.org/10.1148/radiol.2401050208
245.
245.C. Varela, S. Timp, and N. Karssemeijer, “Use of border information in the classification of mammographic masses,” Phys. Med. Biol. 51, 425441 (2006).
http://dx.doi.org/10.1088/0031-9155/51/2/016
246.
246.R. S. Rana, Y. Jiang, R. A. Schmidt, R. M. Nishikawa, and B. Liu, “Independent evaluation of computer classification of malignant and benign calcifications in full-field digital mammograms,” Acad. Radiol. 14, 363370 (2007).
247.
247.S. Timp, C. Varela, and N. Karssemeijer, “Temporal change analysis for characterization of mass lesions in mammography,” IEEE Trans. Med. Imaging 26, 945953 (2007).
http://dx.doi.org/10.1109/TMI.2007.897392
248.
248.J. Shi, B. Sahiner, H. P. Chan, J. Ge, L. Hadjiisk, M. A. Helvie, A. Nees, Y. T. Wu, J. Wei, C. Zhou, Y. Zhang, and J. Cui, “Characterization of mammographic masses based on level set segmentation with new image features and patient information,” Med. Phys. 35, 280290 (2008).
http://dx.doi.org/10.1118/1.2820630
249.
249.N. Karssemeijer, “A relaxation method for image segmentation using a spatially dependent stochastic-model,” Pattern Recogn. Lett. 11, 1323 (1990).
250.
250.G. M. te Brake and N. Karssemeijer, “Segmentation of suspicious densities in digital mammograms,” Med. Phys. 28, 259266 (2001).
http://dx.doi.org/10.1118/1.1339884
251.
251.D. J. Catarious, A. Baydush, and C. J. Floyd, “Incorporation of an iterative, linear segmentation routine into a mammographic mass CAD system,” Med. Phys. 31, 15121520 (2004).
http://dx.doi.org/10.1118/1.1738960
252.
252.S. Timp and N. Karssemeijer, “A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammography,” Med. Phys. 31, 958971 (2004).
http://dx.doi.org/10.1118/1.1688039
253.
253.Y. Yuan, M. Giger, H. Li, K. Suzuki, and C. Sennett, “A dual-stage method for lesion segmentation on digital mammograms,” Med. Phys. 34, 41804193 (2007).
http://dx.doi.org/10.1118/1.2790837
254.
254.L. M. Yarusso, R. M. Nishikawa, J. Papaioannou, R. Nagel, P. Jokich, and L. A. Venta, “Application of computer-aided diagnosis to full-field digital mammography,” in Digital Mammography 2000, M. J. Yaffe, ed. (Medical Physics Publishing, Madison, WI, 2000), pp. 421426.
255.
255.H. Li, M. Giger, Y. Yuan, L. Lan, K. Suzuki, A. Jamieson, L. Yarusso, R. M. Nishikawa, and C. Sennett, Comparison of Computerized Image Analyses for Digitized Screen-Film Mammograms and Full-Field Digital Mammography Images (Springer, Berlin, Germany, 2006), pp. 569575.
256.
256.L. Hadjiiski, P. Filev, H. P. Chan, J. Ge, B. Sahiner, M. A. Helvie, and M. A. Roubidoux, “Computerized detection and classification of malignant and benign microcalcifications on full field digital mammograms,” in Digital Mammography (Springer, Berlin, Germany, 2008), pp. 336342.
257.
257.D.-R. Chen, R.-F. Chang, and Y.-L. Huang, “Computer-aided diagnosis applied to US of solid breast nodules by using neural networks,” Radiology 213, 407412 (1999).
258.
258.R.-F. Chang, W.-J. Wu, K. M. Moon, and D.-R. Chen, “Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis,” Ultrasound Med. Biol. 29, 679686 (2003).
http://dx.doi.org/10.1016/S0301-5629(02)00788-3
259.
259.S. Gefen, O. Tretiak, C. Piccoli, K. Donohue, A. Petropulu, P. Shankar, L. Huang, M. Kutay, V. Genis, F. Forsberg, J. Reid, and B. Goldberg, “ROC analysis of ultrasound tissue characterization lassifiers for breast cancer diagnosis,” IEEE Trans. Med. Imaging 22, 170177 (2003).
http://dx.doi.org/10.1109/TMI.2002.808361
260.
260.Y.-L. Huang and D.-R. Chen, “Watershed segmentation for breast tumor in 2-D sonography,” Ultrasound Med. Biol. 30, 625632 (2004).
http://dx.doi.org/10.1016/j.ultrasmedbio.2003.12.001
261.
261.G. Brix et al., “Microcirculation and microvasculature in breast tumors: Pharmacokinetic analysis of dynamic breast MR images series,” Magn. Reson. Med. 52, 420429 (2004).
262.
262.D. Ikeda et al., “Develpment, standardization, and testing of a lexicon for reporting contrast-enhanced breast magnetic resonance imaging studies,” J. Magn. Reson Imaging 13, 889895 (2001).
263.
263.Z. Huo, M. L. Giger, C. J. Vyborny, and C. E. Metz, “Effectiveness of computer-aided diagnosis—Observer study with independent database of mammograms,” Radiology 224, 560568 (2002).
http://dx.doi.org/10.1148/radiol.2242010703
264.
264.Y. Jiang, R. M. Nishikawa, R. A. Schmidt, A. Y. Toledano, and K. Doi, “Potential of computer-aided diagnosis to reduce variability in radiologists’ interpretations of mammograms depicting microcalcifications,” Radiology 220, 787794 (2001).
http://dx.doi.org/10.1148/radiol.220001257
265.
265.L. Hadjiiski, H. P. Chan, B. Sahiner, M. A. Helvie, M. A. Roubidoux, C. Blane, C. Paramagul, N. Petrick, J. Bailey, K. Klein, M. Foster, S. Patterson, D. Adler, A. Nees, and J. Shen, “Improvement in radiologists’ characterization of malignant and benign breast masses on serial mammograms with computer-aided diagnosis: An ROC study,” Radiology 233, 255265 (2004).
http://dx.doi.org/10.1148/radiol.2331030432
266.
266.J. Sklansky, E. Tao, C. Ornes, and A. Disher, A Visualized Mammographic Database in Computer-Aided Diagnosis (Elsevier, New York, 1999).
267.
267.H. A. Swett and P. R. Fisher, “ICON: A computer-based approach to differential diagnosis in radiology,” Radiology 163, 555558 (1987).
268.
268.H. A. Swett, P. R. Fisher, A. I. Cohn, P. I. Miller, and P. G. Mutalik, “Expert system controlled image display,” Radiology 172, 487493 (1989).
269.
269.M. L. Giger, Z. Huo, L. Lan, and C. Vyborny, “Intelligent search workstation for computer-aided diagnosis,” Proc. CARS, pp. 822827 (2000).
270.
270.M. L. Giger, Z. Huo, C. J. Vyborny, L. Lan, R. M. Nishikawa, and I. RosenbourghResults of an observer study with an intelligent mammographic workstation for CAD,” in Digital Mammography IWDM 2002, H.-O. Peitgen, ed. (Springer-Verlag, Berlin, Germany, 2003), pp. 297303.
271.
271.J. A. Swets, D. J. Getty, R. M. Pickett, C. J. D’Orsi, S. E. Seltzer, and B. J. McNeil, “Enhancing and evaluating diagnostic accuracy,” Med. Decis Making 11, 918 (1991).
272.
272.Q. Li, F. Li, J. Shiraishi, S. Katsuragawa, S. Sone, and K. Doi, “Investigation of new psychophysical measures for evalution of similar images on thoracic CT for distinction between benign and malignant nodules,” Med. Phys. 30, 25842593 (2003).
http://dx.doi.org/10.1118/1.1605351
273.
273.C. Muramatsu, Q. Li, K. Suzuki, R. A. Schmidt, J. Shiraishi, G. M. Newstead, and K. Doi, “Investigation of psychophysical measure for evaluation of similar images for mammographic masses: Preliminary results,” Med. Phys. 32, 22952304 (2005).
http://dx.doi.org/10.1118/1.1944913
274.
274.B. Zheng, A. Lu, L. A. Hardesty, J. H. Sumkin, C. M. Hakim, M. A. Ganott, and D. Gur, “A method to improve visual similarity of breast masses for an interactive computer-aided diagnosis environment,” Med. Phys. 33, 111117 (2006).
http://dx.doi.org/10.1118/1.2143139
275.
275.B. Sahiner et al., “The effect of multi-modality computer classifier on radiologists’ accuracy in characterizing breast masses,” RSNA Abstract Book (RSNA, Oak Brook, IL, 2004).
276.
276.K. Horsch, M. L. Giger, and C. E. Metz, “Prevalence scaling: Applications to an intelligent workstation for the diagnosis of breast cancer,” Acad. Radiol. 15, 14461457 (2008).
277.
277.J. Gurney and S. Swensen, “Solitary pulmonary nodules: Determining the likelihood of malignancy with neural network analysis,” Radiology 196, 823829 (1995).
278.
278.K. Nakamura et al., “Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules by use of artificial neural networks,” Radiology 214, 823830 (2000).
279.
279.M. Aoyama, Q. Li, S. Katsuragawa, H. MacMahon, and K. Doi, “Automated computerized scheme for distinction between benign and malignant solitary pulmonary nodules on chest images,” Med. Phys. 29, 701708 (2002).
http://dx.doi.org/10.1118/1.1469630
280.
280.Y. Kawata et al., “Quantitative surface characterization of pulmonary nodules based on thin-section CT images,” IEEE Trans. Med. Imaging 45, 21322138 (1998).
281.
281.M. F. McNitt-Gray, E. Hart, N. Wyckoff, J. Sayre, J. Goldin, and D. R. Aberle, “A pattern classification approach to characterizing solitary pulmonary nodules imaged on high resolution CT: Preliminary restuls,” Med. Phys. 26, 880888 (1999).
http://dx.doi.org/10.1118/1.598603
282.
282.M. Aoyama, Q. Li, S. Katsuragawa, F. Li, S. Sone, and K. Doi, “Computerized scheme for determinaion of the likelihood measure of malignancy for pulmonary nodules on low-dose CT images,” Med. Phys. 30, 387394 (2003).
http://dx.doi.org/10.1118/1.1543575
283.
283.F. Li et al., “Improvement in radiologists’ performance for differentiating small benign from malignant lung nodules on high-resolution CT by using computer-estimated likelihood of malignancy,” AJR, Am. J. Roentgenol. 183, 12091215 (2004).
284.
284.K. Mori et al., “Development of a novel computer-aided diagnosis system for automatic discrimination of malignant from benign solitary nodules on thin-section dynamic computed tomography,” J. Comput. Assist. Tomogr. 29, 215222 (2005).
285.
285.S. Shah et al., “Computer aided characterization of solitary pulmonary nodules using volumetric and contrast enhancement features,” Acad. Radiol. 12, 13101319 (2005).
286.
286.A. Kurjak, S. Cecuk, and B. Breyer, “Prediction of maturity in first trimester of pregnancy by ultrasonic measurement of fetal crown-rump length,” J. Clin. Ultrasound 4, 8384 (1976).
287.
287.A. F. Merlino, “A protractor for measuring scoliosis by the Cobb technique,” J. Bone Jt. Surg., Am. Vol. 55, 10981099 (1973).
288.
288.P. Therasse, E. A. E. S. G. Arbuck, J. Wanders, R. S. Kaplan, L. Rubinstein, J. Verweij, G. M. Van, A. T. van Oosterom, M. C. Christian, and S. G. Gwyther, “New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada,” J. Natl. Cancer Inst. 92, 205216 (2000).
http://dx.doi.org/10.1093/jnci/92.3.205
289.
289.E. Zerhouni, R. H. M. J. F. Spivey, F. P. Leo, F. P. Stitik, and S. S. Siegelman, “Factors influencing quantitative CT measurements of solitary pulmonary nodules,” J. Comput. Assist. Tomogr. 6, 10751087 (1982).
290.
290.M. Goodsitt, T. W. W. H. P. Chan, S. C. Larson, E. G. Christodoulou, and J. Kim, “Accuracy of the CT numbers of simulated lung nodules imaged with multi-detector CT scanners,” Med. Phys. 33, 30063017 (2006).
http://dx.doi.org/10.1118/1.2219332
291.
291.J. Borders, D. J. S. E. Kerr, J. A. Stein, E. Ramos, A. A. Moscona, and D. Resnick, “Quantitative dual-energy radiographic absorptiometry of the lumbar spine: in vivo comparison with dual-photon absorptiometry,” Radiology 170, 129131 (1989).
292.
292.C. E. Cann, “Low-dose CT scanning for quantitative spinal mineral analysis,” Radiology 140, 813815 (1981).
293.
293.C. Cann, F. O. K. H. K. Genant, and B. Ettinger, “Quantitative computed tomography for prediction of vertebral fracture risk,” Bone (N.Y.) 6, 17 (1985).
http://dx.doi.org/10.1016/8756-3282(85)90399-0
294.
294.C. E. Cann, “Quantitative CT for determination of bone mineral density: A review,” Radiology 166, 509522 (1988).
295.
295.C. Mistretta and C. M. S. A. B. Crummy, “Digital angiography: A perspective,” Radiology 139, 273276 (1981).
296.
296.C. Mistretta and A. Crummy, “Diagnosis of cardiovascular disease by digital subtraction angiography,” Science 214, 761765 (1981).
297.
297.C. Mistretta and A. Crummy, “Basic concepts of digital angiography,” Prog. Cardiovasc. Dis. 28, 245255 (1986).
298.
298.P. Aebersold, “The development of nuclear medicine,” Am. J. Roentgenol., Radium Ther. Nucl. Med. 75, 10271039 (1956).
299.
299.R. Jaszczak, C. B. L. F. R. Whitehead, and R. E. Coleman, “Lesion detection with single-photon emission computed tomography (SPECT) compared with conventional imaging,” J. Nucl. Med. 23, 97102 (1982).
300.
300.H. Anger, “Scintillation camera with multichannel collimators,” J. Nucl. Med. 5, 515531 (1964).
301.
301.D. A. Weber, “Computers in nuclear medicine: Introductory concepts,” Semin Nucl. Med. 8, 107112 (1978).
302.
302.B. Tsui, E. C. F. X. Zhao, and W. H. McCartney, “Quantitative single-photon emission computed tomography: Basics and clinical considerations,” Semin Nucl. Med. 24, 3865 (1994).
303.
303.M. King and T. S. P. B. M. Tsui, “Attenuation compensation for cardiac single-photon emission computed tomographic imaging: Part 1. Impact of attenuation and methods of estimating attenuation maps,” J. Nucl. Cardiol. 2, 513524 (1995).
304.
304.M. King, T. S. P. B. M. Tsui, S. J. Glick, and E. J. Soares, “Attenuation compensation for cardiac single-photon emission computed tomographic imaging: Part 2. Attenuation compensation algorithms,” J. Nucl. Cardiol. 3, 5564 (1996).
305.
305.P. Pretorius, M. A. K. W. Xia, B. M. Tsui, T. S. Pan, and B. J. Villegas, “Evaluation of right and left ventricular volume and ejection fraction using a mathematical cardiac torso phantom,” J. Nucl. Med. 38, 15281535 (1997).
306.
306.R. Katzberg, R. H. T. R. E. O’Mara, and D. A. Weber, “Radionuclide skeletal imaging and single photon emission computed tomography in suspected internal derangements of the temporomandibular joint,” J. Oral Maxillofac Surg. 42, 782787 (1984).
307.
307.S. Liew and B. Hasegawa, “Noise, resolution, and sensitivity considerations in the design of a single-slice emission-transmission computed tomographic system,” Med. Phys. 18, 10021015 (1991).
http://dx.doi.org/10.1118/1.596643
308.
308.T. Lang, S. C. L. B. H. Hasegawa, J. K. Brown, S. C. Blankespoor, S. M. Reilly, E. L. Gingold, and C. E. Cann, “Description of a prototype emission-transmission computed tomography imaging system,” J. Nucl. Med. 33, 18811887 (1992).
309.
309.E. Hoffman and M. Phelps, “Positron emission tomography,” Med. Instrum. 13, 147151 (1979).
310.
310.M. Raichle, R. L. G. M. J. Welch, Jr., K. B. Larson, B. E. Laux, and M. M. Ter-Pogossian, “Regional cerebral oxygen utilization with positron emission tomography,” Trans. Am. Neurol. Assoc. 104, 154156 (1979).
311.
311.T. Beyer, T. B. D. W. Townsend, P. E. Kinahan, M. Charron, R. Roddy, J. Jerin, J. Young, L. Byars, and R. Nutt, “A combined PET/CT scanner for clinical oncology,” J. Nucl. Med. 41, 13691379 (2000).
312.
312.D. Townsend and S. Cherry, “Combining anatomy and function: The path to true image fusion,” Eur. Radiol. 11, 19681974 (2001).
313.
313.P. Kinahan, T. B. D. W. Townsend, and D. Sashin, “Attenuation correction for a combined 3D PET/CT scanner,” Med. Phys. 25, 20462053 (1998).
http://dx.doi.org/10.1118/1.598392
314.
314.P. C. Lauterbur, “Progress in n.m.r. zeugmatography imaging,” Philos. Trans. R. Soc. London, Ser. B 289, 483487 (1980).
315.
315.J. Gore, J. S. O. E. W. Emery, and F. H. Doyle, “Medical nuclear magnetic resonance imaging: I. Physical principles,” Invest. Radiol. 16, 269274 (1981).
316.
316.P. A. Bottomley, “NMR imaging techniques and applications: A review,” Rev. Sci. Instrum. 53, 13191337 (1982).
http://dx.doi.org/10.1063/1.1137180
317.
317.G. Glover and N. Pelc, “A rapid-gated cine MRI technique,” Magn. Reson. Med. 24, 299333 (1988).
318.
318.G. Glover and J. Pauly, “Projection reconstruction techniques for reduction of motion effects in MRI,” Magn. Reson. Med. 28, 275289 (1992).
http://dx.doi.org/10.1002/mrm.1910280209
319.
319.P. Bottomley and W. Edelstein, “Power deposition in whole-body NMR imaging,” Med. Phys. 8, 510512 (1981).
http://dx.doi.org/10.1118/1.595000
320.
320.S. Ogawa, A. R. K. T. M. Lee, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. U.S.A. 87, 98689872 (1990).
http://dx.doi.org/10.1073/pnas.87.24.9868
321.
321.G. Graham, O. A. P. J. Zhong, R. T. Constable, J. W. Prichard, and J. C. Gore, “BOLD MRI monitoring of changes in cerebral perfusion induced by acetazolamide and hypercarbia in the rat,” Magn. Reson. Med. 31, 557560 (1994).
322.
322.R. Menon, X. H. S. Ogawa, J. P. Strupp, P. Anderson, and K. Ugurbil, “BOLD based functional MRI at includes a capillary bed contribution: Echo-planar imaging correlates with previous optical imaging using intrinsic signals,” Magn. Reson. Med. 33, 453459 (1995).
http://dx.doi.org/10.1002/mrm.1910330323
323.
323.R. F. Wagner, S. V. Beiden, G. Campbell, C. E. Metz, and W. M. Sacks, “Assessment of medical imaging and computer-assisted systems: Lessons from recent experience,” Acad. Radiol. 9, 12641277 (2002).
324.
324.C. E. Metz, “Basic principles of ROC analysis,” Semin Nucl. Med. 8, 283298 (1978).
325.
325.R. F. Wagner, H. P. Chan, J. T. Mossoba, B. Sahiner, and N. Petrick, “Components of variance in RoC analysis of CADx classifier performance,” Proc. SPIE 3338, 859875 (1998).
http://dx.doi.org/10.1117/12.310896
326.
326.S. V. Beiden, R. F. Wagner, K. Doi R. M. Nishikawa, M. Freedman, S.-C. Lo, and X.-W. Xu, “Independent versus sequential reading in ROC studies of computer-assisted modalities: Analysis of components of variance,” Acad. Radiol. 9, 10261043 (2002).
327.
327.R. Wagner, C. E. Metz, and G. Campbell, “Assessment of medical imaging systems and computer aids: A tutorial review,” Acad. Radiol. 14, 723748 (2007).
328.
328.D. C. Edwards, L. Lan, C. E. Metz, M. L. Giger, and R. M. Nishikawa, “Estimating three-class ideal observer decision variables for computerized detection and classification of mammographic mass lesions,” Med. Phys. 31, 8190 (2004).
http://dx.doi.org/10.1118/1.1631912
329.
329.D. C. Edwards, C. E. Metz, and M. A. Kupinski, “Ideal observers and optimal ROC hypersurfaces in N-class classification,” IEEE Trans. Med. Imaging 23, 891895 (2004).
http://dx.doi.org/10.1109/TMI.2004.828358
330.
330.X. He, C. E. Metz, B. M. W. Tsui, J. M. Links, and E. C. Frey, “Three-class ROC analysis—A decision theoretic approach under the ideal observer framework,” IEEE Trans. Med. Imaging 25, 571581 (2006).
http://dx.doi.org/10.1109/TMI.2006.871416
331.
331.B. Sahiner, H. P. Chan, and L. Hadjiisk, “Performance analysis of 3-class classifiers: Properties of the 3D ROC surface and the normalized volume under the surface for the ideal observer,” IEEE Trans. Med. Imaging 27, 215227 (2008).
332.
332.Y. L. Jiang, C. E. Metz, and R. M. Nishikawa, “A receiver operating: Characteristic partial area index for highly sensitive diagnostic tests,” Radiology 201, 745750 (1996).
333.
333.R. M. Nishikawa, M. L. Giger, K. Doi, C. E. Metz, F.-F. Yin, C. J. Vyborny, and R. A. Schmidt, “Effect of case selection on the performance of computer-aided detection schemes,” Med. Phys. 21, 265269 (1994).
http://dx.doi.org/10.1118/1.597287
334.
334.H. P. Chan, S. C. B. Lo, B. Sahiner, K. L. Lam, and M. A. Helvie, “Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network,” Med. Phys. 22, 15551567 (1995).
http://dx.doi.org/10.1118/1.597428
335.
335.M. L. Giger, “Current issues in CAD for mammography,” in Digital Mammography ‘96, K. Doi, M. L. Giger, R. M. Nishikawa, and R. A. Schmidt, eds. (Elsevier, Amsterdam, 1996), pp. 5359.
336.
336.K. Fukunaga and R. R. Hayes, “Effects of sample size on classifier design,” IEEE Trans. Pattern Anal. Mach. Intell. 11, 873885 (1989).
http://dx.doi.org/10.1109/34.31448
337.
337.A. Jain and D. Zongker, “Feature selection: Evaluation, application, and small sample size performance,” IEEE Trans. Pattern Anal. Mach. Intell. 19, 153158 (1997).
http://dx.doi.org/10.1109/34.574797
338.
338.H. P. Chan, B. Sahiner, R. F. Wagner, and N. Petrick, “Classifier design for computer-aided diagnosis: Effects of finite sample size on the mean performance of classical and neural network classifiers,” Med. Phys. 26, 26542668 (1999).
http://dx.doi.org/10.1118/1.598805
339.
339.M. A. Kupinski and M. L. Giger, “Feature selection with limited datasets,” Med. Phys. 26, 21762182 (1999).
http://dx.doi.org/10.1118/1.598821
340.
340.B. Sahiner, H. P. Chan, N. Petrick, R. F. Wagner, and L. Hadjiiski, “Feature selection and classifier performance in computer-aided diagnosis: The effect of finite sample size,” Med. Phys. 27, 15091522 (2000).
http://dx.doi.org/10.1118/1.599017
341.
341.G. D. Tourassi, E. D. Frederick, M. K. Markey, and C. E. Floyd, Jr., “Application of the mutual information criterion for feature selection in computer-aided diagnosis,” Med. Phys. 28, 23942402 (2001).
http://dx.doi.org/10.1118/1.1418724
342.
342.G. Lee and M. Bottema, “Significance of classification scores subsequent to feature selection,” Pattern Recogn. Lett. 27, 17021709 (2006).
343.
343.B. Sahiner, H. P. Chan, and L. Hadjiisk, “Classifier performance prediction for computer-aided diagnosis using a limited data set,” Med. Phys. 35, 15591570 (2008).
http://dx.doi.org/10.1118/1.2868757
344.
344.Q. Li and K. Doi, “Analysis and minimization of overtraining effect in rule-based classifiers for computer-aided diagnosis,” Med. Phys. 33, 320328 (2006).
http://dx.doi.org/10.1118/1.1999126
345.
345.J. Y. Lo, M. K. Markey, J. A. Baker, and C. E. Floyd, Jr., “Cross-institutional evaluation of BI-RADS predictive model for mammographic diagnosis of breast cancer,” AJR, Am. J. Roentgenol. 178, 457463 (2002).
346.
346.G. M. te Brake, N. Karssemeijer, and J. H. Hendriks, “Automated detection of breast carcinomas not detected in a screening program,” Radiology 207, 465471 (1998).
347.
347.L. P. Clarke, B. Y. Croft, E. Staab, H. Baker, and D. C. Sullivan, “National Cancer Institute initiative: Lung image database resource for imaging research,” Acad. Radiol. 8, 447450 (2001).
348.
348.C. R. Meyer et al., “The lung image database consortium: Evaluation of lung MDCT nodule annotations across radiologists and methods,” Acad. Radiol. 13, 12541265 (2006).
349.
349.S. G. Armato, III, R. Y. Roberts, M. F. McNitt-Gray, C. R. Meyer, A. P. Reeves, G. McLennan, R. M. Engelmann, P. H. Bland, D. R. Aberle, E. A. Kazerooni, H. MacMahon, E. J. van Beek, D. Yankelevitz, B. Y. Croft, and L. P. Clarke, “The lung image database consortium (LIDC): Ensuring the integrity of expert-defined ‘truth’,” Acad. Radiol. 14, 14551463 (2007).
350.
350.M. F. McNitt-Gray, S. G. Armato III, C. R. Meyer, A. P. Reeves, G. McLennan, R. C. Pais, J. Freymann, M. S. Brown, R. M. Engelmann, P. H. Bland, G. E. Laderach, C. Piker, J. Guo, Z. Towfic, D. P. Qing, D. F. Yankelevitz, D. R. Aberle, E. J. van Beek, H. MacMahon, E. A. Kazerooni, B. Y. Croft, and L. P. Clarke, “The lung image database consortium (LIDC) data collection process for nodule detection and annotation,” Acad. Radiol. 14, 14641474 (2007).
351.
351.A. P. Reeves et al., “The lung image database consortium: A comparison of different size metrics for pulmonary nodule measurements,” Acad. Radiol. 14, 14751485 (2007).
352.
352.N. Karssemeijer, J. D. M. Otten, A. L. M. Verbeek, J. H. Groenewoud, H. J. de Koning, J. Hendriks, and R. Holland, “Computer-aided detection versus independent double reading of masses on mammograms,” Radiology 227, 192200 (2003).
http://dx.doi.org/10.1148/radiol.2271011962
353.
353.F. J. Gilbert, S. M. Astley, M. A. McGee, M. G. Gillan, C. R. Boggis, P. M. Griffiths, and S. W. Duffy, “Single reading with computer-aided detection and double reading of screening mammograms in the United Kingdom National Breast Screening Program,” Radiology 241, 4753 (2006).
http://dx.doi.org/10.1148/radiol.2411051092
354.
354.P. Skaane, A. Kshirsagar, S. Stapleton, K. Young, and R. A. Castellino, “Effect of computer-aided detection on independent double reading of paired screen-film and full-field digital screening mammograms,” AJR, Am. J. Roentgenol. 188, 377384 (2007).
http://dx.doi.org/10.2214/AJR.05.2207
355.
355.Y. Jiang, D. L. Miglioretti, C. E. Metz, and R. A. Schmidt, “Designing imaging trials to demonstrate improvements in breast cancer detection rate,” Radiology 243, 360367 (2007).
http://dx.doi.org/10.1148/radiol.2432060253
356.
356.K. Horsch, M. Giger, and C. E. Metz, “Potential effect of different radiologist reporting methods on studies showing benefit of CAD,” Acad. Radiol. 15, 139152 (2008).
357.
357.Y. Masutani, H. MacMahon, and K. Doi, “Computerized detection of pulmonary embolism in Spiral CT angiography based on volumetric image analysis,” IEEE Trans. Med. Imaging 21, 15171523 (2002).
http://dx.doi.org/10.1109/TMI.2002.806586
358.
358.C. Zhou, H. P. Chan, S. Patel, P. N. Cascade, B. Sahiner, L. M. Hadjiiski, and E. A. Kazerooni, “Preliminary investigation of computer-aided detection of pulmonary embolism in 3D computed tomographic pulmonary angiography (CTPA) images,” Acad. Radiol. 12, 782792 (2005).
359.
359.T. Tajima, X. Zhang, T. Kitagawa, M. Kanematsu, X. Zhou, T. Hara, H. Fujita, R. Yokoyama, H. Kondo, H. Hoshi, S. Nawano, and K. Shinozaki, “Computer-aided detection (CAD) of hepatocellular carcinoma on multiphase CT images,” Proc. SPIE 6514, 2Q12Q10 (2007).
360.
360.C. Zhou, H. P. Chan, A. Chughtai, S. Patel, E. A. Kazerooni, B. Sahiner, and L. M. Hadjiiski, “Computerized analysis of coronary artery plaque disease: Early experience of automated segmentation of coronary arteries in ECG-gated cardiac CT,” 93rd Scientific Assembly and Annual Meeting of the Radiological Society of North America (2007).
361.
361.L. M. Hadjiiski, B. Sahiner, E. M. Caoili, R. H. Cohan, and H. P. Chan, “Automated detection of ureter abnormalities on multidetector row CT urography,” Proc. SPIE 6144, 1W11W7 (2006).
362.
362.S. Kasai, F. Li, J. Shiraishi, Q. Li, and K. Doi, “Computerized detection of vertebral compression fractures on lateral chest radiographs: Preliminary results of a tool for early detection of osteoporosis,” Med. Phys. 33, 46644676 (2006).
http://dx.doi.org/10.1118/1.2364053
363.
363.H. Arimura, Q. Li, Y. Korogi, T. Hirai, S. Katsuragawa, Y. Yamashita, K. Tsuchiya, and K. Doi, “Computerized detection of intracranial aneurysms for three-dimensional MR angiography: Feature extraction of small protrusions based on a shape-based difference image technique,” Med. Phys. 33, 394401 (2006).
http://dx.doi.org/10.1118/1.2163389
364.
364.S. Kobashi, K. Kondo, and Y. Hata, “Computer-aided diagnosis of intracranial aneurysms in MRA images with case-based reasoning,” IEICE Trans. Inf. Syst. E89-D(1), 340350 (2006).
365.
365.M. Niemeijer, B. van Ginneken, J. Staal, M. Suttorp-Schulten, and M. Abramoff, “Automatic detection of red lesions in digital color fundus photographs,” IEEE Trans. Med. Imaging 24, 584592 (2005).
366.
366.J. Shiraishi, Q. Li, D. Appelbaum, Y. Pu, and K. Doi, “Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body scans,” Med. Phys. 34, 2536 (2006).
http://dx.doi.org/10.1118/1.2401044
367.
367.J. W. Byng, N. F. Boyd, E. Fishell, R. A. Jong, and M. J. Yaffe, “Automated analysis of mammographic densities,” Phys. Med. Biol. 41, 909923 (1996).
http://dx.doi.org/10.1088/0031-9155/41/5/007
368.
368.J. W. Byng, M. J. Yaffe, G. A. Lockwood, L. E. Little, D. L. Tritchler, and N. F. Boyd, “Automated analysis of mammographic densities and breast carcinoma risk,” Cancer 80, 6674 (1997).
369.
369.Z. Huo, M. L. Giger, D. E. Wolverton, W. Zhong, S. Cumming, and O. I. Olopade, “Computerized analysis of mammographic parenchymal patterns for breast cancer risk assessment: Feature selection,” Med. Phys. 27, 412 (2000).
http://dx.doi.org/10.1118/1.598851
370.
370.Z. Huo, M. L. Giger, O. I. Olopade, D. E. Wolverton, B. L. Weber, C. E. Metz, W. Zhong, and S. A. Cummings, “Computerized analysis of digitized mammograms of BRCA1 and BRCA2 gene mutation carriers,” Radiology 225, 519526 (2002).
371.
371.P. Caligiuri, M. Giger, and M. Favus, “Multifractal radiographic analysis of osteoporosis,” Med. Phys. 21, 503508 (1994).
http://dx.doi.org/10.1118/1.597390
372.
372.T. Southard and K. Southard, “Detection of simulated osteoporosis in maxillae using radiographic texture analysis,” IEEE Trans. Biomed. Eng. 43, 123132 (1996).
373.
373.S. Majumdar, J. Lin, T. Link, J. Millard, P. Augat, X. Ouyang, D. Newitt, R. Gould, M. Kothari, and H. Genant, “Fractal analysis of radiographs: Assessment of trabecular bone structure and prediction of elastic modulus and strength,” Med. Phys. 26, 13301340 (1999).
http://dx.doi.org/10.1118/1.598628
374.
374.M. R. Chinander, M. Giger, J. Martell, and M. Favus, “Computerized analysis of radiographic bone patterns: Effect of imaging conditions on performance,” Med. Phys. 27, 7585 (2000).
http://dx.doi.org/10.1118/1.598858
375.
375.T. J. Vokes, M. Giger, M. R. Chinander, K. Tg, M. Favus, and L. Dixon, “Radiographic texture analysis of densitometer-generated calcaneus images differentiates postmenopausal women with and without fractures,” Osteoporosis Int. 17, 14721482 (2006).
http://dx.doi.org/10.1007/s00198-006-0089-y
376.
376.J. R. Wilkie, M. L. Giger, M. R. Chinander, C. Engh, R. Hopper, and J. Martell, “Temporal radiographic texture analysis in the detection of periprosthetic osteolysis,” Med. Phys. 3, 377387 (2008).
377.
377.W. DeMartini, C. Lehman, S. Peacock, and M. Russell, “Computer-aided detection applied to breast MRI: Assessment of CAD-generated enhancement and tumor sizes in breast cancers before and after neoadjuvant chemotherapy,” Acad. Radiol. 12, 806814 (2005).
378.
378.E. Street, L. Hadjiisk, B. Sahiner, S. Gujar, M. Ibrahim, S. Mukerji, and H. P. Chan, “Automated volume analysis of head lesions on CT scans using 3D level set segmentation,” Med. Phys. 34, 43994408 (2007).
http://dx.doi.org/10.1118/1.2794174
379.
379.S. G. Armato III, G. Oxnard, M. Kocherginsky, N. Vogelzang, H. Kindler, and H. MacMahon, “Evaluation of semi-automated measurements of mesothelioma tumor thickness on CT scans,” Acad. Radiol. 12, 13011309 (2005).
380.
380.C. Abe, C. E. Kahn, K. Doi, and S. Katsuragawa, “Quantitative analysis of liver texture in ultrasound images: A preliminary study,” Invest. Radiol. 27, 7177 (1992).
381.
381.K. T. Bae, M. L. Giger, C. T. Chen, and C. E. Kahn, “Automatic segmentation of 3-D liver structure from CT data,” Med. Phys. 20, 7178 (1993).
http://dx.doi.org/10.1118/1.597064
382.
382.K. R. Hoffmann, S. Y. Chen, M. Kormano, and R. A. Coulden, “Segmentation and display of hepatic vessels and metastases,” Proc. SPIE 1898, 263270 (1993).
383.
383.B. S. Garra, M. F. Insana, I. A. Sesterhenn, T. J. Hall, R. F. Wagner, C. Rotellar, J. Winchester, and R. K. Zeman, “Quantitative ultrasonic detection of parenchymal structural change in diffuse renal disease,” Invest. Radiol. 29, 134140 (1994).
384.
384.M. King, M. L. Giger, K. Suzuki, D. M. Bardo, B. Greenberg, L. Lan, and X. Pan, “Computerized assessment of motion-contaminated calcified plaques in cardiac multidetector CT,” Med. Phys. 34, 48764889 (2007).
http://dx.doi.org/10.1118/1.2804718
385.
385.M. King, M. L. Giger, K. Suzuki, and X. Pan, “Feature-based characterization of motion-contaminated calcified plaques in cardiac multidetector CT,” Med. Phys. 34, 48604875 (2007).
http://dx.doi.org/10.1118/1.2794172
386.
386.J. M. Boone, “Radiological interpretation 2020: Toward quantitative image assessment,” Med. Phys. 34, 41734179 (2007).
http://dx.doi.org/10.1118/1.2789501
387.
387.T. W. Freer and M. J. Ulissey, “Screening mammography with computer-aided detection: Prospective study of 12,860 patients in a community breast center,” Radiology 220, 781786 (2001).
http://dx.doi.org/10.1148/radiol.2203001282
388.
388.R. L. Birdwell, P. Bandodkar, and D. M. Ikeda, “Computer-aided detection with screening mammography in a university hospital setting,” Radiology 236, 451457 (2005).
http://dx.doi.org/10.1148/radiol.2362040864
389.
389.L. A. L. Khoo, P. Taylor, and R. M. Given-Wilson, “Computer-aided detection in the United Kingdom national breast screening programme: Prospective study,” Radiology 237, 444449 (2005).
http://dx.doi.org/10.1148/radiol.2372041362
390.
390.J. C. Dean and C. C. Ilvento, “Improved cancer detection using computer-aided detection with diagnostic and screening mammography: Prospective study of 104 cancers,” AJR, Am. J. Roentgenol. 187, 2028 (2006).
http://dx.doi.org/10.2214/AJR.05.0111
391.
391.M. J. Morton, D. H. Whaley, K. R. Brandt, and K. K. Amrami, “Screening mammograms: Interpretation with computer-aided detection—Prospective evaluation,” Radiology 239, 375383 (2006).
http://dx.doi.org/10.1148/radiol.2392042121
392.
392.J. M. Ko, M. J. Nicholas, J. B. Mendel, and P. J. Slanetz, “Prospective assessment of computer-aided detection in interpretation of screening mammography,” AJR, Am. J. Roentgenol. 187, 14831491 (2006).
http://dx.doi.org/10.2214/AJR.05.1582
393.
393.D. Gur, J. H. Sumkin, H. E. Rockette, M. A. Ganott, C. Hakim, L. A. Hardesty, W. R. Poller, R. Shah, and L. Wallace, “Changes in breast cancer detection and mammography recall rates after the introduction of a computer-aided detection system,” J. Natl. Cancer Inst. 96, 185190 (2004).
394.
394.S. A. Feig, E. A. Sickles, W. P. Evans, and M. N. Linver, “Re: Changes in breast cancer detection and mammography recall rates after the introduction of a computer-aided detection system,” J. Natl. Cancer Inst. 96, 12601261 (2004).
395.
395.T. E. Cupples, J. E. Cunningham, and J. C. Reynolds, “Impact of computer-aided detection in a regional screening mammography program,” AJR, Am. J. Roentgenol. 185, 944950 (2005).
http://dx.doi.org/10.2214/AJR.04.1300
396.
396.J. J. Fenton, S. H. Taplin, P. A. Carney, L. Abraham, E. A. Sickles, C. D’Orsi, E. A. Berns, G. Cutter, R. E. Hendrick, W. E. Barlow, and J. G. Elmore, “Influence of computer-aided detection on performance of screening mammography,” N. Engl. J. Med. 356, 13991409 (2007).
http://dx.doi.org/10.1056/NEJMoa066099
397.
397.M. Gromet, “Comparison of computer-aided detection to double reading of screening mammograms: Review of 231,221 mammograms,” AJR, Am. J. Roentgenol. 190, 854859 (2008).
398.
398.H. P. Chan, B. Sahiner, M. A. Helvie, N. Petrick, M. A. Roubidoux, T. E. Wilson, D. Adler, C. Paramagul, J. Newman, and S. Sanjay-Gopal, “Improvement of radiologists' characterization of mammographic masses by using computer-aided diagnosis: An ROC study,” Radiology 212, 817827 (1999).
399.
399.S. Behrens, H. Laue, M. Althaus, T. Boehler, B. Kuemmerlen, H. K. Hahn, and H.-O. Peitgen, “Computer assistance for MR based diagnosis of breast cancer: Present and future challenges,” Comput. Med. Imaging Graph. 31, 236247 (2007).
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/35/12/10.1118/1.3013555
Loading
/content/aapm/journal/medphys/35/12/10.1118/1.3013555
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/35/12/10.1118/1.3013555
2008-11-20
2015-07-07

Abstract

The roles of physicists in medical imaging have expanded over the years, from the study of imaging systems (sources and detectors) and dose to the assessment of image quality and perception, the development of image processing techniques, and the development of image analysis methods to assist in detection and diagnosis. The latter is a natural extension of medical physicists’ goals in developing imaging techniques to help physicians acquire diagnostic information and improve clinical decisions. Studies indicate that radiologists do not detect all abnormalities on images that are visible on retrospective review, and they do not always correctly characterize abnormalities that are found. Since the 1950s, the potential use of computers had been considered for analysis of radiographic abnormalities. In the mid-1980s, however, medical physicists and radiologists began major research efforts for computer-aided detection or computer-aided diagnosis (CAD), that is, using the computer output as an aid to radiologists—as opposed to a completely automatic computer interpretation—focusing initially on methods for the detection of lesions on chest radiographs and mammograms. Since then, extensive investigations of computerized image analysis for detection or diagnosis of abnormalities in a variety of 2D and 3D medical images have been conducted. The growth of CAD over the past has been tremendous—from the early days of time-consuming film digitization and CPU-intensive computations on a limited number of cases to its current status in which developed CAD approaches are evaluated rigorously on large clinically relevant databases. CAD research by medical physicists includes many aspects—collecting relevant normal and pathological cases; developing computer algorithms appropriate for the medical interpretation task including those for segmentation, feature extraction, and classifier design; developing methodology for assessing CAD performance; validating the algorithms using appropriate cases to measure performance and robustness; conducting observer studies with which to evaluate radiologists in the diagnostic task without and with the use of the computer aid; and ultimately assessing performance with a clinical trial. Medical physicists also have an important role in quantitative imaging, by validating the quantitative integrity of scanners and developing imaging techniques, and image analysis tools that extract quantitative data in a more accurate and automated fashion. As imaging systems become more complex and the need for better quantitative information from images grows, the future includes the combined research efforts from physicists working in CAD with those working on quantitative imaging systems to readily yield information on morphology, function, molecular structure, and more—from animal imaging research to clinical patient care. A historical review of CAD and a discussion of challenges for the future are presented here, along with the extension to quantitative image analysis.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/35/12/1.3013555.html;jsessionid=b9lre3tlfjhf.x-aip-live-02?itemId=/content/aapm/journal/medphys/35/12/10.1118/1.3013555&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Anniversary Paper: History and status of CAD and quantitative image analysis: The role of Medical Physics and AAPM
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/35/12/10.1118/1.3013555
10.1118/1.3013555
SEARCH_EXPAND_ITEM