1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/35/8/10.1118/1.2952653
1.
1.P. F. Judy, S. Balter, D. Bassano, E. C. McCullough, J. T. Payne, and L. Rothenberg, AAPM Report No. 1: Phantoms for Performance Evaluation and Quality Assurance of CT Scanners (American Association of Physicists in Medicine, Chicago, 1977).
2.
2.M. Siedband et al., AAPM Report No. 4: Basic Quality Control in Diagnostic Radiology (American Association of Physicists in Medicine, Chicago, 1978).
3.
3.R. Y. L. Chu, J. Fisher, B. R. Archer, B. J. Conway, M. M. Goodsitt, S. Glaze, J. E. Gray, and K. J. Strauss, AAPM Report No. 31: Standardized Methods for Measuring Diagnostic X-Ray Wxposures (American Institute of Physics, New York, 1990).
4.
4.L. K. Wagner, D. P. Fontenla, C. Kimme-Smith, L. N. Rothenberg, J. Shepard, and J. M. Boone, AAPM Report No. 35: Recommendations on Performance Characteristics of Diagnostic Exposure Meters (American Institute of Physics, New York, 1991);
4.Printed also as: L. K. Wagner, D. P. Fontenla, C. Kimme-Smith, L. N. Rothenberg, J. Shepard, and J. M. Boone, “Recommendations on performance characteristics of diagnostic exposure meters: Report of AAPM Diagnostic X-Ray Imaging Task Group No. 6,” Med. Phys. 19, 231241 (1992).
http://dx.doi.org/10.1118/1.596904
5.
5.P. -J. Lin, T. J. Beck, C. Borras, G. Cohen, R. A. Jucius, R. J. Kriz, E. L. Nickoloff, L. N. Rothenberg, K. J. Strauss, T. Villafana, R. K. Cacak, J. E. Gray, T. N. Hangartner, R. E. Hendrick, and R. P. Rossi, AAPM Report No. 39: Specification and Acceptance Testing of Computed Tomography Scanners (American Institute of Physics, New York, 1993).
6.
6.G. J. Kutcher, L. Coia, M. Gillin, W. F. Hanson, S. Leibel, R. J. Morton, J. R. Palta, J. Purdy, L. E. Reinstein, G. K. Svensson, M. Weller, and L. Wingfield, “AAPM Report No. 46: Comprehensive QA for Radiation Oncology (American Institute of Physics, New York, 1994);
6.Printed also as: G. J. Kutcher, L. Coia, M. Gillin, W. F. Hanson, S. Leibel, R. J. Morton, J. R. Palta, J. A. Purdy, L. E. Reinstein, G. K. Svensson, M. Weller, and L. Wingfield, “Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40,” Med. Phys. 21, 581618 (1994).
http://dx.doi.org/10.1118/1.597316
7.
7.J. R. Fisher, P. -J. P. Lin, P. Butler, B. J. Conway, F. Ranallo, R. Rossi, J. Sheppard, and K. Strauss, AAPM Report No. 60: Instrumentation Requirements of Diagnostic Radiological Physicists (Medical Physics, Madison, WI, 1998).
8.
8.B. Fraass, K. Doppke, M. Hunt, G. Kutcher, G. Starkschall, R. Stern, and J. V. Dyke, “American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning,” Med. Phys. 25, 17731829 (1998).
http://dx.doi.org/10.1118/1.598373
9.
9.S. J. Shepard et al., AAPM Report No. 74: Quality Control in Diagnostic Radiology (Medical Physics, Madison, WI, 2002).
10.
10.S. Mutic, J. R. Palta, E. K. Butker, I. J. Das, M. S. Huq, L. -N. D. Loo, B. J. Salter, C. H. McCollough, and J. V. Dyk, “Quality assurance for computed-tomography simulators and the computed-tomography-simulation process: Report of the AAPM Radiation Therapy Task Group No. 66,” Med. Phys. 30, 27622792 (2003).
http://dx.doi.org/10.1118/1.1609271
11.
11.A. J. Olch, R. W. Kline, G. S. Ibbott, J. R. Anderson, J. Deye, T. J. FitzGerald, D. Followill, M. T. Gillin, M. S. Huq, J. R. Palta, J. A. Purdy, and M. M. Urie, Quality Assurance for Clinical Trials: A Primer for Physicists (Medical Physics, Madison, WI, 2004).
12.
12.P. J. Keall, G. S. Mageras, J. M. Balter, R. S. Emery, K. M. Forster, S. B. Jiang, J. M. Kapatoes, H. D. Kubo, D. A. Low, M. J. Murphy, B. R. Murray, C. R. Ramsey, M. B. van Herk, S. S. Vedam, J. W. Wong, and E. Yorke, The Management of Respiratory Motion in Radiation Oncology (American Association of Physicists in Medicine, College Park, MD, 2006).
13.
13.M. J. Murphy, J. Balter, S. Balter, J. A. BenComo, I. J. Das, S. B. Jiang, C. -M. Ma, G. H. Olivera, R. F. Rodebaugh, K. J. Ruchala, H. Shirato, and F. -F. Yin, “The management of imaging dose during image-guided radiotherapy,” Med. Phys. 34, 40414063 (2007).
http://dx.doi.org/10.1118/1.2775667
14.
14.M. T. Madsen, J. A. Anderson, J. R. Halama, J. Kleck, D. J. Simpkin, J. R. Votaw, R. E. Wendt, L. E. Williams, and M. V. Yester, “AAPM Task Group 108: PET and PET/CT shielding requirements,” Med. Phys. 33, 415 (2006).
http://dx.doi.org/10.1118/1.2135911
15.
15.C. McCollough et al., AAPM Report 96: The Measurement, Reporting, and Management of Radiation Dose in CT (Medical Physics, Madison, WI, 2008).
16.
16.E. C. McCullough, “Photon attenuation in computed tomography,” Med. Phys. 2, 307320 (1975).
http://dx.doi.org/10.1118/1.594199
17.
17.E. C. McCullough and J. T. Payne, “X-ray-transmission computed tomography,” Med. Phys. 4, 8598 (1977).
http://dx.doi.org/10.1118/1.594381
18.
18.M. Szulc and P. F. Judy, “Effect of x-ray source filtration on dose and image performance of CT scanners,” Med. Phys. 6, 479486 (1979).
http://dx.doi.org/10.1118/1.594609
19.
19.M. R. Millner, W. H. Payne, R. G. Waggener, W. D. McDavid, M. J. Dennis, and V. J. Sank, “Determination of effective energies in CT calibration,” Med. Phys. 5, 543545 (1978).
http://dx.doi.org/10.1118/1.594488
20.
20.J. A. Sorenson, “Technique for evaluating radiation beam and image slice parameters of CT scanners,” Med. Phys. 6, 6869 (1979).
http://dx.doi.org/10.1118/1.594554
21.
21.S. C. Prasad, “Effects of focal spot intensity distribution and collimator width in reconstructive x-ray tomography,” Med. Phys. 6, 229232 (1979).
http://dx.doi.org/10.1118/1.594570
22.
22.S. R. Thomas, A. J. Schneider, J. G. Kereiakes, R. R. Lukin, A. A. Chambers, and T. A. Tomsick, “An evaluation of the performance characteristics of different types of collimators used with the EMI brain scanner (MKI) and their significance in specific clinical applications,” Med. Phys. 5, 124132 (1978).
http://dx.doi.org/10.1118/1.594419
23.
23.P. F. Judy, “The line spread function and modulation transfer function of a computed tomographic scanner,” Med. Phys. 3, 233236 (1976).
http://dx.doi.org/10.1118/1.594283
24.
24.C. J. Bischof and J. C. Ehrhardt, “Modulation transfer function of the EMI CT head scanner,” Med. Phys. 4, 163167 (1977).
http://dx.doi.org/10.1118/1.594305
25.
25.R. A. Brooks and G. Di Chiro, “Statistical limitations in x-ray reconstructive tomography,” Med. Phys. 3, 237240 (1976).
http://dx.doi.org/10.1118/1.594240
26.
26.R. F. Wagner, D. G. Brown, and M. S. Pastel, “Application of information theory to the assessment of computed tomography,” Med. Phys. 6, 8394 (1979).
http://dx.doi.org/10.1118/1.594559
27.
27.K. M. Hanson, “Detectability in computed tomographic images,” Med. Phys. 6, 441451 (1979).
http://dx.doi.org/10.1118/1.594534
28.
28.W. D. McDavid, R. G. Waggener, W. H. Payne, and M. J. Dennis, “Spectral effects on three-dimensional reconstruction from x rays,” Med. Phys. 2, 321324 (1975).
http://dx.doi.org/10.1118/1.594200
29.
29.W. D. McDavid, R. G. Waggener, W. H. Payne, and M. J. Dennis, “Correction for spectral artifacts in cross-sectional reconstruction from x rays,” Med. Phys. 4, 5457 (1977).
http://dx.doi.org/10.1118/1.594302
30.
30.P. K. Kijewski and B. E. Bjärngard, “Correction for beam hardening in computed tomography,” Med. Phys. 5, 209214 (1978).
http://dx.doi.org/10.1118/1.594429
31.
31.R. C. Chase and J. A. Stein, “An improved image algorithm for CT scanners,” Med. Phys. 5, 497499 (1978).
http://dx.doi.org/10.1118/1.594486
32.
32.M. R. Millner, W. D. McDavid, R. G. Waggener, M. J. Dennis, W. H. Payne, and V. J. Sank, “Extraction of information from CT scans at different energies,” Med. Phys. 6, 7071 (1979).
http://dx.doi.org/10.1118/1.594555
33.
33.F. Kelcz, P. M. Joseph, and S. K. Hilal, “Noise considerations in dual energy CT scanning,” Med. Phys. 6, 418425 (1979).
http://dx.doi.org/10.1118/1.594520
34.
34.R. M. Lewitt, “Processing of incomplete measurement data in computed tomography,” Med. Phys. 6, 412417 (1979).
http://dx.doi.org/10.1118/1.594519
35.
35.G. Gross and E. C. McCullough, “Exposure values around an x-ray scanning transaxial tomograph (EMI scanner),” Med. Phys. 2, 282 (1975).
http://dx.doi.org/10.1118/1.594194
36.
36.A. Suzuki and M. N. Suzuki, “Use of a pencil-shaped ionization chamber for measurement of exposure resulting from a computed tomography scan,” Med. Phys. 5, 536539 (1978).
http://dx.doi.org/10.1118/1.594445
37.
37.S. K. Agarwal, E. J. Friesen, D. Bhaduri, and G. Courlas, “Dose distribution from a Delta-25 head scanner,” Med. Phys. 6, 302304 (1979).
http://dx.doi.org/10.1118/1.594632
38.
38.P. R. Moran, W. H. Perman, and R. L. Brown, “Order-of-magnitude dose reduction for the EMI CT-5005,” Med. Phys. 5, 6768 (1978).
http://dx.doi.org/10.1118/1.594397
39.
39.L. S. Edelheit, G. T. Herman, and A. V. Lakshminarayanan, “Reconstruction of objects from diverging x rays,” Med. Phys. 4, 226231 (1977).
http://dx.doi.org/10.1118/1.594370
40.
40.W. H. Payne, R. G. Waggener, W. D. McDavid, and M. J. Dennis, “Treatment planning in cobalt-60 radiotherapy using computerized tomography techniques,” Med. Phys. 5, 4851 (1978).
http://dx.doi.org/10.1118/1.594393
41.
41.R. Datta, S. Datta, W. D. McDavid, and R. G. Waggener, “Electron beam depth dose scaling by means of effective atomic number reconstructed from CT scans,” Med. Phys. 6, 526529 (1979).
http://dx.doi.org/10.1118/1.594644
42.
42.J. E. Holden and W. R. Ip, “Continuous time-dependence in computed tomography,” Med. Phys. 5, 485490 (1978).
http://dx.doi.org/10.1118/1.594458
43.
43.S. C. Orphanoudakis and J. W. Strohbehn, “Mathematical model of conventional tomography,” Med. Phys. 3, 224232 (1976).
http://dx.doi.org/10.1118/1.594239
44.
44.S. C. Orphanoudakis, J. W. Strohbehn, and C. E. Metz, “Linearizing mechanisms in conventional tomographic imaging,” Med. Phys. 5, 17 (1978).
http://dx.doi.org/10.1118/1.594400
45.
45.G. Harding, U. Bertram, and H. Weiss, “Towards optimum blurring in spiral tomography,” Med. Phys. 5, 280284 (1978).
http://dx.doi.org/10.1118/1.594432
46.
46.G. N. Hounsfield, “Computed medical imaging,” Med. Phys. 7, 283290 (1980).
http://dx.doi.org/10.1118/1.594709
47.
47.G. H. Glover and N. J. Pelc, “Nonlinear partial volume artifacts in x-ray computed tomography,” Med. Phys. 7, 238248 (1980).
http://dx.doi.org/10.1118/1.594678
48.
48.G. H. Glover and N. J. Pelc, “An algorithm for the reduction of metal clip artifacts in CT reconstructions,” Med. Phys. 8, 799807 (1981).
http://dx.doi.org/10.1118/1.595032
49.
49.G. H. Glover, “Compton scatter effects in CT reconstructions,” Med. Phys. 9, 860867 (1982).
http://dx.doi.org/10.1118/1.595197
50.
50.J. G. Verly, “X-ray computed tomography in the presence of arbitrary symmetrical focal spot intensity distributions,” Med. Phys. 7, 2734 (1980).
http://dx.doi.org/10.1118/1.594655
51.
51.N. J. Schneiders, “Computer assisted MTF determination in CT,” Med. Phys. 7, 7678 (1980).
http://dx.doi.org/10.1118/1.594769
52.
52.K. M. Hanson, “Detectability in computed tomographic images,” Med. Phys. 6, 441451 (1979).
http://dx.doi.org/10.1118/1.594534
53.
53.P. F. Judy, R. G. Swensson, and M. Szulc, “Lesion detection and signal to noise ratio in CT images,” Med. Phys. 8, 1323 (1981).
http://dx.doi.org/10.1118/1.594903
54.
54.A. J. Duerinckx and A. Macovski, “Information and artifact in computed tomography image statistics,” Med. Phys. 7, 127134 (1980).
http://dx.doi.org/10.1118/1.594771
55.
55.D. L. Parker, J. L. Couch, K. R. Peschmann, V. Smith, M. Jimbo, and E. C. Wang, “Design constraints in computed tomography: A theoretical review,” Med. Phys. 9, 531539 (1982).
http://dx.doi.org/10.1118/1.595105
56.
56.T. B. Shope, R. M. Gagne, and G. C. Johnson, “A method for describing the doses delivered by transmission x-ray computed tomography,” Med. Phys. 8, 488495 (1981).
http://dx.doi.org/10.1118/1.594995
57.
57.J. J. Spokas, “Dose descriptors for computed tomography,” Med. Phys. 9, 288292 (1982).
http://dx.doi.org/10.1118/1.595072
58.
58.M. M. Moore, R. K. Cacak, and W. R. Hendee, “Multisegmented ion chamber for CT scanner dosimetry,” Med. Phys. 8, 640645 (1981).
http://dx.doi.org/10.1118/1.595022
59.
59.J. W. Beck, W. L. Dunn, and F. O’Foghludha, “Monte Carlo model for absorbed dose calculations in computed tomography,” Med. Phys. 10, 314320 (1983).
http://dx.doi.org/10.1118/1.595306
60.
60.J. W. Wong and R. M. Henkelman, “A new approach to CT pixel-based photon dose calculations in heterogeneous media,” Med. Phys. 10, 199208 (1983).
http://dx.doi.org/10.1118/1.595294
61.
61.R. Y. L. Chu et al., AAPM Report No. 31: Standardized Methods for Measuring Siagnostic X-Ray Exposures (American Institute of Physics, New York, 1991).
62.
62.D. J. Drost and A. Fenster, “Experimental dual xenon detectors for quantitative CT and spectral artifact correction,” Med. Phys. 7, 101107 (1980).
http://dx.doi.org/10.1118/1.594672
63.
63.M. Edwards, J. Keller, G. Larsen, A. Rowberg, B. Sandler, and R. Whitaker, “A computed tomography radiation therapy treatment planning system utilizing a whole body CT scanner,” Med. Phys. 8, 242248 (1981).
http://dx.doi.org/10.1118/1.594944
64.
64.R. G. Simpson, C. T. Chen, E. A. Grubbs, and W. Swindell, “A 4-MV CT scanner for radiation therapy: The prototype system,” Med. Phys. 9, 574579 (1982).
http://dx.doi.org/10.1118/1.595102
65.
65.W. Swindell, “A 4-MV CT scanner for radiation therapy; spectral properties of the therapy beam,” Med. Phys. 10, 347351 (1983).
http://dx.doi.org/10.1118/1.595280
66.
66.D. L. Parker, “Optimal short scan convolution reconstruction for fan beam CT,” Med. Phys. 9, 254257 (1982).
http://dx.doi.org/10.1118/1.595078
67.
67.P. C. Johns and M. Yaffe, “Scattered radiation in fan beam imaging system,” Med. Phys. 9, 231239 (1982).
http://dx.doi.org/10.1118/1.595076
68.
68.P. M. Joseph and R. D. Spital, “The effects of scatter in x-ray computed tomography,” Med. Phys. 9, 464472 (1982).
http://dx.doi.org/10.1118/1.595111
69.
69.T. N. Hangartner, “Correction of scatter in computed tomography images of bone,” Med. Phys. 14, 335340 (1987).
http://dx.doi.org/10.1118/1.596089
70.
70.J. R. Vetter and J. E. Holden, “Correction for scattered radiation and other background signals in dual-energy computed tomography material thickness measurements,” Med. Phys. 15, 726731 (1988).
http://dx.doi.org/10.1118/1.596187
71.
71.F. C. Wagner, A. Macovski, and D. G. Nishimura, “Dual-energy x-ray projection imaging: Two sampling schemes for the correction of scattered radiation,” Med. Phys. 15, 732748 (1988).
http://dx.doi.org/10.1118/1.596188
72.
72.S. C. Moore, P. F. Judy, J. D. Garnic, G. X. Kambic, F. Bonk, G. Cochran, P. Margosian, W. McCroskey, and F. Foote, “Prospectively gated cardiac computed tomography,” Med. Phys. 10, 846855 (1983).
http://dx.doi.org/10.1118/1.595420
73.
73.S. C. Moore and P. F. Judy, “Cardiac computed tomography using redundant-ray prospective gating,” Med. Phys. 14, 193196 (1987).
http://dx.doi.org/10.1118/1.596134
74.
74.R. L. Siddon, “Fast calculation of the exact radiological path for a three-dimensional CT array,” Med. Phys. 12, 252255 (1985).
http://dx.doi.org/10.1118/1.595715
75.
75.M. Nassi and W. R. Brody, “Regional myocardial flow estimation using computed tomography,” Med. Phys. 8, 302307 (1981).
http://dx.doi.org/10.1118/1.594875
76.
76.K. J. Kearfott, H. C. Lu, D. A. Rottenberg, and M. D. F. Deck, “The effects of CT drift on xenon CT measurement of regional cerebral blood flow,” Med. Phys. 11, 686689 (1984).
http://dx.doi.org/10.1118/1.595552
77.
77.D. F. Guthaner, M. Nassi, B. Bradley, E. B. Gould, C. H. Mai, and K. E. Schmidt, “Quantitative evaluation of left ventricular function using computed tomography,” Med. Phys. 12, 333338 (1985).
http://dx.doi.org/10.1118/1.595692
78.
78.W. Jaschke, R. G. Gould, P. A. Assimakopoulos, and M. J. Lipton, “Flow measurements with a high-speed computed tomography scanner,” Med. Phys. 14, 238243 (1987).
http://dx.doi.org/10.1118/1.596076
79.
79.W. F. Good, D. Gur, H. Yonas, and J. M. Herron, “Errors in cerebral blood flow determinations by xenon-enhanced computed tomography due to estimation of arterial xenon concentrations,” Med. Phys. 14, 377381 (1987).
http://dx.doi.org/10.1118/1.596051
80.
80.W. F. Good and D. Gur, “The effect of computed tomography noise and tissue heterogeneity on cerebral blood flow determination by xenon-enhanced computed tomography,” Med. Phys. 14, 557561 (1987).
http://dx.doi.org/10.1118/1.596067
81.
81.W. F. Good, D. Gur, J. M. Herron, and W. H. Kennedy, “The development of a xenon/computed tomography cerebral blood flow quality assurance phantom,” Med. Phys. 14, 867869 (1987).
http://dx.doi.org/10.1118/1.596014
82.
82.W. A. Kalender, W. H. Perman, J. R. Vetter, and E. Klotz, “Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies,” Med. Phys. 13, 334339 (1986).
http://dx.doi.org/10.1118/1.595958
83.
83.J. R. Vetter, W. H. Perman, W. A. Kalender, R. B. Mazess, and J. E. Holden, “Evaluation of a prototype dual-energy computed tomographic apparatus. II. Determination of vertebral bone mineral content,” Med. Phys. 13, 340343 (1986).
http://dx.doi.org/10.1118/1.595951
84.
84.D. D. Robertson, Jr. and H. K. Huang, “Quantitative bone measurements using x-ray computed tomography with second-order correction,” Med. Phys. 13, 474479 (1986).
http://dx.doi.org/10.1118/1.595971
85.
85.T. Sandor, B. Weissman, and E. Brown, “Effect of intervertebral changes of the spinal trabecular and cortical mineral content on the precision requirements in longitudinal single and dual energy computed tomography examinations,” Med. Phys. 16, 218224 (1989).
http://dx.doi.org/10.1118/1.596417
86.
86.B. G. Fallone, P. R. Moran, and E. B. Podgorsak, “Noninvasive thermometry with a clinical x-ray CT scanner,” Med. Phys. 9, 715721 (1982).
http://dx.doi.org/10.1118/1.595117
87.
87.M. H. Buonocore, W. R. Brody, and A. Macovski, “Fast minimum variance estimator for limited angle CT image reconstruction,” Med. Phys. 8, 695702 (1981).
http://dx.doi.org/10.1118/1.594838
88.
88.U. E. Ruttimann, X. -L. Qi, and R. L. Webber, “An optimal synthetic aperture for circular tomosynthesis,” Med. Phys. 16, 398405 (1989).
http://dx.doi.org/10.1118/1.596348
89.
89.J. Liu, D. Nishimura, and A. Macovski, “Vessel imaging using dual-energy tomosynthesis,” Med. Phys. 14, 950955 (1987).
http://dx.doi.org/10.1118/1.595998
90.
90.R. A. Kruger, D. R. Reinecke, S. W. Smith, and R. Ning, “Reconstruction of blood vessels from x-ray subtraction projections: Limited angle geometry,” Med. Phys. 14, 940949 (1987).
http://dx.doi.org/10.1118/1.595997
91.
91.C. R. Crawford and K. F. King, “Computed tomography scanning with simultaneous patient translation,” Med. Phys. 17, 967982 (1990).
http://dx.doi.org/10.1118/1.596464
92.
92.W. A. Kalender and A. Polacin, “Physical performance characteristics of spiral CT scanning,” Med. Phys. 18, 910915 (1991).
http://dx.doi.org/10.1118/1.596607
93.
93.G. Wang and M. W. Vannier, “Helical CT image noise-analytical results,” Med. Phys. 20, 16351640 (1993).
http://dx.doi.org/10.1118/1.596950
94.
94.G. Wang and M. W. Vannier, “Spatial variation of section sensitivity profile in spiral computed tomography,” Med. Phys. 21, 14911497 (1994).
http://dx.doi.org/10.1118/1.597199
95.
95.A. Polacin, W. A. Kalender, J. Brink, and M. A. Vannier, “Measurement of slice sensitivity profiles in spiral CT,” Med. Phys. 21, 133140 (1994).
http://dx.doi.org/10.1118/1.597251
96.
96.J. Hsieh, “A general approach to the reconstruction of x-ray helical computed tomography,” Med. Phys. 23, 221229 (1996).
http://dx.doi.org/10.1118/1.597706
97.
97.J. Hsieh, “Nonstationary noise characteristics of the helical scan and its impact on image quality and artifacts,” Med. Phys. 24, 13751384 (1997).
http://dx.doi.org/10.1118/1.598026
98.
98.H. Hu, “Helical CT reconstruction with longitudinal filtration,” Med. Phys. 25, 21302138 (1998).
http://dx.doi.org/10.1118/1.598409
99.
99.S. Y. Yen, G. D. Rubin, and S. Napel, “Spatially varying longitudinal aliasing and resolution in spiral computed tomography,” Med. Phys. 26, 26172625 (1999).
http://dx.doi.org/10.1118/1.598801
100.
100.X. Pan, “Optimal noise control in and fast reconstruction of fan-beam computed tomography image,” Med. Phys. 26, 689697 (1999).
http://dx.doi.org/10.1118/1.598574
101.
101.W. Huda and J. V. Atherton, “Energy imparted in computed tomograpy,” Med. Phys. 22, 12631269 (1995).
http://dx.doi.org/10.1118/1.597564
102.
102.J. V. Atherton and W. Huda, “Energy imparted and effective doses in computed tomography,” Med. Phys. 23, 735741 (1996).
http://dx.doi.org/10.1118/1.597667
103.
103.W. A. Kalender, H. Wolf, and C. Suess, “Dose reduction in CT by anatomically adapted tube current modulation. II. Phantom measurements,” Med. Phys. 26, 22482253 (1999).
http://dx.doi.org/10.1118/1.598738
104.
104.M. F. McNitt-Gray, C. H. Cagnon, T. D. Solberg, and I. Chetty, “Radiation dose in spiral CT: The relative effects of collimation and pitch,” Med. Phys. 26, 409414 (1999).
http://dx.doi.org/10.1118/1.598532
105.
105.Y. Liang and R. A. Kruger, “Dual-slice spiral versus single-slice spiral scanning: Comparison of the physical performance of two computed tomography scanners,” Med. Phys. 23, 205220 (1996).
http://dx.doi.org/10.1118/1.597705
106.
106.K. Taguchi and H. Aradate, “Algorithm for image reconstruction in multi-slice helical CT,” Med. Phys. 25, 550561 (1998).
http://dx.doi.org/10.1118/1.598230
107.
107.H. Hu, “Multi-slice helical CT: Scan and reconstruction,” Med. Phys. 26, 518 (1999).
http://dx.doi.org/10.1118/1.598470
108.
108.C. H. McCollough and F. E. Zink, “Performance evaluation of a multi-slice CT system,” Med. Phys. 26, 22232230 (1999).
http://dx.doi.org/10.1118/1.598777
109.
109.N. M. Corrigan, A. E. Chavez, E. R. Wisner, and J. M. Boone, “A multiple detector array helical x-ray microtomography system for specimen imaging,” Med. Phys. 26, 1708 (1999).
http://dx.doi.org/10.1118/1.598662
110.
110.H. N. Cardinal and A. Fenster, “An accurate method for direct dual-energy calibration and decomposition,” Med. Phys. 17, 327341 (1990).
http://dx.doi.org/10.1118/1.596512
111.
111.M. M. Goodsitt and R. H. Johnson, “Precision in quantitative CT: Impact of x-ray dose and matrix size,” Med. Phys. 19, 10251036 (1992).
http://dx.doi.org/10.1118/1.596820
112.
112.J. C. M. Steenbeek, C. van Kuijk, J. L. Grashuis, and R. B. van Panthaleon van Eck, “Selection of fat-equivalent materials in postprocessing dual-energy quantitative CT,” Med. Phys. 19, 10511056 (1992).
http://dx.doi.org/10.1118/1.596823
113.
113.M. Kachelriess and W. A. Kalender, “Electrocardiogram-correlated image reconstruction from subsecond spiral computed tomography scans of the heart,” Med. Phys. 25, 24172432 (1998).
http://dx.doi.org/10.1118/1.598453
114.
114.G. J. Kemerink, H. H. Kruize, R. J. S. Lamers, and J. M. A. van Engelshoven, “Density resolution in quantitative computed tomography of foam and lung,” Med. Phys. 23, 16971708 (1996).
http://dx.doi.org/10.1118/1.597757
115.
115.E. P. Durand and P. Ruegsegger, “High-contrast resolution of CT images for bone structure analysis,” Med. Phys. 19, 569573 (1992).
http://dx.doi.org/10.1118/1.596847
116.
116.P. F. Judy, R. G. Swensson, R. D. Nawfel, K. H. Chan, and S. E. Seltzer, “Contrast-detail curves for liver CT,” Med. Phys. 19, 11671174 (1992).
http://dx.doi.org/10.1118/1.596791
117.
117.A. Polacin, W. A. Kalender, and H. Eidloth, “Simulation study of cerebral blood flow measurements in xenon-CT: Evaluation of washin/washout procedures,” Med. Phys. 18, 10251031 (1991).
http://dx.doi.org/10.1118/1.596738
118.
118.C. Ling, C. C. Rogers, and R. J. Morton, Computed Tomography in Radiation therapy (Raven, New York, 1983).
119.
119.W. Swindell, E. J. Morton, P. M. Evans, and D. G. Lewis, “The design of megavoltage projection imaging systems: Some theoretical aspects,” Med. Phys. 18, 855866 (1991).
http://dx.doi.org/10.1118/1.596735
120.
120.M. A. Mosleh-Shirazi, W. Swindell, and P. M. Evans, “Optimization of the scintillation detector in a combined 3D megavoltage CT scanner and portal imager,” Med. Phys. 25, 18801890 (1998).
http://dx.doi.org/10.1118/1.598377
121.
121.D. A. Jaffray, J. J. Battista, A. Fenster, and P. Munro, “X-ray source of medical linear accelerators: Focal and extra-focal radiation,” Med. Phys. 20, 14171427 (1993).
http://dx.doi.org/10.1118/1.597106
122.
122.M. Takahashi, S. Yoshioka, H. Bussaka, Y. Higashida, M. Kamiya, and M. Tsuneoka, “Digital TV tomography: Description and physical assessment,” Med. Phys. 17, 681685 (1990).
http://dx.doi.org/10.1118/1.596466
123.
123.T. Takahashi, M. Nakagawa, M. Yoshida, and H. Takeuchi, “Highly stable solid-state x-ray detector array,” Med. Phys. 19, 11611166 (1992).
http://dx.doi.org/10.1118/1.596919
124.
124.D. W. Holdsworth, M. Drangova, and A. Fenster, “A high-resolution XRII-based quantitative volume CT scanner,” Med. Phys. 20, 449462 (1993).
http://dx.doi.org/10.1118/1.597038
125.
125.R. Fahrig and D. W. Holdsworth, “Three-dimensional computed tomographic reconstruction using a C-arm mounted XRII: image-based correction of gantry motion nonidealities,” Med. Phys. 27, 3038 (2000).
http://dx.doi.org/10.1118/1.598854
126.
126.M. Salome, F. Peyrin, P. Cloetens, C. Odet, A. -M. Laval-Jeantet, J. Baruchel, and P. Spanne, “A synchrotron radiation microtomography system for the analysis of trabecular bone samples,” Med. Phys. 26, 21942204 (1999).
http://dx.doi.org/10.1118/1.598736
127.
127.N. Yagi, Y. Suzuki, K. Umetani, Y. Kohmura, and K. Yamasaki, “Refraction-enhanced x-ray imaging of mouse lung using synchrotron radiation source,” Med. Phys. 26, 21902193 (1999).
http://dx.doi.org/10.1118/1.598735
128.
128.Z. Kolitsi, G. Panayiotakis, V. Anastassopoulos, A. Scodras, and N. Pallikarakis, “A multiple projection method for digital tomosynthesis,” Med. Phys. 19, 10451050 (1992).
http://dx.doi.org/10.1118/1.596822
129.
129.Z. Kolitsi, G. Panayiotakis, and N. Pallikarakis, “A method for selective removal of out-of-plane structures in digital tomosynthesis,” Med. Phys. 20, 4750 (1993).
http://dx.doi.org/10.1118/1.597060
130.
130.C. J. Henri, D. L. Collins, and T. M. Peters, “Analysis of projection geometry for fiew-view reconstruction of sparse objects,” Med. Phys. 20, 15371547 (1993).
http://dx.doi.org/10.1118/1.597117
131.
131.C. J. Henri and T. M. Peters, “Three-dimensional reconstruction of vascular trees: Experimental evaluation,” Med. Phys. 23, 617627 (1996).
http://dx.doi.org/10.1118/1.597815
132.
132.N. Robert, F. Peyrin, and M. J. Yaffe, “Binary vascular reconstruction from a limited number of cone beam projections,” Med. Phys. 21, 18391851 (1994).
http://dx.doi.org/10.1118/1.597223
133.
133.R. D. Zwicker and N. A. Atari, “Transverse tomosynthesis on a digital simulator,” Med. Phys. 24, 867871 (1997).
http://dx.doi.org/10.1118/1.598006
134.
134.T. Flohr, K. Stierstorfer, H. Bruder, J. Simon, A. Polacin, and S. Schaller, “Image reconstruction and image quality evaluation for a 16-slice CT scanner,” Med. Phys. 30, 832845 (2003).
http://dx.doi.org/10.1118/1.1562168
135.
135.S. Mori, M. Endo, T. Tsunoo, S. Kandatsu, and S. Tanada, “Physical performance evaluation of a 256-slice CT-scanner for four-dimensional imaging,” Med. Phys. 31, 13481356 (2004).
http://dx.doi.org/10.1118/1.1747758
136.
136.M. Endo, S. Mori, and T. Tsunoo, “Magnitude and effects of x-ray scatter in a 256-slice CT scanner,” Med. Phys. 33, 33593368 (2006).
http://dx.doi.org/10.1118/1.2239366
137.
137.T. G. Flohr, K. Stierstorfer, S. Ulzheimer, H. Bruder, A. N. Primak, and C. H. McCollough, “Image reconstruction and image quality evaluation for a 64-slice CT scanner with -flying focal spot,” Med. Phys. 32, 25362547 (2005).
http://dx.doi.org/10.1118/1.1949787
138.
138.D. A. Jaffray and J. H. Siewerdsen, “Cone-beam computed tomography with a flat-panel imager: Initial performance characterization,” Med. Phys. 27, 13111323 (2000).
http://dx.doi.org/10.1118/1.599009
139.
139.Y. El-Mohri, K. -W. Jee, L. E. Antonuk, M. Maolinbay, and Q. Zhao, “Determination of the detective quantum efficiency of a prototype, megavoltage indirect detection, active matrix flat-panel imager,” Med. Phys. 28, 25382550 (2001).
http://dx.doi.org/10.1118/1.1413516
140.
140.B. A. Groh, J. H. Siewerdsen, D. G. Drake, J. W. Wong, and D. A. Jaffray, “A performance comparison of flat-panel imager-based MV and kV cone-beam CT,” Med. Phys. 29, 967975 (2002).
http://dx.doi.org/10.1118/1.1477234
141.
141.R. Fahrig and D. W. Holdsworth, “Three-dimensional computed tomographic reconstruction using a C-arm mounted XRII: Image-based correction of gantry motion nonidealities,” Med. Phys. 27, 3038 (2000).
http://dx.doi.org/10.1118/1.598854
142.
142.J. H. Siewerdsen, D. J. Moseley, S. Burch, S. K. Bisland, A. Bogaards, B. C. Wilson, and D. A. Jaffray, “Volume CT with a flat-panel detector on a mobile, isocentric C-arm: Pre-clinical investigation in guidance of minimally invasive surgery,” Med. Phys. 32, 241254 (2005).
http://dx.doi.org/10.1118/1.1836331
143.
143.J. J. Sonke, L. Zijp, P. Remeijer, and M. Van Herk, “Respiratory correlated cone beam CT,” Med. Phys. 32, 11761186 (2005).
http://dx.doi.org/10.1118/1.1869074
144.
144.M. B. Sharpe, D. J. Moseley, T. G. Purdie, M. Islam, J. H. Siewerdsen, and D. A. Jaffray, “The stability of mechanical calibration for a kV cone beam computed tomography system integrated with linear accelerator,” Med. Phys. 33, 136144 (2006).
http://dx.doi.org/10.1118/1.2143141
145.
145.S. Yoo, G. Y. Kim, R. Hammoud, E. Elder, T. Pawlicki, H. Guan, T. Fox, G. Luxton, F. F. Yin, and P. Munro, “A quality assurance program for the on-board imagers,” Med. Phys. 33, 44314447 (2006).
http://dx.doi.org/10.1118/1.2362872
146.
146.J. H. Siewerdsen, D. J. Moseley, S. Burch, S. K. Bisland, A. Bogaards, B. C. Wilson, and D. A. Jaffray, “Volume CT with a flat-panel detector on a mobile, isocentric C-arm: Pre-clinical investigation in guidance of minimally invasive surgery,” Med. Phys. 32, 241254 (2005).
http://dx.doi.org/10.1118/1.1836331
147.
147.M. J. Daly, J. H. Siewerdsen, D. J. Moseley, D. A. Jaffray, and J. C. Irish, “Intraoperative cone-beam CT for guidance of head and neck surgery: Assessment of dose and image quality using a C-arm prototype,” Med. Phys. 33, 37673780 (2006).
http://dx.doi.org/10.1118/1.2349687
148.
148.R. Fahrig, R. Dixon, T. Payne, R. L. Morin, A. Ganguly, and N. Strobel, “Dose and image quality for a cone-beam C-arm CT system,” Med. Phys. 33, 45414550 (2006).
http://dx.doi.org/10.1118/1.2370508
149.
149.C. Schmidgunst, D. Ritter, and E. Lang, “Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging,” Med. Phys. 34, 36493664 (2007).
http://dx.doi.org/10.1118/1.2760024
150.
150.M. Marxen, M. M. Thornton, C. B. Chiarot, G. Klement, J. Koprivnikar, J. G. Sled, and R. M. Henkelman, “MicroCT scanner performance and considerations for vascular specimen imaging,” Med. Phys. 31, 305313 (2004).
http://dx.doi.org/10.1118/1.1637971
151.
151.C. Badea, L. W. Hedlund, and G. A. Johnson, “Micro-CT with respiratory and cardiac gating,” Med. Phys. 31, 33243329 (2004).
http://dx.doi.org/10.1118/1.1812604
152.
152.B. Chen and R. Ning, “Cone-beam volume CT breast imaging: Feasibility study,” Med. Phys. 29, 755770 (2002).
http://dx.doi.org/10.1118/1.1461843
153.
153.R. L. McKinley, M. P. Tornai, E. Samei, and M. L. Bradshaw, “Simulation study of a quasi-monochromatic beam for x-ray computed mammotomography,” Med. Phys. 31, 800813 (2004).
http://dx.doi.org/10.1118/1.1668371
154.
154.A. L. C. Kwan, J. M. Boone, and N. Shah, “Evaluation of x-ray scatter properties in a dedicated cone-beam breast CT scanner,” Med. Phys. 32, 29672975 (2005).
http://dx.doi.org/10.1118/1.1954908
155.
155.X. Gong, S. J. Glick, B. Liu, A. A. Vedula, and S. Thacker, “A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging,” Med. Phys. 33, 10411052 (2006).
http://dx.doi.org/10.1118/1.2174127
156.
156.A. L. C. Kwan, J. M. Boone, K. Yang, and S. Huang, “Evaluation of the spatial resolution characteristics of a cone-beam breast CT scanner,” Med. Phys. 34, 275281 (2007).
http://dx.doi.org/10.1118/1.2400830
157.
157.C. J. Lai, C. C. Shaw, L. Chen, M. C. Altunbas, X. Liu, T. Han, T. Wang, W. Yang, G. J. Whitman, and S. Tu, “Visibility of microcalcification in cone beam breast CT: Effects of x-ray tube voltage and radiation dose,” Med. Phys. 34, 29953004 (2007).
http://dx.doi.org/10.1118/1.2745921
158.
158.K. D. Nakonechny, B. G. Fallone, and S. Rathee, “Novel methods of measuring single scan dose profiles and cumulative dose in CT,” Med. Phys. 32, 98190 (2005).
http://dx.doi.org/10.1118/1.1835571
159.
159.R. Fahrig, R. Dixon, T. Payne, R. L. Morin, A. Ganguly, and N. Strobel, “Dose and image quality for a cone-beam C-arm CT system,” Med. Phys. 33, 45414550 (2006).
http://dx.doi.org/10.1118/1.2370508
160.
160.J. H. Siewerdsen, D. J. Moseley, B. Bakhtiar, S. Richard, and D. A. Jaffray, “The influence of antiscatter grids on soft-tissue detectability in cone-beam computed tomography with flat-panel detectors,” Med. Phys. 31, 35063520 (2004).
http://dx.doi.org/10.1118/1.1819789
161.
161.S. A. Graham, D. J. Moseley, J. H. Siewerdsen, and D. A. Jaffray, “Compensators for dose and scatter management in cone-beam computed tomography,” Med. Phys. 34, 26912703 (2007).
http://dx.doi.org/10.1118/1.2740466
162.
162.P. J. La Rivière and X. Pan, “Favorable noise uniformity properties of Fourier-based interpolation and reconstruction approaches in single-slice helical computed tomography,” Med. Phys. 29, 943951 (2002).
http://dx.doi.org/10.1118/1.1477229
163.
163.M. Kachelrieß, S. Schaller, and W. A. Kalender, “Advanced single-slice rebinning in cone-beam spiral CT,” Med. Phys. 27, 754772 (2000).
http://dx.doi.org/10.1118/1.598938
164.
164.G. H. Chen, “An alternative derivation of Katsevich’s cone-beam reconstruction formula,” Med. Phys. 30, 3217 (2003).
http://dx.doi.org/10.1118/1.1628413
165.
165.C. Bontus, T. Köhler, and R. Proksa, “A quasiexact reconstruction algorithm for helical CT using a 3-Pi acquisition,” Med. Phys. 30, 24932502 (2003).
http://dx.doi.org/10.1118/1.1601913
166.
166.X. Pan, Y. Zou, and D. Xia, “Image reconstruction in peripheral and central regions-of-interest and data redundancy,” Med. Phys. 32, 673684 (2005).
http://dx.doi.org/10.1118/1.1844171
167.
167.H. Yu, S. Zhao, Y. Ye, and G. Wang, “Exact BPF and FBP algorithms for nonstandard saddle curves,” Med. Phys. 32, 33053312 (2005).
http://dx.doi.org/10.1118/1.2074207
168.
168.R. Ning, X. Tang, and D. Conover, “X-ray scatter correction algorithm for cone beam CT imaging,” Med. Phys. 31, 11951202 (2004).
http://dx.doi.org/10.1118/1.1711475
169.
169.J. H. Siewerdsen, M. J. Daly, B. Bakhtiar, D. J. Moseley, S. Richard, H. Keller, and D. A. Jaffray, “A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT,” Med. Phys. 33, 187197 (2006).
http://dx.doi.org/10.1118/1.2148916
170.
170.M. Karolczak and W. Kalender, “Implementation of a cone-beam reconstruction algorithm for the single-circle source orbit with embedded misalignment correction using homogeneous coordinates,” Med. Phys. 28, 20502069 (2001).
http://dx.doi.org/10.1118/1.1406514
171.
171.L. von Smekal, M. Kachelrieß, E. Stepina, and W. A. Kalender, “Geometric misalignment and calibration in cone-beam tomography,” Med. Phys. 31, 32423266 (2004).
http://dx.doi.org/10.1118/1.1803792
172.
172.J. Sillanpaa, J. Chang, H. Amols, and G. Mageras, “A method for determining the gantry angle for megavoltage cone beam imaging,” Med. Phys. 32, 566569 (2005).
http://dx.doi.org/10.1118/1.1854776
173.
173.Y. Cho, D. J. Moseley, J. H. Siewerdsen, and D. A. Jaffray, “Accurate technique for complete geometric calibration of cone-beam computed tomography systems,” Med. Phys. 32, 968983 (2005).
http://dx.doi.org/10.1118/1.1869652
174.
174.J. Hsieh, “An iterative approach to the beam hardening correction in cone beam CT,” Med. Phys. 27, 2329 (2000).
http://dx.doi.org/10.1118/1.598853
175.
175.J. Alles and R. F. Mudde, “Beam hardening: Analytical considerations of the effective attenuation coefficient of x-ray tomography,” Med. Phys. 34, 28822889 (2007).
http://dx.doi.org/10.1118/1.2742501
176.
176.W. Lu, P. J. Parikh, J. P. Hubenschmidt, D. G. Politte, B. R. Whiting, J. D. Bradley, S. Mutic, and D. A. Low, “Reduction of motion blurring artifacts using respiratory gated CT in sinogram space: A quantitative evaluation,” Med. Phys. 32, 32953304 (2005).
http://dx.doi.org/10.1118/1.2074187
177.
177.M. A. Anastasio, D. Shi, and X. Pan, “A preliminary investigation of local tomography for megavoltage CT imaging,” Med. Phys. 30, 29692980 (2003).
http://dx.doi.org/10.1118/1.1619232
178.
178.G. M. Stevens, R. Fahrig, and N. J. Pelc, “Filtered backprojection for modifying the impulse response of circular tomosynthesis,” Med. Phys. 28, 372380 (2001).
http://dx.doi.org/10.1118/1.1350588
179.
179.S. Li and H. Jiang, “A practical method for three-dimensional reconstruction of joints using a C-arm system and shift-and-add algorithm,” Med. Phys. 32, 14911499 (2005).
http://dx.doi.org/10.1118/1.1915289
180.
180.Y. Chen, J. Y. Lo, and J. T. Dobbins III, “Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: Relevance to morphology of structures such as microcalcifications,” Med. Phys. 34, 38853892 (2007).
http://dx.doi.org/10.1118/1.2776256
181.
181.T. Wu, R. H. Moore, E. A. Rafferty, and D. B. Kopans, “A comparison of reconstruction algorithms for breast tomosynthesis,” Med. Phys. 31, 26362647 (2004).
http://dx.doi.org/10.1118/1.1786692
182.
182.Y. Zhang, H. -P. Chan, B. Sahiner, J. Wei, M. M. Goodsitt, L. M. Hadjiiski, J. Ge, and C. Zhou, “A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis,” Med. Phys. 33, 37813795 (2006).
http://dx.doi.org/10.1118/1.2237543
183.
183.J. T. Rakowski and M. J. Dennis, “A comparison of reconstruction algorithms for C-arm mammography tomosynthesis,” Med. Phys. 33, 30183032 (2006).
http://dx.doi.org/10.1118/1.2219090
184.
184.J. G. Mainprize, K. A. Bloomquist, M. P. Kempston, and M. J. Yaffe, “Resolution at oblique incidence angles of a flat panel imager for breast tomosynthesis,” Med. Phys. 33, 31593164 (2006).
http://dx.doi.org/10.1118/1.2241994
185.
185.A. Badano, I. S. Kyprianou, R. J. Jennings, and J. Sempau, “Anisotropic imaging performance in breast tomosynthesis,” Med. Phys. 34, 40764091 (2007).
http://dx.doi.org/10.1118/1.2779943
186.
186.D. J. Godfrey, H. P. McAdams, and J. T. Dobbins III, “Optimization of the matrix inversion tomosynthesis (MITS) impulse response and modulation transfer function characteristics for chest imaging,” Med. Phys. 33, 655667 (2006).
http://dx.doi.org/10.1118/1.2170398
187.
187.A. R. Pineda, S. Yoon, D. S. Paik, and R. Fahrig, “Optimization of a tomosynthesis system for the detection of lung nodules,” Med. Phys. 33, 13721379 (2006).
http://dx.doi.org/10.1118/1.2190329
188.
188.I. B. Tutar, R. Managuli, V. Shamdasani, P. S. Cho, S. D. Pathak, and Y. Kim, “Tomosynthesis-based localization of radioactive seeds in prostate brachytherapy,” Med. Phys. 30, 31353142 (2003).
http://dx.doi.org/10.1118/1.1624755
189.
189.J. Duryea, J. T. Dobbins III, and J. A. Lynch, “Digital tomosynthesis of hand joints for arthritis assessment,” Med. Phys. 30, 325333 (2003).
http://dx.doi.org/10.1118/1.1543573
190.
190.J. J. Sonke, L. Zijp, P. Remeijer, and M. Herk, “Respiratory correlated cone beam CT,” Med. Phys. 32, 11761186 (2005).
http://dx.doi.org/10.1118/1.1869074
191.
191.H. Yan, L. Ren, D. J. Godfrey, and F. Yin, “Accelerating reconstruction of reference digital tomosynthesis using graphics hardware,” Med. Phys. 34, 37683776 (2007).
http://dx.doi.org/10.1118/1.2779945
192.
192.T. G. Schmidt, R. Fahrig, N. J. Pelc, and E. G. Solomon, “An inverse-geometry volumetric CT system with a large-area scanned source: A feasibility study,” Med. Phys. 31, 26232627 (2004).
http://dx.doi.org/10.1118/1.1786171
193.
193.T. G. Schmidt, R. Fahrig, and N. J. Pelc, “A three-dimensional reconstruction algorithm for an inverse-geometry volumetric CT system,” Med. Phys. 32, 32343245 (2005).
http://dx.doi.org/10.1118/1.2064827
194.
194.C. Chappard, A. Basillais, L. Benhamou, A. Bonassie, B. A. Brunet-Imbault, N. Bonnet, and F. Peyrin, “Comparison of synchrotron radiation and conventional x-ray microcomputed tomography for assessing trabecular bone microarchitecture of human femoral heads,” Med. Phys. 33, 35683577 (2006).
http://dx.doi.org/10.1118/1.2256069
195.
195.R. L. McKinley, M. P. Tornai, E. Samei, and M. L. Bradshaw, “Simulation study of a quasi-monochromatic beam for x-ray computed mammotomography,” Med. Phys. 31, 800813 (2004).
http://dx.doi.org/10.1118/1.1668371
196.
196.M. Saito, “Quasimonochromatic x-ray computed tomography by the balanced filter method using a conventional x-ray source,” Med. Phys. 31, 34363443 (2004).
http://dx.doi.org/10.1118/1.1819553
197.
197.J. V. Atherton and W. Huda, “Energy imparted and effective doses in computed tomography,” Med. Phys. 23, 735741 (1996).
http://dx.doi.org/10.1118/1.597667
198.
198.M. Caon, G. Bibbo, J. Pattison, and M. Bhat, “The effect on dose to computed tomography phantoms of varying the theoretical x-ray spectrum: a comparison of four diagnostic x-ray spectrum calculating codes,” Med. Phys. 25, 10211027 (1998).
http://dx.doi.org/10.1118/1.598281
199.
199.R. L. Dixon, “A new look at CT dose measurement: Beyond CTDI,” Med. Phys. 30, 12721280 (2003).
http://dx.doi.org/10.1118/1.1576952
200.
200.N. Theocharopoulos, J. Damilakis, K. Perisinakis, A. Tzedakis, A. Karantanas, and N. Gourtsoyiannis, “Estimation of effective doses to adult and pediatric patients from multislice computed tomography: A method based on energy imparted,” Med. Phys. 33, 38463856 (2006).
http://dx.doi.org/10.1118/1.2349694
201.
201.J. M. Boone, “The trouble with CTD100,” Med. Phys. 34, 13641371 (2007).
http://dx.doi.org/10.1118/1.2713240
202.
202.M. Gies, W. A. Kalender, H. Wolf, and C. Suess, “Dose reduction in CT by anatomically adapted tube current modulation. I. Simulation studies,” Med. Phys. 26, 22352247 (1999).
http://dx.doi.org/10.1118/1.598779
203.
203.A. E. Papadakis, K. Perisinakis, and J. Damilakis, “Angular on-line tube current modulation in multidetector CT examinations of children and adults: The influence of different scanning parameters on dose reduction,” Med. Phys. 34, 28642874 (2007).
http://dx.doi.org/10.1118/1.2747048
204.
204.H. J. Brisse, L. Madec, G. Gaboriaud, T. Lemoine, A. Savignoni, S. Neuenschwander, B. Aubert, and J. C. Rosenwald, “Automatic exposure control in multichannel CT with tube current modulation to achieve a constant level of image noise: Experimental assessment on pediatric phantoms,” Med. Phys. 34, 30183033 (2007).
http://dx.doi.org/10.1118/1.2746492
205.
205.D. J. Tward, J. H. Siewerdsen, M. J. Daly, S. Richard, D. J. Moseley, D. A. Jaffray, and N. S. Paul, “Soft-tissue detectability in cone-beam CT: evaluation by 2AFC tests in relation to physical performance metrics,” Med. Phys. 34, 44594471 (2007).
http://dx.doi.org/10.1118/1.2790586
206.
206.W. Huda and S. C. Bushong, “In x-ray computed tomography, technique factors should be selected appropriate to patient size,” Med. Phys. 28, 15431545 (2001).
http://dx.doi.org/10.1118/1.1388903
207.
207.P. F. Judy, “Comment on: Med. Phys. (8): 1543–1545 (2001). ‘In x-ray computed tomography, technique factors should be selected appropriate to patient size’,” Med. Phys. 28, 2389 (2001).
http://dx.doi.org/10.1118/1.1415075
208.
208.E. L. Nickoloff, A. K. Dutta, and Z. F. Lu, “Influence of phantom diameter, kVp and scan mode upon computed tomography dose index,” Med. Phys. 30, 395402 (2003).
http://dx.doi.org/10.1118/1.1543149
209.
209.T. Toth, Z. Ge, and M. P. Daly, “The influence of patient centering on CT dose and image noise,” Med. Phys. 34, 30933101 (2007).
http://dx.doi.org/10.1118/1.2748113
210.
210.W. Huda, E. M. Scalzetti, and M. Roskopf, “Effective doses to patients undergoing thoracic computed tomography examinations,” Med. Phys. 27, 838844 (2000).
http://dx.doi.org/10.1118/1.598949
211.
211.N. S. Paul, J. H. Siewerdsen, D. Patsios, and T. B. Chung, “Investigating the low-dose limits of multidetector CT in lung nodule surveillance,” Med. Phys. 34, 35873595 (2007).
http://dx.doi.org/10.1118/1.2768866
212.
212.W. Huda, C. C. Chamberlain, A. E. Rosenbaum, and W. Garrisi, “Radiation doses to infants and adults undergoing head CT examinations,” Med. Phys. 28, 393399 (2001).
http://dx.doi.org/10.1118/1.1350435
213.
213.K. Perisinakis, M. Raissaki, N. Theocharopoulos, J. Damilakis, and N. Gourtsoyiannis, “Reduction of eye lens radiation dose by orbital bismuth shielding in pediatric patients undergoing CT of the head: A Monte Carlo study,” Med. Phys. 32, 10241030 (2005).
http://dx.doi.org/10.1118/1.1881852
214.
214.G. Giacco, V. Cannata, C. Furetta, F. Santopietro, and G. Fariello, “On the use of pediatric phantoms in the dose evaluation during computed tomography (CT) thorax examinations,” Med. Phys. 28, 199204 (2001).
http://dx.doi.org/10.1118/1.1344205
215.
215.D. J. Brenner, C. D. Elliston, E. J. Hall, and W. E. Berdon, “Comment on: Med. Phys. 2001 28(8):1543–1545. Estimates of the cancer risks from pediatric CT radiation are not merely theoretical: Comment on ‘Point/counterpoint: In x-ray computed tomography, technique factors should be selected appropriate to patient size. Against the proposition’,” Med. Phys. 28, 23872388 (2001).
http://dx.doi.org/10.1118/1.1415074
216.
216.A. Tzedakis, J. Damilakis, K. Perisinakis, J. Stratakis, and N. Gourtsoyiannis, “The effect of overscanning on patient effective dose from multidetector helical computed tomography examinations,” Med. Phys. 32, 16211629 (2005).
http://dx.doi.org/10.1118/1.1924309
217.
217.C. Lee, C. Lee, R. J. Staton, D. E. Hintenlang, M. M. Arreola, J. L. Williams, and W. E. Bolch, “Organ and effective doses in pediatric patients undergoing helical multislice computed tomography examination,” Med. Phys. 34, 18581873 (2007).
http://dx.doi.org/10.1118/1.2723885
218.
218.P. M. Shikhaliev, T. Xu, and S. Molloi, “Photon counting computed tomography: Concept and initial results,” Med. Phys. 32, 427436 (2005).
http://dx.doi.org/10.1118/1.1854779
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/35/8/10.1118/1.2952653
Loading
/content/aapm/journal/medphys/35/8/10.1118/1.2952653
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/35/8/10.1118/1.2952653
2008-07-22
2015-03-03

Abstract

The AAPM, through its members, meetings, and its flagship journal , has played an important role in the development and growth of x-ray tomography in the last 50 years. From a spate of early articles in the 1970s characterizing the first commercial computed tomography (CT) scanners through the “slice wars” of the 1990s and 2000s, the history of CT and related techniques such as tomosynthesis can readily be traced through the pages of and the annals of the AAPM and RSNA/AAPM Annual Meetings. In this article, the authors intend to give a brief review of the role of and the AAPM in CT and tomosynthesis imaging over the last few decades.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/35/8/1.2952653.html;jsessionid=g1ooqcc9bm6ih.x-aip-live-06?itemId=/content/aapm/journal/medphys/35/8/10.1118/1.2952653&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Anniversary Paper: Development of x-ray computed tomography: The role of Medical Physics and AAPM from the 1970s to present
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/35/8/10.1118/1.2952653
10.1118/1.2952653
SEARCH_EXPAND_ITEM