Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/35/3/10.1118/1.2836950
1.
1.A. M. Cormack, “Representation of a function by its line integrals, with some radiological applications,” J. Appl. Phys. 34(9), 27222727 (1963).
http://dx.doi.org/10.1063/1.1729798
2.
2.G. N. Hounsfield, “Computerized transverse axial scanning (tomography): Part I. Description of system,” Br. J. Radiol. 46, 10161022 (1973).
3.
3.R. A. Robb et al., “High-sped three-dimensional x-ray computed tomography: The dynamic spatial reconstructor,” Proceedings of the IEEE, 71(3), 308319 (1983).
4.
4.E. L. Ritman, R. A. Robb, and L. D. Harris, Imaging Physiological Functions: Experience with the DSR, Praeger, Philadelphia, (1985).
5.
5.W. A. Kalender, “Thin-section three-dimensional spiral CT: Is isotropic imaging possible?,” Radiology 197(3), 578580 (1995).
6.
6.G. Wang, T. H. Lin, P. C. Cheng, and D. M. Shinozaki, “A general cone beam reconstruction algorithm,” IEEE Trans. Med. Imaging 12(3), 486496 (1993).
http://dx.doi.org/10.1109/42.241876
7.
7.G. Wang et al., “Scanning cone-beam reconstruction algorithms for x-ray microtomography,” Proceedings of SPIE, Vol. 1556, pp. 99112 (1991).
8.
8.K. Taguchi and H. Aradate, “Algorithm for image reconstruction in multi-slice helical CT,” Med. Phys. 25(4), 550561 (1998).
http://dx.doi.org/10.1118/1.598230
9.
9.M. Kachelriess, S. Schaller, and W. A. Kalender, “Advanced single-slice rebinning in cone-beam spiral CT,” Med. Phys. 27(4), 754772 (2000).
http://dx.doi.org/10.1118/1.598938
10.
10.S. Mori et al., “Physical performance evaluation of a 256-slice CT-scanner for four-dimensional imaging,” Med. Phys. 31(6), 13481356 (2004).
http://dx.doi.org/10.1118/1.1747758
11.
11.G. Wang, C. R. Crawford, and W. A. Kalender, “Multirow detector and cone-beam spiral/helical CT,” IEEE Trans. Med. Imaging 19(9), 817821 (2000).
http://dx.doi.org/10.1109/TMI.2000.887831
12.
12.L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. A 1(A), 612619 (1984).
13.
13.A. Katsevich, “An improved exact filtered backprojection algorithm for spiral computed tomography,” Adv. Appl. Math. 32(4), 681697 (2004).
14.
14.A. Katsevich, “Theoretically exact filtered backprojection-type inversion algorithm for spiral CT,” SIAM J. Appl. Math. 62(6), 20122026 (2002).
http://dx.doi.org/10.1137/S0036139901387186
15.
15.G. Wang, Y. B. Ye, and H. Y. Yu, “Appropriate and exact cone-beam reconstruction with standard and nonstandard spiral scanning,” Phys. Med. Biol. 52(6), R1R13 (2007).
http://dx.doi.org/10.1088/0031-9155/52/6/R01
16.
16.Y. B. Ye, S. Y. Zhao, H. Y. Yu, and G. Wang, “Exact reconstruction for cone-beam scanning along nonstandard spirals and other curves,” Proceedings of SPIE, Vol. 5535, pp. 293300, Denver, CO (2004).
17.
17.Y. B. Ye and G. Wang, “Filtered backprojection formula for exact image reconstruction from cone-beam data along a general scanning curve,” Med. Phys. 32(1), 4248 (2005).
http://dx.doi.org/10.1118/1.1828673
18.
18.Y. B. Ye, S. Y. Zhao, H. Y. Yu, and G. Wang, “A general exact reconstruction for cone-beam CT via backprojection-filtration,” IEEE Trans. Med. Imaging 24(9), 11901198 (2005).
http://dx.doi.org/10.1109/TMI.2005.853626
19.
19.J. Pack and F. Noo, “Cone-beam reconstruction using 1D filtering along the projection of M-lines,” Inverse Probl. 21(4), 11051120 (2005).
http://dx.doi.org/10.1088/0266-5611/21/3/019
20.
20.J. D Pack, F. Noo, and R. Clackdoyle, “Cone-beam reconstruction using the backprojection of locally filtered projections,” IEEE Trans. Med. Imaging 24(1), 7085 (2005).
http://dx.doi.org/10.1109/TMI.2004.837794
21.
21.T. L. Zhuang, S. Leng, B. E. Nett, and G. H. Chen, “Fan-beam and cone-beam image reconstruction via filtering the backprojection image of differentiated projection data,” Phys. Med. Biol. 49(24), 54895503 (2004).
http://dx.doi.org/10.1088/0031-9155/49/24/007
22.
22.Y. Zou, X. Pan, and E. Y. Sidky, “Theory and algorithms for image reconstruction on chords and within regions of interest,” J. Opt. Soc. Am. A 22(11), 23722384 (2005).
http://dx.doi.org/10.1364/JOSAA.22.002372
23.
23.G. Wang and Y. B. Ye, “Nonstandard spiral cone-beam scanning methods, apparatus, and applications,” US Provisional Patent Application 60/588,682, Filing date: July 16, 2004 (2004).
24.
24.G. Wang and H. Y. Yu, “Scanning method and system for cardiac imaging,” Patent disclosure submitted to Virginia Tech. Intellectual Properties on July 17 (2007).
25.
25.A. Katsevich and M. Kapralov, “Theoretically exact FBP reconstruction algorithms for two general classes of curves,” 9th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, pp. 8083, Lindau, Germany (2007).
26.
26.A. Katsevich, “Image reconstruction for a general circle-plus trajectory,” Inverse Probl. 23(5), 22232230 (2007).
http://dx.doi.org/10.1088/0266-5611/23/5/024
27.
27.A. Katsevich, “A general scheme for constructing inversion algorithms for cone-beam CT,” Int. J. Math. Math. Sci. 21, 13051321 (2003).
28.
28.Y. C. Wei, H. Y. Yu, J. Hsieh, W. X. Cong, and G. Wang, “Scheme of computed tomography,” J. X-Ray Sci. Technol. 15(4), 235270 (2007).
29.
29.S. Y. Zhao, H. Y. Yu, and G. Wang, “A unified framework for exact cone-beam reconstruction formulas,” Med. Phys. 32(6), 17121721 (2005).
http://dx.doi.org/10.1118/1.1869632
30.
30.G. H. Chen, “An alternative derivation of Katsevich’s cone-beam reconstruction formula,” Med. Phys. 30(12), 32173226 (2003).
http://dx.doi.org/10.1118/1.1628413
31.
31.H. Y. Yu and G. Wang, “Cone-beam composite-circling scan and exact image reconstruction for a quasi-short object,” Int. J. Biomed. Imaging 2007, Article ID 87319, 10 pages (2007).
32.
32.J. D. Pack, F. Noo, and H. Kudo, “Investigation of saddle trajectories for cardiac CT imaging in cone-beam geometry,” Phys. Med. Biol. 49(11), 23172336 (2004).
http://dx.doi.org/10.1088/0031-9155/49/11/014
33.
33.X. Y. Tang, J. Hsieh, R. A. Nilsen, S. Dutta, D. Samsonov, and A. Hagiwara, “A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT - helical scanning,” Phys. Med. Biol. 51(4), 855874 (2006).
http://dx.doi.org/10.1088/0031-9155/51/4/007
34.
34.X. Y. Tang and J. Hsieh, “A filtered backprojection algorithm for cone beam reconstruction using rotational filtering under helical source trajectory,” Med. Phys. 31(11), 29492960 (2004).
http://dx.doi.org/10.1118/1.1803672
35.
35.X. Y. Tang and J. Hsieh, “Handling data redundancy in helical cone beam reconstruction with a cone-angle-based window function and its asymptotic approximation,” Med. Phys. 34(6), 19891998 (2007).
http://dx.doi.org/10.1118/1.2736789
36.
36.X. Y. Tang, J. Hsieh, R. A. Nilsen, and S. M. McOlash, “Extending three-dimensional weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT at low helical pitches,” Int. J. Biomed. Imaging 2006, Article ID 45942, 8 pages (2006).
37.
37.R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471482 (1970).
http://dx.doi.org/10.1016/0022-5193(70)90109-8
38.
38.A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrason. Imaging 6, 8194 (1984).
http://dx.doi.org/10.1016/0161-7346(84)90008-7
39.
39.L. A. Shepp and B. F. Logan, “The Fourier reconstruction of a head section,” IEEE Trans. Nucl. Sci. NS21(3), 2134 (1974).
40.
40.A. J. Rockmore and A. Macovski, “A maximum likelihood approach to emission image reconstruction from projections,” IEEE Trans. Nucl. Sci. 23(4), 14281432 (1976).
41.
41.J. Nuyts et al., “Iterative reconstruction for helical CT: A simulation study,” Phys. Med. Biol. 43(4), 729737 (1998).
http://dx.doi.org/10.1088/0031-9155/43/4/003
42.
42.B. De Man et al., “Reduction of metal streak artifacts in x-ray computed tomography using a transmission maximum a posteriori algorithm,” IEEE Trans. Nucl. Sci. 47(3), 977981 (2000).
http://dx.doi.org/10.1109/23.856534
43.
43.I. A. Elbakri and J. A. Fessler, “Statistical image reconstruction for polyenergetic x-ray computed tomography,” IEEE Trans. Med. Imaging21(2), 8999 (2002).
http://dx.doi.org/10.1109/42.993128
44.
44.J. A. Fessler, “Statistical image reconstruction methods for transmission tomography,” in Medical Image Processing and Analysis, edited by M. Sonka and J. M. Fitzpatric (SPIE Press, Bellingham, Washington, 2000), Vol. 3, pp. 170.
45.
45.J. A. Fessler and A. O. Hero, “Space-alternating generalized expectation-maximization algorithm,” IEEE Trans. Signal Process. 42(10), 26642677 (1994).
http://dx.doi.org/10.1109/78.324732
46.
46.I. A. Elbakri and J. A. Fessler, “Segmentation-free statistical image reconstruction for polyenergetic x-ray computed tomography with experimental validation,” Phys. Med. Biol. 48(15), 24532477 (2003).
http://dx.doi.org/10.1088/0031-9155/48/15/314
47.
47.P. E. Kinahan, A. M. Alessio, and J. A. Fessler, “Dual energy CT attenuation correction methods for quantitative assessment of response to cancer therapy with PET/CT imaging,” Technol. Cancer Res. Treat. 5(4), 319327 (2006).
48.
48.J. B. Thibault, A. K. Sauer, A. C. Bouman, and J. Hsieh, “Three-dimensional statistical modeling for image quality improvements in multi-slice helical CT,” 8th Meeting on Fully Three–Dimensional Image Reconstruction in Radiology and Nuclear Medicine, pp. 271274, Salt Lake City, UT (2005).
49.
49.M. Iatrou, B. De Man, and S. Basu, “A comparison between filtered backprojection, post-smoothed weighted least squares, and penalized weighted least squares for CT reconstruction,” IEEE Nuclear Science Symposium Conference Record, 2006, pp. 28452850, San Diego, CA (2006).
50.
50.D. L. Parker, “Optimal short scan convolution reconstruction for fanbeam CT,” Med. Phys. 9(2), 254257 (1982).
http://dx.doi.org/10.1118/1.595078
51.
51.Y. Zou and X. C. Pan, “Exact image reconstruction on PI-lines from minimum data in helical cone-beam CT,” Phys. Med. Biol. 49(6), 941959 (2004).
http://dx.doi.org/10.1088/0031-9155/49/6/006
52.
52.M. Defrise, F. Noo, R. Clackdoyle, and H. Kudo, “Truncated Hilbert transform and image reconstruction from limited tomographic data,” Inverse Probl. 22(3), 10371053 (2006).
http://dx.doi.org/10.1088/0266-5611/22/3/019
53.
53.Y. B. Ye, H. Y. Yu, Y. C. Wei, and G. Wang, “A general local reconstruction approach based on a truncated Hilbert transform,” Int. J. Biomed. Imaging 2007, Article ID 63634, 8 pages (2007).
54.
54.Y. B. Ye, H. Y. Yu, and G. Wang, “Exact interior reconstruction with cone-beam CT,” Int. J. Biomed. Imaging 2007, Article ID 10693, 5 pages (2007).
55.
55.F. Natterer, The Mathematics of Computerized Tomography (Society for Industrial and Applied Mathematics, Philadelphia, 2001).
56.
56.G. Wang, Y. B. Ye, and H. Y. Yu, “General VOI/ROI reconstruction methods and systems using a truncated Hilbert transform,” Patent disclosure submitted to Virginia Tech. Intellectual Properties on May 15 (2007).
57.
57.H. Y. Yu and G. Wang, “A general formula for fan-beam lambda tomography,” Int. J. Biomed. Imaging 2006, Article ID 10427, 9 pages (2006).
58.
58.H. Y. Yu, Y. C. Wei, Y. B. Ye, and G. Wang, “Lambda tomography with discontinuous scanning trajectories,” Phys. Med. Biol. 52(14), 43314344 (2007).
http://dx.doi.org/10.1088/0031-9155/52/14/020
59.
59.H. Y. Yu and G. Wang, “A general scheme for velocity tomography,” Signal Process. 88(5), 11651175 (2008).
60.
60.D. Saintfelix et al., “In-vivo evaluation of a new system for 3D computerized angiography,” Phys. Med. Biol. 39(3), 583595 (1994).
http://dx.doi.org/10.1088/0031-9155/39/3/020
61.
61.L. T. Niklason et al., “Digital tomosynthesis in breast imaging,” Radiology 205(2), 399406 (1997).
62.
62.W. Ross, D. D. Cody, and J. D. Hazle, “Design and performance characteristics of a digital flat-panel computed tomography system,” Med. Phys. 33(6), 18881901 (2006).
http://dx.doi.org/10.1118/1.2198941
63.
63.S. Greschus et al., “Potential applications off lat-panel volumetric CT in morphologic and functional small animal imaging,” Neoplasia 7(8), 730740 (2005).
http://dx.doi.org/10.1593/neo.05160
64.
64.F. Kiessling et al., “Volumetric computed tomography (VCT): A new technology for noninvasive high-resolution monitoring of tumor angiogenesis,” Nat. Med. 10(10), 11331138 (2004).
65.
65.J. M. Boone et al., “Computed tomography for imaging the breast,” J. Mammary Gland Biol. Neoplasia 11(2), 103111 (2006).
66.
66.B. Chen and R. Ning, “Cone-beam volume CT breast imaging: Feasibility study,” Med. Phys. 29(5), 755770 (2002).
http://dx.doi.org/10.1118/1.1461843
67.
67.L. T. Holly and K. T. Foley, “Image guidance in spine surgery,” Orthop. Clin. North Am. 38(3), 451461 (2007).
68.
68.N. Clinthorne, “Intra-operative imaging,” J. Laparoendosc Adv. Surg. Tech. A 15(5), 549555 (2005).
69.
69.W. Berninger and R. Redington, “Multiple purpose high speed tomographic x-ray scanner,” US Patent No. 4,196,352A (1980).
70.
70.T. G. Flohr et al., “First performance evaluation of a dual-source CT (DSCT) system,” Eur. Radiol. 16(2), 256268 (2006).
71.
71.Y. Kyriakou and W. A. Kalender, “Intensity distribution and impact of scatter for dual-source CT,” Phys. Med. Biol. 52(23), 69696989 (2007).
http://dx.doi.org/10.1088/0031-9155/52/23/014
72.
72.J. Zhao, M. Jiang, T. Zhuang, and G. Wang, “An exact reconstruction algorithm for triple-source helical cone-beam CT,” J. X-Ray Sci. Technol. 14(3), 191206 (2006).
73.
73.J. Zhao, M. Jiang, T. G. Zhuang, and G. Wang, “Minimum detection window and inter-helix PI-line with triple-source helical cone-beam scanning,” J. X-Ray Sci. Technol. 14(2), 95107 (2006).
74.
74.J. Zhao, Y. N. Jin, Y. Lu, and G. Wang, “A reconstruction algorithm for triple-source helical cone-beam CT via filtered backprojection,” 9th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, pp. 205208, Lindau, Germany (2007).
75.
75.S. S. Orlov, “Theory of three dimensional reconstruction I: Conditions for a complete set of projections,” Sov. Phys. Crystallogr. 20, 312314 (1975).
76.
76.B. De Man, P. Edic, and S. Basu, “An iterative algorithm for time-resolved reconstruction of a CT scan of a beating heart,” 8th Meeting on Fully Three–Dimensional Image Reconstruction in Radiation and Nuclear Medicine, Salt Lake City, UT, 356359 (2005).
77.
77.D. Boyd et al., “High-speed, multi-slice, x-ray computed tomography,” Proceedings of SPIE, Vol. 372, pp. 139150, Pacific Grove, CA (1982).
78.
78.G. Wang et al., “Top-level design and preliminary physical analysis for the first electron-beam micro-CT scanner,” J. X-Ray Sci. Technol. 12(4), 251260 (2004).
79.
79.B. De Man et al., “Stationary computed tomography system and method,” US Patent No. 7,280,631 B2(2005).
80.
80.J. S. Price, W. Block, and M. Vermilyea, “Extended multi-spot computed tomography x-ray source,” US Patent No. 6,983,035 B2(2006).
81.
81.Z. Yin, B. De Man, and J. Pack, “Analytical cone-beam reconstruction using a multi-source inverse geometry CT system,” Proceedings of SPIE, Vol. 6510, San Diego, CA (2007).
82.
82.T. G. Schmidt, R. Fahrig, N. J. Pelc, and E. G. Solomon, “An inverse-geometry volumetric CT system with a large-area scanned source: A feasibility study,” Med. Phys. 31(9), 26232627 (2004).
http://dx.doi.org/10.1118/1.1786171
83.
83.B. De Man et al., “Multi-source inverse geometry CT: A new system concept for X-ray computed tomography,” Proceedings of SPIE, Vol. 6510, San Diego, CA (2007).
84.
84.G. Wang and M. W. Vannier, “Bolus-chasing angiography with adaptive real-time computed tomography,” U.S. Patent No. 6,535,821, allowed on 11/26/2002, issued on 3/18/2003 (2003).
85.
85.E. W. Bai et al., “Study of an adaptive bolus chasing CT angiography,” J. X-Ray Sci. Technol. 14(1), 2738 (2006).
86.
86.A. Katsevich, S. Basu, and J. Hsieh, “Exact filtered backprojection reconstruction for dynamic pitch helical cone beam computed tomography,” Phys. Med. Biol. 49(14), 30893103 (2004).
http://dx.doi.org/10.1088/0031-9155/49/14/004
87.
87.E. Tkaczyk et al., “Simulation of CT dose and contrast-to-noise as function of bowtie shape,” Proceedings of SPIE, Vol. 5368, pp. 403410, San Diego, CA (2004).
88.
88.M. Kalra, N. Naz, S. Rizzo, and M. Blake, “Computed tomography radiation dose optimization: Scanning protocols and clinical applications of automatic exposure control,” Curr. Probl Diagn. Radiol. 34(5), 171181 (2005).
89.
89.B. De Man and B. Senzig, “Method and system for radiographic imaging with organ-based radiation profile prescription,” US Patent No. 20070147579 A1(2007).
90.
90.R. E. Alvarez and A. Macovski, “Energy-selective reconstructions in x-ray computerized tomography,” Phys. Med. Biol. 21(5), 733744 (1976).
http://dx.doi.org/10.1088/0031-9155/21/5/002
91.
91.J. H. Hubbell and S. M. Seltzer, Tables of X-ray mass attenuation coefficients to , for elements 1 to 92 and 48 additional substances of dosimetric interest. (National Institute of Standards and Technology, Gaithersburg, MD, 1995).
92.
92.B. De Man et al., “An iterative maximum-likelihood polychromatic algorithm for CT,” IEEE Trans. Med. Imaging 20(10), 9991008 (2001).
http://dx.doi.org/10.1109/42.959297
93.
93.R. Carmi, G. Naveh, and A. Altman, “Material separation with dual-layer CT,” IEEE Nuclear Science Symposium Conference Record, pp. 18761878, Wyndham El Conquistador Resort, Puerto Rico (2005).
94.
94.J. E. Tkaczyk et al., “Atomic number resolution for three spectral CT imaging systems,” Proceedings of SPIE, 6510, paper No. 651009, San Diego, CA (2007).
95.
95.S. Kuribayashi, “Dual energy CT of peripheral arterial disease with single-sorurce 64–slice MDCT,” presented at 9th Annual International Symposium on Multidetector-Row CT, San Francisco, CA (2007).
96.
96.X. Wu et al., “Dual kVp computed tomography via view-to-view kV switching: Temporal resolution and energy separation (submitted).
97.
97.P. M. Shikhaliev, “Tilted angle CZT detector for photon counting/energy weighting x-ray and CT imaging,” Phys. Med. Biol. 51(17), 42674287 (2006).
http://dx.doi.org/10.1088/0031-9155/51/17/010
98.
98.nanoXCT, available from: http://www.xradia.com/Products/nanoxct.html.
99.
99.H. Y. Yu, Y. B. Ye, and G. Wang, “Local reconstruction using the truncated Hilbert transform via singular value decomposition,” Phys. Med. Biol. (under review).
100.
100.J. F. Barrett and N. Keat, “Artifacts in CT: Recognition and avoidance,” Radiographics 24(6), 16791691 (2004).
101.
101.X. Q. Mou, S. J. Tang, and H. Y. Yu, “A beam hardening correction method based on HL consistency,” Proc. of SPIE, Vol. 6318, San Diego, CA (2006).
102.
102.R. P. Zeng, J. A. Fessler, and J. M. Balter, “Estimating 3-D respiratory motion from orbiting views by tomographic image registration,” IEEE Trans. Med. Imaging 26(2), 153163 (2007).
http://dx.doi.org/10.1109/TMI.2006.889719
103.
103.R. P. Zeng, J. A. Fessler, and J. M. Balter, “Respiratory motion estimation from slowly rotating X-ray projections: Theory and simulation,” Med. Phys. 32(4), 984991 (2005).
http://dx.doi.org/10.1118/1.1879132
104.
104.Y. C. Wei, H. Y. Yu, and G. Wang, “Integral invariants in fan-beam and cone-beam computed tomography,” IEEE Signal Process. Lett. 13(9), 549552 (2006).
http://dx.doi.org/10.1109/LSP.2006.874452
105.
105.H. Y. Yu and G. Wang, “Data consistency based general motion artifact reduction in fan-beam CT,” IEEE Trans. Med. Imaging 26(2), 249260 (2007).
http://dx.doi.org/10.1109/TMI.2006.889717
106.
106.G. Wang, M. W. Vannier, and P. C. Cheng, “Iterative X-ray cone-beam tomography for metal artifact reduction and local region reconstruction,” Microsc. Microanal. 5, 5865 (1999).
http://dx.doi.org/10.1017/S1431927699000057
107.
107.J. A. Fessler, “Penalized weighted least-squares image-reconstruction for positron emission tomography,” IEEE Trans. Med. Imaging 13(2), 290300 (1994).
http://dx.doi.org/10.1109/42.293921
108.
108.Bruno De Man, “Iterative reconstruction for reduction of metal artifacts in CT,” Ph.D. Dissertation, University of Leuven, Belgium (2001).
109.
109.J. A. O’Sullivan and J. Benac, “Alternating minimization algorithms for transmission tomography,” IEEE Trans. Med. Imaging 26(3), 283297 (2007).
http://dx.doi.org/10.1109/TMI.2006.886806
110.
110.T. Beyer et al., “A combined PET/CT scanner for clinical oncology,” J. Nucl. Med. 41(8), 13691379 (2000).
111.
111.D. A. Boas and A. M. Dale, “Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function,” Appl. Opt. 44(10), 19571968 (2005).
http://dx.doi.org/10.1364/AO.44.001957
112.
112.K. Kagawa et al., “Initial clinical assessment of CT-MRI image fusion software in localization of the prostate for 3D conformal radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 38(2), 319325 (1997).
http://dx.doi.org/10.1016/S0360-3016(96)00620-7
113.
113.G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31(8), 22892299 (2004).
http://dx.doi.org/10.1118/1.1766420
114.
114.J. Nuyts et al., “Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms,” IEEE Trans. Med. Imaging 18(5), 393403 (1999).
http://dx.doi.org/10.1109/42.774167
115.
115.A. Momose and J. Fukuda, “Phase-contrast radiographs of nonstained rat cerebellar specimen,” Med. Phys. 22(4), 375379 (1995).
http://dx.doi.org/10.1118/1.597472
116.
116.R. A. Lewis, “Medical phase contrast X-ray imaging: Current status and future prospects,” Phys. Med. Biol. 49(16), 35733583 (2004).
http://dx.doi.org/10.1088/0031-9155/49/16/005
117.
117.A. Momose, “Recent advances in x-ray phase imaging,” Jpn. J. Appl. Phys., Part 1 44(9A), 63556367 (2005).
http://dx.doi.org/10.1143/JJAP.44.6355
118.
118.X. Z. Wu and H. Liu, “Clarification of aspects in in-line phase-sensitive X-ray imaging,” Med. Phys. 34(2), 737743 (2007).
http://dx.doi.org/10.1118/1.2431475
119.
119.X. Z. Wu, H. Liu, and A. M. Yan, “x-ray phase-attenuation duality and phase retrieval,” Opt. Lett. 30(4), 379381 (2005).
http://dx.doi.org/10.1364/OL.30.000379
120.
120.S. W. Wilkins et al., “Phase-contrast imaging using polychromatic hard X-rays,” Nature (London) 384, 335338 (1996).
http://dx.doi.org/10.1038/384335a0
121.
121.F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2(4), 258261 (2006).
122.
122.C. Kottler, C. David, F. Pfeiffer, and O. Bunk, “A two-directional approach for grating based differential phase contrast imaging using hard x rays,” Opt. Express 15(3), 11751181 (2007).
http://dx.doi.org/10.1364/OE.15.001175
123.
123.M. Jiang, C. L. Wyatt, and G. Wang, “X-ray phase-contrast imaging with three 2D gratings,” Int. J. Biomed. Imaging 2007, Article ID 27152 (2007).
124.
124.D. W. Holdsworth, “Micro-CT in small animal and specimen imaging,” Trends Biotechnol. 20(8), S34S39 (2002).
http://dx.doi.org/10.1016/S0167-7799(02)02004-8
125.
125.M. J. Paulus, “A review of high-resolution x-ray computed tomography and other imaging modalities for small animal research,” Lab Anim. 30, 3645 (2001).
126.
126.G. Wang, “Micro-CT scanners for biomedical applications: An overview,” Adv. Imaging 16, 1827 (2001).
127.
127.G. Wang et al., “Design, analysis and simulation for development of the first clinical micro-CT scanner,” Acad. Radiol. 12(4), 511525 (2005).
128.
128.D. J. Brenner, C. D. Elliston, E. J. Hall, and W. E. Berdon, “Estimated risks of radiation-induced fatal cancer from pediatric CT,” AJR, Am. J. Roentgenol. 176(2), 289296 (2001).
129.
129.A. Berrington de Gonzalez and S. Darby, “Risk of cancer from diagnostic x rays: Estimates for the UK and 14 other countries,” Lancet 363, 345351 (2004).
http://dx.doi.org/10.1016/S0140-6736(04)15433-0
130.
130.O. W. Linto and F. A. Mattler, Jr. , “National conference on dose reduction in computed tomography, emphasis on pediatrics,” AJR, Am. J. Roentgenol. 181, 321329 (2003).
131.
131.G. Wang, S. Y. Zhao, and D. Heuscher, “A knowledge-based cone-beam x-ray CT algorithm for dynamic volumetric cardiac imaging,” Med. Phys. 29(8), 18071822 (2002).
http://dx.doi.org/10.1118/1.1494989
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/35/3/10.1118/1.2836950
Loading
/content/aapm/journal/medphys/35/3/10.1118/1.2836950
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/35/3/10.1118/1.2836950
2008-02-25
2016-08-27

Abstract

Over the past decade, computed tomography(CT) theory, techniques and applications have undergone a rapid development. Since CT is so practical and useful, undoubtedly CT technology will continue advancing biomedical and non-biomedical applications. In this outlook article, we share our opinions on the research and development in this field, emphasizing 12 topics we expect to be critical in the next decade: analytic reconstruction, iterative reconstruction, local/interior reconstruction, flat-panel based CT, dual-source CT, multi-source CT, novel scanning modes, energy-sensitive CT, nano-CT, artifact reduction, modality fusion, and phase-contrast CT. We also sketch several representative biomedical applications.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/35/3/1.2836950.html;jsessionid=-T_x1Rcuf023Du_f5ItyCbb2.x-aip-live-02?itemId=/content/aapm/journal/medphys/35/3/10.1118/1.2836950&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/35/3/10.1118/1.2836950&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/35/3/10.1118/1.2836950'
Right1,Right2,Right3,