Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. H. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
2.L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron. 14, 171179 (2008).
3.A. A. Oraevsky and L. V. Wang, Photons Plus Ultrasound: Imaging and Sensing (SPIE, Bellingham, 2007), Vol. 643.
4.L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, Hoboken, NJ, 2007).
5.C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, and A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648650 (1998).
6.L. V. Wang, X. M. Zhao, H. T. Sun, and G. Ku, “Microwave-induced acoustic imaging of biological tissues,” Rev. Sci. Instrum. 70, 37443748 (1999).
7.R. A. Kruger, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography—technical considerations,” Med. Phys. 26, 18321837 (1999).
8.A. A. Karabutov, E. V. Savateeva, N. B. Podymova, and A. A. Oraevsky, “Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 20032014 (2000).
9.G. Ku and L. V. Wang, “Scanning electromagnetic-induced thermoacoustic tomography: Signal, resolution, and contrast,” Med. Phys. 28, 410 (2001).
10.K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7, 918923 (2001).
11.M. H. Xu, G. Ku, and L. V. Wang, “Microwave-induced thermoacoustic tomography using multi-sector scanning,” Med. Phys. 28, 19581963 (2001).
12.G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112, 15361544 (2002).
13.M. H. Xu and L. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imaging 21, 814822 (2002).
14.Y. Xu, D. Z. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography-I: Planar geometry,” IEEE Trans. Med. Imaging 21, 823828 (2002).
15.Y. Xu, M. H. Xu, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography-II: Cylindrical geometry,” IEEE Trans. Med. Imaging 21, 829833 (2002).
16.V. G. Andreev, A. A. Karabutov, and A. A. Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 13831390 (2003).
17.D. Finch, S. K. Patch, and Rakesh, “Determining a function from its mean values over a family of spheres,” SIAM J. Math. Anal. 35, 12131240 (2003).
18.K. P. Kostli and P. C. Beard, “Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response,” Appl. Opt. 42, 18991908 (2003).
19.X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803806 (2003).
20.X. D. Wang, Y. J. Pang, G. Ku, G. Stoica, and L. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 17391741 (2003).
21.M. H. Xu and L. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003).
22.M. Haltmeier, O. Scherzer, P. Burgholzer, and G. Paltauf, “Thermoacoustic computed tomography with large planar receivers,” Inverse Probl. 20, 16631673 (2004).
23.G. Ku, X. D. Wang, G. Stoica, and L. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol. 49, 13291338 (2004).
24.Y. Xu and L. V. Wang, “Time reversal and its application to tomography with diffracting sources,” Phys. Rev. Lett. 92, 033902 (2004).
25.B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 36163627 (2005).
26.G. Ku and L. V. Wang, “Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent,” Opt. Lett. 30, 507509 (2005).
27.G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770775 (2005).
28.J. Zhang, M. A. Anastasio, X. C. Pan, and L. V. Wang, “Weighted expectation maximization reconstruction algorithms for thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 817820 (2005).
29.G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. Treat. 4, 559565 (2005).
30.L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, “Photoacoustic imaging of lacZ gene expression in vivo,” J. Biomed. Opt. 12, 020504-(1–3) (2007).
31.M. Li, J. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481489 (2008).
32.L. V. Wang and G. Liang, “Absorption distribution of an optical beam focused into a turbid medium,” Appl. Opt. 38, 49514958 (1999).
33.K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30, 625627 (2005).
34.H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848851 (2006).
35.H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nature Protocols 2, 797804 (2007).
36.M. H. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).
37.B. T. Cox, S. R. Arridge, K. P. Kostli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 18661875 (2006).
38.R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12, 010501-(1–3) (2007).
39.R. J. Zemp, L. Song, R. Bitton, K. K. Shung, and L. V. Wang, “Realtime photoacoustic microscopy in vivo with a ultrasound array transducer,” Opt. Express 16, 79157928 (2008).
40.S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Ex vivo characterization of atherosclerosis using intravascular photoacoustic imaging,” Opt. Express 15, 1665716666 (2007).
41.R. Y. Tsien, “The green fluorescent protein,” Annu. Rev. Biochem. 67, 509544 (1998).
42.C. H. Contag and M. H. Bachmann, “Advances in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4, 235260 (2002).
43.H. Fang, K. Maslov, and L. V. Wang, “Photoacoustic Doppler effect from flowing small light-absorbing particles,” Phys. Rev. Lett. 99, 184501-(1–4) (2007).
44.H. Fang, K. Maslov, and L. V. Wang, “Photoacoustic Doppler flow measurement in optically scattering media,” Appl. Phys. Lett. 91, 264103264101 (2007).
45.N. Kudomi, H. Watabe, T. Hayashi, and H. Iida, “Separation of input function for rapid measurement of quantitative CMRO2 and CBF in a single PET scan with a dual tracer administration method,” Phys. Med. Biol. 52, 18931908 (2007).
46.S. H. Yee, K. Lee, P. A. Jerabek, and P. T. Fox, “Quantitative measurement of oxygen metabolic rate in the rat brain using microPET imaging of briefly inhaled O-15-labelled oxygen gas,” Nucl. Med. Commun. 27, 573581 (2006).
47.D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski, R. A. Poldrack, B. R. Rosen, and J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?,” Phys. Med. Biol. 48, 24052418 (2003).
48.J. P. Culver, T. Durduran, T. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” Biopolymers 23, 911924 (2003).
49.K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13, 054033-(1–6) (2008).
50.E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared flurophore: Feasibility study,” Radiology 246, 734741 (2008).
51.K. Song and L. V. Wang, “Deep reflection-mode photoacoustic imaging of biological tissue,” J. Biomed. Opt. 12, 060503 (2007).
52.K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33, 929931 (2008).
53.Q. Zhu, C. Xu, P. Y. Guo, A. Aquirre, B. H. Yuan, F. Huang, D. Castilo, J. Gamelin, S. Tannenbaum, M. Kane, P. Hedge, and S. Kurtzman, “Optimal probing of optical contrast of breast lesions of different size located at different depths by US localization,” Technol. Cancer Res. Treat. 5, 365380 (2006).
54.Y. Xu and L. V. Wang, “Rhesus monkey brain imaging through intact skull with thermoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 542548 (2006).
55.M. Pramanik, M. Swierczewska, D. Green, B. Sitharaman, and L. V. Wang, “Carbon nanotubes as a multimodal—thermoacoustic and photoacoustic—contrast agent” (unpublished).

Data & Media loading...


Article metrics loading...



Commercially available high-resolution three-dimensional optical imaging modalities—including confocal microscopy, two-photon microscopy, and optical coherence tomography—have fundamentally impacted biomedicine. Unfortunately, such tools cannot penetrate biological tissue deeper than the optical transport mean free path ( in the skin). Photoacoustictomography, which combines strong optical contrast and high ultrasonic resolution in a single modality, has broken through this fundamental depth limitation and achieved superdepth high-resolution optical imaging. In parallel, radio frequency-or microwave-induced thermoacoustic tomography is being actively developed to combine radio frequency or microwave contrast with ultrasonic resolution. In this Vision article, the prospects of photoacoustictomography are envisaged in the following aspects: (1) photoacoustic microscopy of optical absorption emerging as a mainstream technology, (2) melanoma detection using photoacoustic microscopy, (3) photoacoustic endoscopy, (4) simultaneous functional and molecular photoacoustictomography, (5) photoacoustictomography of gene expression, (6) Doppler photoacoustictomography for flow measurement, (7) photoacoustictomography of metabolic rate of oxygen, (8) photoacoustic mapping of sentinel lymph nodes, (9) multiscale photoacoustic imaging with common signal origins, (10) simultaneous photoacoustic and thermoacoustic tomography of the breast, (11) photoacoustic and thermoacoustic tomography of the brain, and (12) low-background thermoacoustic molecular imaging.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd