Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. J. Jacobs, M. Fer, F. M. Su, H. Breitz, J. Thompson, H. Goodgold, J. Cani, J. Heap, and P. Weiden, “A phase I trial of rhenium-186-labeled monoclonal antibody administered intraperitoneally in ovarian carcinoma: Toxicity and clinical response,” Obstet. Gynecol. (N.Y., NY, U. S.) 82, 586593 (1993).
2.P. Riva, A. Arista, V. Tison, C. Sturiale, G. Francheschi, A. Spinelli, N. Riva, M. Casi, G. Moscatelli, and M. Frattarelli, “Intralesional radioimmunotherapy of malignant gliomas: An effective treatment in recurrent tumors,” Cancer 73, 10761082 (1994).
3.B. Shapiro, J. C. Sisson, D. M. Wieland, T. J. Mangner, S. M. Zempel, E. Mudgett, M. D. Gross, J. E. Carey, K. R. Zasadny, and W. H. Beierwaltes, “Radiopharmaceutical therapy of malignant pheochromocytoma with 131I metaiodobenzylguanidine: Results from ten years of experience,” J. Nucl. Biol. Med. 35, 269276 (1991).
4.A. Frilling, F. Weber, V. Cicinnati, and C. Broelsch, “Role of radiolabeled octreotide therapy in patients with metastatic neuroendocrine neoplasms,” Exp. Rev. Endocrinology Metabolism 2, 517527 (2007).
5.G. L. DeNardo, A. Natarajan, S. Hok, J. Perkins, M. Cosman, S. J. DeNardo, F. C. Lightstone, G. L. Mirick, L. A. Miers, and R. L. Balhorn, “Pharmacokinetic characterization in xenografted mice of a series of first-generation mimics for HLA-DR antibody, Lym-1, as carrier molecules to image and treat lymphoma,” J. Nucl. Med. 48, 13381347 (2007).
6.B. J. Hicke, A. W. Stephens, T. Gould, Y. -F. Chang, C. K. Lynott, J. Heil, S. Borkowski, C. -S. Hilger, G. Cook, S. Warren, and P. G. Schmidt, “Tumor targeting by an aptamer,” J. Nucl. Med. 47, 668678 (2006).
7.T. A. Waldmann, “Monoclonal antibodies in diagnosis and therapy,” Science 252, 16571662 (1991).
8.J. W. Park, “Liposome-based drug delivery in breast cancer treatment,” Breast Cancer Res. 4, 9599 (2002).
9.J. F. Kukowska-Latallo, K. A. Candido, Z. Cao, S. S. Nigavekar, I. J. Majoros, T. P. Thomas, L. P. Balogh, M. K. Khan, and J. R. Baker, Jr., “Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer,” Cancer Res. 65, 53175324 (2005).
10.G. Liu, S. Dou, G. Mardirossian, J. He, S. Zhang, X. Liu, M. Rusckowski, and D. J. Hnatowich, “Successful radiotherapy of tumor in pretargeted mice by 188Re-radiolabeled phosphorodiamidate morpholino oligomer, as synthetic DNA analogue,” Clin. Cancer Res. 12, 49584964 (2006).
11.R. J. Lewandowski, K. G. Thurston, J. E. Goin, C. Y. Wong, V. L. Gates, M. Van Buskirk, J. F. Geschwind, and R. Salem, “ microsphere (TheraSphere) treatment for unresectable colorectal cancer metastases of the liver: Response to treatment at targeted absorbed doses of as measured by 18F fluorodeoxyglucose positron emission tomography and computer tomographic imaging,” J. Vasc. Interv. Radiol. 16, 16411651 (2005).
12.A. S. Kennedy, D. Coldwell, C. Nutting, R. Murthy, D. E. Wertman, Jr., S. P. Loehr, C. Overton, S. Meranze, J. Niedzwecki, and S. Sailer, “Resin -microsphere brachytherapy for unresectable colorectal liver metastases: Modern USA experience,” Int. J. Radiat. Oncol., Biol., Phys. 65, 412425 (2006).
13.V. Kenanova, T. Olafsen, L. E. Williams, N. H. Ruel, J. Longmate, P. J. Yazaki, J. E. Shively, D. Colcher, A. A. Raubitschek, and A. M. Wu, “Radioiodinated versus radiometal-labeled anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments: Optimal pharmacokinetics for therapy,” Cancer Res. 67, 718726 (2007).
14.G. A. Wiseman, C. A. White, R. B. Sparks, W. D. Erwin, D. A. Podoloff, D. Lamonica, N. L. Bartlett, J. A. Parker, W. L. Dunn, S. M. Spies, R. Belanger, T. L. Witzig, and B. R. Leigh, “Biodistribution and dosimetry results from a phase III prospectively randomized controlled trial of Zevalin radioimmunotherapy for low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma,” Crit. Rev. Oncol. Hematol. 39, 181194 (2001).
15.J. M. Vose, R. L. Wahl, M. Saleh, A. Z. Rohatiner, S. J. Knox, J. A. Radford, A. D. Zelenetz, G. F. Tidmarsh, R. J. Stagg, and M. S. Kaminski, “Multicenter phase II study of iodine I-131 tositumomab for chemotherapy-relapsed/refractory low-grade and transformed low-grade B-cell non-Hodgkin’s lymphoma,” J. Clin. Oncol. 18, 13161323 (2000).
16.J. Y. C. Wong, S. Shibata, L. E. Williams, C. S. Kwok, A. Liu, D. Z. Chu, D. M. Yamauchi, S. Wilcznski, D. N. Ikle, A. M. Wu, P. J. Yazaki, J. E. Shively, J. H. Doroshow, and A. A. Raubitschek, “A phase I trial of 90Y-anti-carcinoembryonic antigen chimeric T84.66 radioimmunotherapy with 5-fluorouracil in patients with metastatic colorectal cancer,” Clin. Cancer Res. 9, 58425852 (2003).
17.B. Emami, J. Lyman, A. Brown, L. Coia, M. Goitein, J. E. Munzenrider, B. Shank, L. J. Solin, and M. Wesson, “Tolerance of normal tissue to therapeutic irradiation,” Int. J. Radiat. Oncol., Biol., Phys. 21, 109122 (1991).
18.G. L. DeNardo, S. J. DeNardo, S. Shen, D. A. DeNardo, G. R. Mirick, D. J. Macey, and K. R. Lamborn, “Factors affecting 131-I-Lym-1 pharmacokinetics and radiation dosimetry in patients with non-Hodgkin’s lymphoma and chronic lymphocytic leukemia,” J. Nucl. Med. 40, 13171326 (1999).
19.J. A. Siegel, B. W. Wessels, E. E. Watson, M. G. Stabin, H. M. Vriesendorp, E. W. Bradley, C. C. Badger, A. B. Brill, C. S. Kwok, D. R. Stickney, K. F. Eckermann, D. R. Fisher, D. J. Buchsbaum, and S. E. Order, “Bone marrow dosimetry and toxicity in radioimmunotherapy, “Antibody, Immunoconjugates, Radiopharm. 3, 213233 (1990).
20.M. G. Stabin, “MIRDOSE: Personal computer software for internal absorbed dose assessment in nuclear medicine,” J. Nucl. Med. 37, 538546 (1996).
21.M. G. Stabin, R. B. Sparks, and E. Crowe, “OLINDA/EXM: The second-generation personal computer software for internal absorbed dose assessment in nuclear medicine,” J. Nucl. Med. 46, 10231027 (2005).
22.L. E. Williams, A. Liu, A. A. Raubitschek, and J. Y. C. Wong, “A method for patient-specific absorbed dose estimation for internal beta emitters,” Clin. Cancer Res. 5, 3015s3019s (1999).
23.G. Akabani, W. G. Hawkins, M. B. Eckblade, and P. K. Leichner, “Patient-specific dosimetry using quantitative SPECT imaging and three-dimensional discrete Fourier transform convolution,” J. Nucl. Med. 38, 308314 (1997).
24.C. H. Holdsworth, M. Dahlbom, A. Liu, L. Williams, C. S. Levin, M. Janecek, and E. J. Hoffman, “Expanding the versatility of a more accurate accelerated Monte Carlo simulation for 3D PET: Data correction of PET emission scans using 124-I,” Nuclear Science Symposium Conference Record 2001 IEEE (2002), Vol. 4, pp. 21052109.
25.D. A. Goodwin, “Tumor pretargeting: Almost the bottom line,” J. Nucl. Med. 36, 876879 (1995).
26.D. M. Goldenberg and R. M. Sharkey, “Novel radiolabeled antibody conjugates,” Oncogene 26, 37343744 (2007).
27.O. Linden, J. Kurkus, M. Garkavij, E. Cavallin-Stahl, M. Ljungberg, R. Nilsson, T. Ohlsson, B. Sandberg, S. -E. Strand, and J. Tennvall, “A novel platform for radioimmunotherapy: Extracorporeal depletion of biotinylated and 90Y-labeled rituximab in patients with refractory B-cell lymphoma,” Cancer Biother. Radiopharm. 20, 457466 (2005).
28.S. Welt, G. Ritter, C. Williams, Jr., L. S. Cohen, A. Jungbluth, E. A. Richards, L. J. Old, and N. E. Kemeny, “Preliminary report of a phase I study of combination chemotherapy and humanized A33 antibody immunotherapy in patients with advanced colorectal cancer,” Clin. Cancer Res. 9, 13471353 (2003).
29.L. E. Williams, A. Liu, D. M. Yamauchi, G. Lopatin, A. A. Raubitschek, and J. Y. C. Wong, “The two types of correction of absorbed dose estimates for internal emitters,” Cancer 94, 12311234 (2002).
30.D. J. Macey, L. E. Williams, H. B. Breitz, A. Liu, T. K. Johnson, and P. B. Zanzonico, A Primer for Radioimmunotherapy and Radionuclide Therapy AAPM Report No. 71 (Medical Physics, Madison, WI, 2001).
31.K. F. Koral, Y. Dewaraja, L. A. Clarke, J. Li, R. Zasadny, S. G. Rommelfanger, I. R. Francis, M. S. Kaminski, and R. L. Wahl, “Tumor-absorbed dose estimates versus response in tositumomab therapy of previously untreated patients with follicular non-Hodgkin’s Lymphoma: Preliminary report,” Cancer Biother. Radiopharm. 15, 347355 (2000).
32.C. Hindorf, O. Linden, L. Stenberg, J. Tennvall, and S. -E. Strand, “Change in tumor-absorbed dose due to decrease in mass during fractionated radioimmunotherapy in lymphoma patients,” Clin. Cancer Res. 1, 4003S4006S (2003).
33.L. E. Williams, R. B. Duda, R. T. Proffitt, B. G. Beatty, J. D. Beatty, J. Y. C. Wong, J. E. Shively, and R. J. Paxton, “Tumor uptake as a function of tumor mass: A mathematic model,” J. Nucl. Med. 29, 103109 (1988).
34.D. J. Macey, S. J. DeNardo, G. DeNardo, J. L. Goodnight, and M. W. Unger, “Uptake of In-111 labeled monoclonal antibody ZME018 as a function of tumor size in a patient with melanoma,” Am. J. Physiol. Imaging 3, 16 (1988).
35.G. Riethmuller, E. Schneider-Gadicke, G. Schlimok, W. Schmiegel, R. Raab, K. Hoffken, R. Gruber, H. Pichlmaier, H. Hirche, R. Pichlmayr, P. Buggisch, and J. Witte, “Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes’C colorectal carcinoma,” Lancet 343, 11771183 (1994).
36.J. Carlsson, E. Aronsson Forsell, S. O. Hietala, T. Stigbrand, and T. Tennvall, “Tumor therapy with radionuclides: Assessment of progress and problems,” Radiother. Oncol. 66, 107117 (2003).
37.Reprinted by permission of the Society of Nuclear Medicine from J. Y. C. Wong, G. E. Thomas, D. Yamauchi, L. E. Williams, T. L. Odom-Maryon, A. Liu, J. M. Esteban, M. Neumaier, S. Dresse, A. M. Wu, F. J. Primus, J. E. Shively, and A. A. Raubitschek, “Clinical evaluation of indium-111-labeled chimeric anti-CEA monoclonal antibody,” J. Nucl. Med. 38, 19511959 (1997).

Data & Media loading...


Article metrics loading...



Targeted radionuclide therapy (TRT) seeks molecular and functional targets within patient tumor sites. A number of agents have been constructed and labeled with beta, alpha, and Auger emitters. Radionuclide carriers spanning a broad range of sizes; e.g., antibodies, liposomes, and constructs such as nanoparticles have been used in these studies. Uptake, in percent-injected dose per gram of malignant tissue, is used to evaluate the specificity of the targeting vehicle. Lymphoma (B-cell) has been the primary clinical application. Extension to solid tumors will require raising the macroscopic absorbed dose by several-fold over values found in present technology. Methods that may effect such changes include multistep targeting, simultaneous chemotherapy, and external sequestration of the agent. Toxicity has primarily involved red marrow so that marrow replacement can also be used to enhance future TRT treatments. Correlation of toxicities and treatment efficiency has been limited by relatively poor absorbed dose estimates partly because of using standard (phantom) organ sizes. These associations will be improved in the future by obtaining patient-specific organ size and activity data with hybrid SPECT/CT and PET/CT scanners.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd