Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.TG-40, “Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40,” Med. Phys. 21, 581618 (1994).
2.TG-53, “American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning,” Med. Phys. 25, 17731829 (1998).
3.P. D. LaRiviere, “The quality of high-energy x-ray beams,” Br. J. Radiol. 62, 473481 (1989).
4.A. Kosunen and D. W. O. Rogers, “Beam quality specification fro photon beam dosimetry,” Med. Phys. 20, 11811188 (1993).
5.N. I. Kalach and D. W. O. Rogers, “Which accelerator photon beams are clinic-like for reference dosimetry purposes?,” Med. Phys. 30, 15461555 (2003).
6.D. S. Followill, R. C. Tailor, V. M. Tello, and W. F. Hanson, “An empirical relationship for determining photon beam quality in TG-21 from a ratio of percent depth doses,” Med. Phys. 25, 12021205 (1998).
7.R. C. Tailor, V. M. Tello, C. B. Schroy, M. Vossler, and W. F. Hanson, “A generic off-axis energy correction for linac photon beam dosimetry,” Med. Phys. 25, 662667 (1998).
8.R. C. Tailor, D. S. Followill, and W. F. Hanson, “A first order approximation of field-size and depth dependence of wedge transmission,” Med. Phys. 25, 241244 (1998).
9.A. Tzedakis, J. Damilakis, M. Mazonakis, J. Stratakis, H. Varveris, and N. Gourtsoyiannis, “Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams,” Med. Phys. 31, 907913 (2004).
10.G. X. Ding, “An investigation of accelerator head scatter and output factor in air,” Med. Phys. 31, 25272533 (2004).
11.G. X. Ding, “Using Monte Carlo simulations to commission photon beam output factors-a feasibility study,” Phys. Med. Biol. 48, 38653874 (2003).
12.P. J. Keall, J. V. Siebers, R. Jeraj, and R. Mohan, “The effect of dose calculation uncertainty on the evaluation of radiotherapy plans,” Med. Phys. 27, 478484 (2000).
13.G. X. Ding, D. M. Duggan, and C. W. Coffey, “Commissioning stereotactic radiosurgery beams using both experimental and theoretical methods,” Phys. Med. Biol. 51, 25492566 (2006).
14.TG-10, “Code of practice for x-ray therapy linear accelerators,” Med. Phys. 2, 110121 (1975).
15.R. Nath, P. J. Biggs, F. J. Bova, C. C. Ling, J. A. Purdy, J. Van de Geijn, and M. S. Weinhous, “AAPM code of practice for radiotherapy accelerators: Report of AAPM Radiation Therapy Task Group No. 45,” Med. Phys. 21, 10931121 (1994).
16.IPEM Report No. 94, “Acceptance testing and commissioning of linear accelerators,” Institute of Physics and Engineering in Medicine, 2007.
17.AAPM Report No. 54, Stereotactic Radiosurgery: Report of the Task Group 42, Radiation Therapy Committee, AAPM Report No. 54 (American Institute of Physics, Woodbury, NY, 1995).
18.G. Ezzell, J. Galvin, D. Low, J. R. Palta, I. Rosen, M. B. Sharpe, P. Xia, Y. Xiao, L. Xing, and C. Yu, “Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee,” Med. Phys. 30, 20892115 (2003).
19.TG-120, “Working group on IMRT metrology,” (unpublished).
20.TG-74, “In-air output ratio, , for megavoltage photon beams. Report of the AAPM Radiation Therapy Committee Task Group No. 74,” (unpublished).
21.S. Pai, I. J. Das, J. F. Dempsey, K. L. Lam, T. J. LoSasso, A. J. Olch, J. R. Palta, L. E. Reinstein, D. Ritt, and E. E. Wilcox, “TG-69: Radiographic film for megavoltage beam dosimetry,” Med. Phys. 34, 22282258 (2007).
22.TG-70, “Recommendations for clinical electron beam dosimetry: supplement to the recommendations of Task Group 25,” (unpublished).
23.AAPM Report No. 23, Total Skin Electron Therapy: Technique and Dosimetry, AAPM Report No. 23, (American Institute of Physics, Woodbury, NY, 1988).
24.AAPM Report No. 17, “The physical aspects of total and half body photon irradiation,” American Association of Physicists in Medicine, 1986.
25.M. G. Marshall, “Matching the photon beam characteristics of two dissimilar linear accelerators,” Med. Phys. 20, 17431746 (1992).
26.J. Hrbacek, T. Depuydt, A. Nulens, A. Swinnen, and F. Van den Heuvel, “Quantitative evaluation of a beam-matching procedure using one-dimensional gamma analysis,” Med. Phys. 34, 29172927 (2007).
27.I. J. Das and T. C. Zhu, “Thermal and temporal response of ionization chambers in radiation dosimetry,” Med. Phys. 31, 573578 (2004).
28.A. Ho and B. R. Paliwal, “Stopping-power and mass energy-absorption coefficient ratios for solid water,” Med. Phys. 13, 403404 (1986).
29.V. M. Tello, R. C. Tailor, and W. F. Hanson, “How water equivalent are water-equivalent solid materials for output calibration of photon and electron beams?,” Med. Phys. 22, 11771189 (1995).
30.R. C. Tailor, C. Chu, D. S. Followill, and W. F. Hanson, “Equilibration of air temperature inside the thimble of a Farmer-type ion chamber,” Med. Phys. 25, 496502 (1998).
31.L. Weber, P. Nilsson, and A. Ahnesjö, “Build-up cap materials for measurement of photon head-scatter factors,” Phys. Med. Biol. 42, 18751886 (1997).
32.J. Li and T. C. Zhu, “Measurement of in-air output ratios using different miniphantom materials,” Phys. Med. Biol. 51, 38193834 (2006).
33.L. J. Humphries and J. A. Purdy, in Advances in Radiation Oncology Physics Dosimetry, Treatment Planning, and Brachytherapy: Medical Physics Monograph No. 19, edited by J. A. Purdy (American Institute of Physics, New York, 1992), pp. 111147.
34.G. Rickner, “Silicon diodes as detectors in relative dosimetry of photon, electron and proton radiation fields,” Uppsala Universsitet, 1983.
35.G. Rickner and E. Grusell, “Effect of radiation damage on -type silicon detectors,” Phys. Med. Biol. 28, 12611267 (1983).
36.G. Rickner and E. Grusell, “General specifications for silicon semiconductors for use in radiation dosimetry,” Phys. Med. Biol. 32, 11091117 (1987).
37.A. S. Saini and T. C. Zhu, “Temperature dependence of commercially available diode detectors,” Med. Phys. 29, 622630 (2002).
38.A. S. Saini and T. C. Zhu, “Dose rate and SDD dependence of commercially available diode detectors,” Med. Phys. 31, 914924 (2004).
39.TG-62, Diode in vivo dosimetry for patients receiving external beam radiation therapy, Report of the AAPM radiation therapy committee Task Group No. 62 (Medical Physics, Madison, WI, 2005).
40.I. Griessbach, M. Lapp, J. Bohsung, G. Gademann, and D. Harder, “Dosimetric characteristics of a new unshielded silicon diode and its application in clinical photon and electron beams,” Med. Phys. 32, 37503754 (2005).
41.J. Shi, W. E. Simon, and T. C. Zhu, “Modeling the instantaneous dose rate dependence of radiation diode detectors,” Med. Phys. 30, 25092519 (2003).
42.H. Song, M. Ahmad, J. Deng, Z. Chen, N. J. Yue, and R. Nath, “Limitations of silicon diodes for clinical electron dosimetry,” Radiat. Prot. Dosim. 120, 5659 (2006).
43.L. L. Wang and D. W. Rogers, “Monte Carlo study of Si diode response in electron beams,” Med. Phys. 34, 17341742 (2007).
44.N. P. Sidhu, “Interfacing a linear diode array to a conventional water scanner for the measurement of dynamic dose distributions and comparison with a linear ion chamber array,” Med. Dosim. 24, 5760 (1999).
45.T. C. Zhu, L. Ding, C. R. Liu, J. R. Palta, W. E. Simon, and J. Shi, “Performance evaluation of a diode array for enhanced dynamic wedge dosimetry,” Med. Phys. 24, 11731180 (1997).
46.M. Heydarian, P. W. Hoban, W. A. Beckham, I. A. Borchardt, and A. H. Beddoe, “Evaluation of a PTW diamond detector for electron beam measurements,” Phys. Med. Biol. 38, 10351042 (1993).
47.P. W. Hoban, M. Heydarian, W. A. Beckham, and A. H. Beddoe, “Dose rate dependence of a PTW diamond detector in the dosimetry of a photon beam,” Phys. Med. Biol. 39, 12191229 (1994).
48.V. S. Khrunov, S. S. Martynov, S. M. Vatnisky, I. A. Ermakov, A. M. Chervjakov, D. L. Karlin, V. I. Fominych, and Y. V. Tarbeyev, “Diamond detectors in relative dosimetry of photon, electron and proton radiation fields,” Radiat. Prot. Dosim. 33, 155157 (1990).
49.W. U. Laub, T. W. Kaulich, and F. Nusslin, “Energy and dose rate dependence of a diamond detector in the dosimetry of photon beams,” Med. Phys. 24, 535536 (1997).
50.S. Vatnitsky and H. Järvinen, “Application of natural diamond detector for the measurement of relative dose distributions in radiotherapy,” Phys. Med. Biol. 38, 173184 (1993).
51.Y. S. Horowitz, “The theoretical and microdosimetric basis of thermoluminescence and applications to dosimetry,” Phys. Med. Biol. 26, 765824 (1981).
52.P. N. Mobit, P. Mayles, and A. E. Nahum, “The quality dependence of LiF TLD in megavoltage photon beams: Monte Carlo simulation and experiments,” Phys. Med. Biol. 41, 387398 (1996).
53.P. N. Mobit, A. E. Nahum, and P. Mayles, “The energy correction factor of LiF thermoluminescent dosemeters in megavoltage electron beams: Monte Carlo simulations and experiments,” Phys. Med. Biol. 41, 979993 (1996).
54.L. Duggan, C. Hood, H. Warren-Forward, M. Haque, and T. Kron, “Variations in dose response with x-ray energy of LiF:Mg, Cu, P thermoluminescence dosimeters: Implications for clinical dosimetry,” Phys. Med. Biol. 49, 38313845 (2004).
55.A. Niroomand-Rad, C. R. Blackwell, B. M. Coursey, K. P. Gall, J. M. Galvin, W. L. McLaughlin, A. S. Meigooni, R. Nath, J. E. Rodgers, and C. G. Soares, “Radiographic film dosimetry: Recommendations of AAPM Radiation Therapy Committee Task Group 55,” Med. Phys. 25, 20932115 (1998).
56.TG-25, “Clinical electron beam dosimetry: Report of AAPM Radiation Therapy Committee Task Group No. 25,” Med. Phys. 18, 73109 (1991).
57.R. Ramani, A. W. Lightstone, D. L. Mason, and P. F. O’Brien, “The use of radiochromic film in treatment verification of dynamic stereotactic radiosurgery,” Med. Phys. 21, 389392 (1994).
58.J. L. Robar and B. G. Clark, “The use of radiographic film for linear accelerator stereotactic radiosurgical dosimetry,” Med. Phys. 26, 21442150 (1999).
59.D. D. Leavitt and E. Klein, “Dosimetry measurement tools for commissioning enhanced dynamic wedge,” Med. Dosim. 22, 171176 (1997).
60.F. F. Yin, “Physical penumbra change of beam profile due to film digitization,” Med. Phys. 22, 803805 (1995).
61.R. Ramani, S. Russell, and P. F. O’Brien, “Clinical dosimetry using MOSFETs,” Int. J. Radiat. Oncol., Biol., Phys. 37, 959964 (1997).
62.C. F. Chuang, L. Verhey, and P. Xia, “Investigation of the use of MOSFET for clinical IMRT dosimetric verification,” Med. Phys. 29, 11091115 (2002).
63.G. S. Ibbott, M. J. Maryanski, P. Eastman, S. D. Holcomb, Y. Zhang, R. G. Avison, M. Sanders, and J. C. Gore, “Three-dimensional visualization and measurement of conformal dose distributions using magnetic resonance imaging of BANG polymer gel dosimeters,” Int. J. Radiat. Oncol., Biol., Phys. 38, 10971103 (1997).
64.R. K. Rice, J. L. Hansen, G. K. Svensson, and R. L. Siddon, “Measurements of dose distributions in small beams of x-rays,” Phys. Med. Biol. 32, 10871099 (1987).
65.P. Francescon, S. Cora, and P. Chiovati, “Dose verification of an IMRT treatment planning system with BEAM, EGS-based Monte Carlo code,” Med. Phys. 30, 144157 (2003).
66.W. U. Laub and T. Wong, “The volume effect of detectors in the dosimetry of small fields used in IMRT,” Med. Phys. 30, 341347 (2003).
67.F. Sanchez-Doblado, R. Capote, A. Leal, J. V. Rosello, J. I. Lagares, R. Arrans, and G. H. Hartmann, “Micro ionization chamber for reference dosimetry in IMRT verification: Clinical implications on OAR dosimetric errors,” Phys. Med. Biol. 50, 959970 (2005).
68.F. Araki, “Monte Carlo study of a Cyberknife stereotactic radiosurgery system,” Med. Phys. 33, 29552963 (2006).
69.G. Bednarz, S. Huq, and U. F. Rosenow, “Deconvolution of detector size effect for output factor measurement for narrow Gamma Knife radiosurgery beams,” Phys. Med. Biol. 47, 36433649 (2002).
70.P. D. Higgins, C. H. Sibata, L. Siskind, and J. W. Sohn, “Deconvolution of detector size effect for small field measurement,” Med. Phys. 22, 16631666 (1995).
71.F. Garcia-Vicente, J. M. Delgado, and C. Peraza, “Experimental determination of the convolution kernel for the study of the spatial response of a detector,” Med. Phys. 25, 202207 (1998).
72.P. Charland, E. el-Khatib, and J. Wolters, “The use of deconvolution and total least squares in recovering a radiation detector line spread function,” Med. Phys. 25, 152160 (1998).
73.D. Herrup, J. Chu, H. Cheung, and M. Pankuch, “Determination of penumbral widths from ion chamber measurements,” Med. Phys. 32, 36363640 (2005).
74.K. S. Chang, F. F. Yin, and K. W. Nie, “The effect of detector size to the broadening of the penumbra—A computer simulated study,” Med. Phys. 23, 14071411 (1996).
75.C. H. Sibata, H. C. Mota, A. S. Beddar, P. D. Higgins, and K. H. Shin, “Influence of detector size in photon beam profile measurements,” Phys. Med. Biol. 36, 621631 (1991).
76.D. J. Dawson, J. M. Harper, and A. C. Akinradewo, “Analysis of physical parameters associated with the measurement of high-energy x-ray penumbra,” Med. Phys. 11, 491497 (1984).
77.P. Metcalfe, T. Kron, A. Elliott, T. Wong, and P. Hoban, “Dosimetry of x-ray beam penumbra,” Med. Phys. 20, 14391445 (1993).
78.T. Kron, A. Elliott, and P. Metcalfe, “The penumbra of a x-ray beam as measured by thermoluminescent dosimetry and evaluated using an inverse square root function,” Med. Phys. 20, 14291438 (1993).
79.D. E. Mellenberg, R. A. Dahl, and C. R. Blackwell, “Acceptance testing of an automated scanning water phantom,” Med. Phys. 17, 311314 (1990).
80.M. G. Schmid and R. L. Morris, “A water phantom controller for automated acquisition of linac beam parameters,” Med. Phys. 16, 126129 (1989).
81.Y. K. Kim, S. H. Park, H. S. Kim, S. M. Kang, J. H. Ha, C. E. Chung, S. Y. Cho, and J. K. Kim, “Polarity effect of the thimble-type ionization chamber at a low dose rate,” Phys. Med. Biol. 50, 49955003 (2005).
82.TG-51, “AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams,” Med. Phys. 26, 18471870 (1999).
83.B. Gross, “The Compton current,” Z. Phys. 155, 479487 (1959).
84.J. F. Fowler and F. T. Farmer, “Conductivity induced in insulating materials by x-rays,” Nature (London) 173, 317318 (1954).
85.J. J. Spokas and R. D. Meeker, “Investigation of cables for ionization chambers,” Med. Phys. 7, 135140 (1980).
86.I. J. Das, J. F. Copeland, and H. S. Bushe, “Spatial distribution of bremsstrahlung in a dual electron beam used in total skin electron treatments: Errors due to ionization chamber cable irradiation,” Med. Phys. 21, 17331738 (1994).
87.I. J. Das, S. W. McNeeley, and C.-W. Cheng, “Ionization chamber shift correction and surface dose measurements in electron beams,” Phys. Med. Biol. 43, 34193424 (1998).
88.F. M. Khan, The Physics of Radiation Therapy, 3rd ed. (Lippincott Williams & Wilkins, Philadelphia, PA, 2003).
89.G. S. Ibbott, J. E. Barne, G. R. Hall, and W. R. Hendee, “Stem corrections for ionization chambers,” Med. Phys. 2, 328330 (1975).
90.B. J. Gerbi and F. M. Khan, “Measurement of dose in the buildup region using fixed-separation plane-parallel ion chambers,” Med. Phys. 17, 1726 (1990).
91.R. L. Stern and H. D. Kubo, “Considerations for superficial photon dosimetry,” Med. Phys. 22, 14691470 (1995).
92.B. Nilsson and A. Brahme, “Electron contamination from photon beam collimators,” Radiother. Oncol. 5, 235244 (1986).
93.R. Sjögren and M. Karlsson, “Electron contamination in clinical high energy photon beams,” Med. Phys. 23, 18731881 (1996).
94.B. Nilsson, “Electron contamination from different materials in high energy photon beams,” Phys. Med. Biol. 30, 139151 (1985).
95.F. M. Khan, V. C. Moore, and S. H. Levitt, “Effect of various atomic number absorbers on skin dose for x rays,” Radiology 109, 209212 (1973).
96.P. J. Biggs and M. D. Russell, “An investigation into the presence of secondary electrons in megavoltage photon beams,” Phys. Med. Biol. 28, 10331043 (1983).
97.T. C. Zhu and J. R. Palta, “Electron contamination in 8 and photon beams,” Med. Phys. 25, 1219 (1998).
98.P. J. Biggs and C. C. Ling, “Electrons as the cause of the observed dmax shift with field size in high energy photon beams,” Med. Phys. 6, 291295 (1979).
99.E. D. Yorke, C. C. Ling, and S. Rustgi, “Air-generated electron contamination of 4 and photon beams: A comparison of theory and experiment,” Phys. Med. Biol. 30, 13051314 (1985).
100.B. E. Bjärngard, P. Vadash, and T. Zhu, “Doses near the surface in high-energy x-ray beams,” Med. Phys. 22, 465468 (1995).
101.A. Lopez Medina, A. Teijeiro, J. Garcia, J. Esperon, J. A. Terron, D. P. Ruiz, and M. C. Carrion, “Characterization of electron contamination in megavoltage photon beams,” Med. Phys. 32, 12811292 (2005).
102.E. E. El-Khatib, J. Scrimger, and B. Murray, “Reduction of the bremsstrahlung component of clinical electron beams: implications for electron arc therapy and total skin electron irradiation,” Phys. Med. Biol. 36, 111118 (1991).
103.H. Svensson, “Influence of scattering foils, transmission monitors and collimating system on the absorbed dose distribution from electron irradiation,” Acta Radiol. Ther. Phys. Biol. 10, 443453 (1971).
104.BJR Supply 25, “Central axis depth dose data for use in radiotherapy: 1996,” Br. J. Radiol. Supplement 25, British Institute of Radiology, 1996.
105.N. Dogan and G. Glasgow, “Surface and build-up region dosimetry for obliquely incident intensity modulated radiotherapy x rays,” Med. Phys. 30, 30913096 (2003).
106.A. R. Hounsell and J. M. Wilkinson, “Electron contamination and build-up doses in conformal radiotherapy fields,” Phys. Med. Biol. 44, 4355 (1999).
107.A. Lamb and S. Blake, “Investigation and modeling of the surface dose from linear accelerator produced 6 and photon beams,” Phys. Med. Biol. 43, 11331146 (1998).
108.M. G. McKenna, X. G. Chen, M. D. Altschuler, and P. Block, “Calculation of the dose in the build-up region for high energy photon beam. Treatment planning when beam spoilers are employed,” Radiother. Oncol. 34, 6368 (1995).
109.D. P. Fontenla, J. J. Napoli, M. Hunt, D. Fass, B. McCormick, and G. J. Kutcher, “Effects of beam modifiers and immobilization devices on the dose in the build-up region,” Int. J. Radiat. Oncol., Biol., Phys. 30, 211219 #x0028;1994).
110.E. C. McCullough, “A measurement and analysis of buildup region dose for open field photon beams (Co-60 through ),” Med. Dosim. 19, 514 (1994).
111.F. Habibollahi, H. M. O. Mayles, P. J. Winter, D. Tong, I. S. Fentiman, M. A. Chaudary, and J. L. Hayward, “Assessment of skin dose and its relation to cosmesis in the conservative treatment of early breast cancer,” Int. J. Radiat. Oncol., Biol., Phys. 14, 291296 (1988).
112.D. E. Velkley, D. J. Manson, J. A. Purdy, and G. D. Oliver, “Buildup region of megavoltage photon radiation sources,” Med. Phys. 2, 1419 (1975).
113.E. E. Klein, J. Esthappan, and Z. Li, “Surface and buildup dose characteristics for 6, 10, and photons from an Elekta Precise linear accelerator,” J. Appl. Clin. Med. Phys. 4, 17 (2003).
114.K. Y. Quach, J. Morales, M. J. Butson, A. B. Rosenfeld, and P. E. Metcalfe, “Measurement of radiotherapy x-ray skin dose on a chest wall phantom,” Med. Phys. 27, 16761680 (2000).
115.S. Kim, C. R. Liu, T. C. Zhu, and J. R. Palta, “Photon beam skin dose analyses for different clinical setups,” Med. Phys. 25, 860866 (1998).
116.D. J. Manson, D. Velkley, J. A. Purdy, and G. D. Oliver, “Measurements of surface dose using build-up curves obtained with an extrapolation chamber,” Radiology 115, 473474 (1975).
117.S. Heukelom, J. H. Lanson, and B. J. Mijnheer, “Comparison of entrance and exit dose measurements using ionization chambers and silicon diodes,” Phys. Med. Biol. 36, 4759 (1991).
118.D. Georg, B. De Ost, M. T. Hoornaert, P. Pilette, J. Van Dam, M. Van Dyke, and D. Huyskens, “Build-up modification of commercial diodes for entrance dose measurements in ‘higher energy’ photon beams,” Radiother. Oncol. 51, 249256 (1999).
119.D. E. Mellenberg, “Determination of buildup-up region over-response corrections for a Markus-type chamber,” Med. Phys. 17, 10411044 (1990).
120.M. Butson, A. Rozenfeld, J. N. Mathur, M. Carolan, T. P. Y. Wong, and P. E. Metcalfe, “A new radiotherapy surface dose detector: The MOSFET,” Med. Phys. 23, 655658 (1996).
121.M. J. Butson, J. N. Mathur, and P. E. Metcalfe, “Radiochromic film as a radiotherapy surface-dose detector,” Phys. Med. Biol. 41, 10731078 (1996).
122.A. Ahnesjö, L. Weber, A. Murman, M. Saxner, I. Thorslund, and E. Traneus, “Beam modeling and verification of a photon beam multisource model,” Med. Phys. 32, 17221737 (2005).
123.P. Keall, S. Zavgorodni, L. Schidt, and D. Haskard, “Improving wedged field dose distributions,” Phys. Med. Biol. 42, 21832192 (1997).
124.U. Myler and J. J. Szabo, “Dose calculation along the nonwedged direction,” Med. Phys. 29, 746754 (2002).
125.I. J. Das, G. E. Desobry, S. W. McNeeley, E. C. Cheng, and T. S. Schultheiss, “Beam characteristics of a retrofitted double-focused multileaf collimator,” Med. Phys. 25, 16761684 (1998).
126.J. M. Galvin, K. Han, and R. Cohen, “A comparison of multileaf collimator and alloy-block field shaping,” Int. J. Radiat. Oncol., Biol., Phys. 40, 721731 (1998).
127.P. Xia, P. Geis, L. Xing, C. Ma, D. Findley, K. Forster, and A. Boyer, “Physical characteristics of a miniature multileaf collimator,” Med. Phys. 26, 6570 (1999).
128.J. R. Sykes and P. C. Williams, “An experimental investigation of the tongue and groove effect for the Philips multileaf collimator,” Phys. Med. Biol. 43, 31573165 (1998).
129.S. Webb, T. Bortfeld, J. Stein, and D. Convery, “The effect of stair-step leaf transmission on the ‘tongue-and-groove problem’ in dynamic radiotherapy with a multileaf collimator,” Phys. Med. Biol. 42, 595602 (1997).
130.A. S. Shiu, H. M. Kooy, J. R. Ewton, S. S. Tung, J. Wong, K. Antes, and M. H. Maor, “Comparison of miniature multileaf collimation (MMLCC) with circular collimation for stereotactic treatment,” Int. J. Radiat. Oncol., Biol., Phys. 37, 679688 (1997).
131.D. A. Low, J. W. Sohn, E. E. Klein, J. Markman, S. Mutic, and J. F. Dempsey, “Characterization of a commercial multileaf collimator used for intensity modulated radiation therapy,” Med. Phys. 28, 752756 (2001).
132.AAPM Report No. 72, Basic Applications of Multileaf Collimators: Report of the AAPM Radiation Therapy Committee Task Group No. 50, AAPM Report No. 50 (American Institute of Physics by Medical Physics Publishing, Madison, WI, 2001).
133.T. LoSasso, C. Chui, and C. Ling, “Comprehensive quality assurance for the delivery of intensity modulated radiotherapy with a multileaf collimator used in the dynamic mode,” Med. Phys. 28, 22092219 (2001).
134.M. Woo, P. Charland, B. Kim, and A. Nico, “Commissioning, evaluation, quality assurance and clinical application of a virtual micro MLC technique,” Med. Phys. 30, 138143 (2003).
135.J. E. Bayouth and S. M. Morrill, “MLC dosimetric characteristics for small field and IMRT applications,” Med. Phys. 30, 25452552 (2003).
136.J. M. Galvin, A. R. Smith, and B. Lilly, “Characterization of a multi-leaf collimator system,” Int. J. Radiat. Oncol., Biol., Phys. 25, 181192 (1993).
137.T. J. Jordan and P. C. Williams, “The design and performance characteristics of a multileaf collimator,” Phys. Med. Biol. 39, 231251 (1994).
138.M. S. Huq, I. J. Das, T. Steinberg, and J. M. Galvin, “A dosimetric comparison of various multileaf collimators,” Phys. Med. Biol. 47, N159N170 (2002).
139.G. H. Hartmann and F. Fohlisch, “Dosimetric characterization of a new miniature multileaf collimator,” Phys. Med. Biol. 47, N171N177 (2002).
140.F. Crop, N. Reynaert, G. Pittomvils, L. Paelinck, W. De Gersem, C. De Wagter, L. Vakaet, W. De Neve, and H. Thierens, “Monte Carlo modeling of the ModuLeaf miniature MLC for small field dosimetry and quality assurance of the clinical treatment planning system,” Phys. Med. Biol. 52, 32753290 (2007).
141.A. L. Boyer, T. G. Ochran, C. E. Nyerick, T. J. Waldron, and C. J. Huntzinger, “Clinical dosimetry for implementation of a multileaf collimator,” Med. Phys. 19, 12551261 (1992).
142.E. E. Klein, W. B. Harms, D. A. Low, V. Willcut, and J. A. Purdy, “Clinical implementation of a commercial multileaf collimator: Dosimetry, networking, simulation, and quality assurance,” Int. J. Radiat. Oncol., Biol., Phys. 33, 11951208 (1995).
143.V. P. Cosgrove, U. Jahn, M. Pfaender, S. Bauer, V. Budach, and R. E. Wurm, “Commissioning of a micro multileaf collimator and planning system for stereotactic radiosurgery,” Radiother. Oncol. 50, 325336 (1999).
144.G. J. Budgell, J. H. Mott, P. C. Williams, and K. J. Brown, “Requirements for leaf position accuracy for dynamic multileaf collimation,” Phys. Med. Biol. 45, 12111227 (2000).
145.TG-50, American Association of Physicists in Medicine Radiation Therapy Committee Report No. 72. Basic Application of Multileaf Collimators (Medical Physics Publishing, Madison, WI, 2001).
146.C. D. Mubata, P. Childs, and A. M. Bidmead, “A quality assurance procedure for the Varian multi-leaf collimator,” Phys. Med. Biol. 42, 423431 (1997).
147.M. F. Clarke and G. J. Budgell, “Use of an amorphous silicon EPID for measuring MLC calibration at various gantry angle,” Phys. Med. Biol. 53, 473485 (2008).
148.G. Mu, E. Ludlum, and P. Xia, “Impact of MLC leaf position errors on simple and complex IMRT plans for head and neck cancer,” Phys. Med. Biol. 53, 7788 (2008).
149.H. V. James, S. Atherton, G. J. Budgell, M. C. Kirby, and P. C. Williams, “Verification of dynamic multileaf collimation using an electronic portal imaging device,” Phys. Med. Biol. 45, 495509 (2000).
150.S. M. Huq, Y. Yu, Z.-P. Chen, and N. Suntharalingam, “Dosimetric characteristics of a commercial multileaf collimator,” Med. Phys. 22, 241247 (1995).
151.C. W. Cheng, S. H. Cho, M. Taylor, and I. J. Das, “Determination of zero field size percent depth doses and tissue maximum ratios for stereotactic radiosurgery and IMRT dosimetry: Comparison between experimental measurements and Monte Carlo simulation,” Med. Phys. 34, 31493157 (2007).
152.I. J. Das, G. X. Ding, and A. Ahnesjö, “Small fields: Non-equilibrium radiation dosimetry,” Med. Phys. 35, 206215 (2008).
153.P. Francescon, S. Cora, and C. Cavedon, “Total scatter factors of small beams: A multidetector and Monte Carlo study,” Med. Phys. 35, 504513 (2008).
154.D. W. O. Rogers and A. F. Bielajew, in The Dosimetry of Ionizing Radiation Volume III, edited by K. R. Kase, B. E. Bjarngard, and F. H. Attix (Academic, New York, 1990), pp. 427539.
155.T. R. Mackie, in The Dosimetry of Ionizing Radiation Volume III, edited by K. R. Kase, B. E. Bjarngard, and F. H. Attix (Academic, New York, 1990), pp. 541562.
156.P. Andreo, “Monte Carlo techniques in medical radiation physics,” Phys. Med. Biol. 36, 861920 (1991).
157.D. W. O. Rogers, B. A. Faddegon, G. X. Ding, C.-M. Ma, and J. We, “BEAM: A Monte Carlo code to simulate radiotherapy treatment units,” Med. Phys. 22, 503524 (1995).
158.D. Sheikh-Bagheri and D. W. Rogers, “Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code,” Med. Phys. 29, 391402 (2002).
159.I. J. Chetty, B. Curran, J. E. Cygler, J. J. DeMarco, G. Ezzell, B. A. Faddegon, I. Kawrakow, P. J. Keall, H. Liu, C. M. Ma, D. W. Rogers, J. Seuntjens, D. Sheikh-Bagheri, and J. V. Siebers, “Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning,” Med. Phys. 34, 48184853 (2007).
160.K. De Vlamynck, C. De Wagter, and W. De Neve, “Diamond detector measurements near simulated air channels for narrow photon beams,” Radiother. Oncol. 53, 155159 (1999).
161.C. M. Ma, M. Ding, J. S. Li, M. C. Lee, T. Pawlicki, and J. Deng, “A comparative dosimetric study on tangential photon beams, intensity-modulated radiation therapy (IMRT) and modulated electron radiotherapy (MERT) for breast cancer treatment,” Phys. Med. Biol. 48, 909924 (2003).
162.X. R. Zhu, M. T. Gillin, K. Ehlers, F. Lopez, D. F. Grimm, J. J. Rownd, and T. H. Steinberg, “Dependence of virtual wedge factor on dose calibration and monitor units,” Med. Phys. 28, 174177 (2001).
163.F. Verhaegen, I. J. Das, and H. Palmans, “Monte Carlo dosimetry study of stereotactic radiosurgery unit,” Phys. Med. Biol. 43, 27552768 (1998).
164.O. A. Sauer and J. Wilbert, “Measurement of output factors for small photon beams,” Med. Phys. 34, 19831988 (2007).
165.S. Kim, J. R. Palta, and T. C. Zhu, “A generalized solution for the calculation of in-air output factors in irregular fields,” Med. Phys. 25, 16921701 (1998).
166.K. R. Kase and G. K. Svensson, “Head scatter data for several linear accelerators ,” Med. Phys. 13, 530532 (1986).
167.M. Tatcher and B. Bjarngard, “Head-scatter factors and effective x-ray source positions in a linear accelerator,” Med. Phys. 19, 685686 (1992).
168.R. D. Bar-Deroma and B. E. Bjärngard, “The relation between wedge factors in air and water,” Med. Phys. 21, 10431047 (1994).
169.S. Heukelom, J. H. Lanson, and B. J. Mijnheer, “Wedge factor constituents of high energy photon beams: Head and phantom scatter components,” Radiother. Oncol. 32, 7383 (1994).
170.E. C. McCullough, J. Gortney, and C. R. Blackwell, “A depth dependence determination of the wedge transmission factor for photon beams,” Med. Phys. 15, 621623 (1988).
171.J. R. Palta, I. Daftari, and N. Suntharlingam, “Field size dependence of wedge factors,” Med. Phys. 15, 624626 (1988).
172.R. C. Tailor, D. S. Followill, and W. F. Hanson, “A first order approximation of field size and depth dependence of wedge transmission,” Med. Phys. 25, 241244 (1998).
173.S. J. Thomas, “The effect on wedge factors of scattered radiation from the wedge,” Radiother. Oncol. 32, 271273 (1994).
174.S. J. Thomas, “The variation of wedge factors with field size on a linear accelerator,” Br. J. Radiol. 63, 355356 (1990).
175.C. W. Cheng, W. L. Tang, and I. J. Das, “Beam characteristics of upper and lower physical wedge systems of Varian accelerators,” Phys. Med. Biol. 48, 36673683 (2003).
176.E. E. Klein, R. Gerber, X. R. Zhu, F. Oehmke, and J. A. Purdy, “Multiple machine implementation of enhanced dynamic wedge,” Instrum. Control Syst. 40, 977985 (1998).
177.J. P. Gibbons, “Calculation of enhanced dynamic wedge factors for symmetric and asymmetric photon fields,” Med. Phys. 25, 14111418 (1998).
178.G. E. Desobry, T. J. Waldron, and I. J. Das, “Validation of new virtual wedge model,” Med. Phys. 25, 7172 (1998).
179.M. J. Zelefsky, T. Hollister, A. Raben, S. Matthews, and K. E. Wallner, “Five-year biochemical outcome and toxicity with transperineal CT-planned permanent I-125 prostate implantation for patients with localized prostate cancer,” Int. J. Radiat. Oncol., Biol., Phys. 47, 12611266 (2000).
180.E. E. Klein, D. A. Low, A. S. Meigooni, and J. A. Purdy, “Dosimetry and clinical implementation of dynamic wedge,” Int. J. Radiat. Oncol., Biol., Phys. 31, 583592 (1995).
181.M. H. Phillips, H. Parsaei, and P. S. Cho, “Dynamic and omni wedge implementation on an Elekta SL linac,” Med. Phys. 27, 16231634 (2000).
182.H. Shackford, B. E. Bjarngard, and P. Vadash, “Dynamic universal wedge,” Med. Phys. 22, 17351741 (1995).
183.B. D. Milliken, J. V. Turian, R. J. Hamilton, S. J. Rubin, F. T. Kuchnir, C. X. Yu, and J. W. Wong, “Verification of the omni wedge technique,” Med. Phys. 25, 14191423 (1998).
184.J. Dai, Y. Zhu, and X. Wu, “Verification of the super-omni wedge concept,” Phys. Med. Biol. 46, 24472455 (2001).
185.S. C. Sharma and M. W. Johnson, “Recommendations for measurement of tray and wedge factors for high energy photons,” Med. Phys. 21, 573575 (1994).
186.A. E. Nahum, “Perturbation effects in dosimetry: Part I. Kilovoltage x-rays and electrons,” Phys. Med. Biol. 41, 15311580 (1996).
187.F. Sanchez-Doblado, P. Andreo, R. Capote, A. Leal, M. Perucha, R. Arrans, L. Nunez, E. Mainegra, J. I. Lagares, and E. Carrasco, “Ionization chamber dosimetry of small photon fields: a Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams,” Phys. Med. Biol. 48, 20812099 (2003).
188.R. Capote, F. Sanchez-Doblado, A. Leal, J. I. Lagares, R. Arrans, and G. H. Hartmann, “An EGSnrc Monte Carlo study of the microionization chamber for reference dosimetry of narrow irregular IMRT beamlets,” Med. Phys. 31, 24162422 (2004).
189.P. Björk, T. Knöös, and P. Nilsson, “Measurements of output factors with different detector types and Monte Carlo calculations of stopping-power ratios for degraded electron beams,” Phys. Med. Biol. 49, 44934506 (2004).
190.A. Wu, R. D. Zwicker, A. M. Kalend, and Z. Zheng, “Comments on dose measurements for a narrow beam in radiosurgery,” Med. Phys. 20, 777779 (1993).
191.J. Seuntjens and F. Verhaegen, “Comments on ‘ionization chamber dosimetry of small photon fields: A Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams,'” Phys. Med. Biol. 48, L43L45 (2003).
192.A. O. Jones and I. J. Das, “Comparison of inhomogeneity correction algorithms in small photon fields,” Med. Phys. 32, 766776 (2005).
193.M. Roach, M. DeSilvio, C. Lawton, V. Uhl, M. Machtay, M. J. Seider, M. Rotman, C. Jones, S. O. Asbell, R. K. Valicenti, S. Han, C. R. Thomas, and W. S. Shipley, “Phase III trial comparing versus prostate-only radiotherapy and neoadjuvant versus adjuvant combined androgen suppression: Radiation therapy oncology group 9413,” J. Clin. Oncol. 21, 19041911 (2003).
194.C. Martens, C. De Wagter, and W. De Neve, “The value of the PinPoint ion chamber for characterization of small field segments used in intensity-modulated radiotherapy,” Phys. Med. Biol. 45, 25192530 (2000).
195.I. J. Das, M. B. Downes, A. Kassaee, and Z. Tochner, “Choice of radiation detector in dosimetry of stereotactic radiosurgery-radiotherapy,” J. Radiosurg. 3, 177185 (2000).
196.L. B. Leybovich, A. Sethi, and N. Dogan, “Comparison of ionization chambers of various volumes for IMRT absolute dose verification,” Med. Phys. 30, 119123 (2003).
197.J. W. Sohn, J. F. Dempsey, T. S. Suh, and D. A. Low, “Analysis of various beamlet sizes for IMRT with photons,” Med. Phys. 30, 24322439 (2003).
198.G. X. Ding, J. E. Cygler, and C. B. Kwok, “Clinical reference dosimetry: Comparison between AAPM TG-21 and TG-51 protocols,” Med. Phys. 27, 12171225 (2000).
199.G. Ding, “Dose discrepancies between Monte Carlo calculations and measurements in the buildup region for a high-energy photon beam,” Med. Phys. 29, 24592463 (2002).
200.F. Haryanto, M. Fippel, W. Laub, O. Dohm, and F. Nusslin, “Investigation of photon beam output factors for conformal radiation therapy-Monte Carlo simulations and measurements,” Phys. Med. Biol. 47, N133N143 (2002).
201.H. Bouchard and J. Seuntjens, “Ionization chamber-based reference dosimetry of intensity modulated radiation beams,” Med. Phys. 31, 24542465 (2004).
202.F. F. Yin, J. Zhu, H. Yan, H. Gaun, R. Hammoud, S. Ryu, and J. H. Kim, “Dosimetric characteristics of Novalis shaped beam surgery unit,” Med. Phys. 29, 17291738 (2002).
203.S. Li, A. Rashid, S. He, and D. Djajaputra, “A new approach in dose measurement and error analysis for narrow photon beams (beamlets) shaped by different multileaf collimators using a small detector,” Med. Phys. 31, 20202032 (2004).
204.D. S. Followill, D. S. Davis, and G. S. Ibbott, “Comparison of electron beam characteristics from multiple accelerators,” Int. J. Radiat. Oncol., Biol., Phys. 59, 905910 (2004).
205.ICRU 35, Radiation Dosimetry: Electron Beams with Energies Between , ICRU Report 35 (International Commission on Radiation Units and Measurements, Bethesda, MD, 1984).
206.T. C. Zhu, I. J. Das, and B. E. Bjärngard, “Characteristics of bremsstrahlung in electron beams,” Med. Phys. 28, 13521358 (2001).
207.M. D. Mills, K. R. Hogstrom, and P. R. Almond, “Prediction of electron beam output factors,” Med. Phys. 9, 6068 (1982).
208.P. A. Jursinic and T. R. Mackie, “Characteristics of secondary electrons produced by 6, 10, and x-ray beams,” Phys. Med. Biol. 41, 14991509 (1996).
209.F. M. Khan, P. D. Higgins, B. J. Gerbi, F. C. Deibel, A. Sethi, and D. N. Mihailidis, “Calculation of depth dose and dose per monitor unit for irregularly shaped electron fields,” Phys. Med. Biol. 43, 27412754 (1998).
210.C. M. Ma, B. A. Faddegon, D. W. Rogers, and T. R. Mackie, “Accurate characterization of Monte Carlo calculated electron beams for radiotherapy,” Med. Phys. 24, 401416 (1997).
211.L. J. van Battum and H. Huizenga, “On the initial angular variances of clinical electron beams,” Phys. Med. Biol. 44, 28032820 (1999).
212.E. R. Cecatti, J. F. Goncalves, S. G. P. Cecatti, and M. P. Silva, “Effect of the accelerator design on the position of the effective electron source,” Med. Phys. 10, 683686 (1983).
213.A. Jamshidi, F. T. Kuchnir, and C. S. Reft, “Determination of the source position for the electron beams from a high-energy linear accelerator,” Med. Phys. 13, 942948 (1986).
214.K. Y. Quach, M. J. Butson, and P. E. Metcalfe, “Comparison of effective source-surface distances for electron beams derived from measurements made under different scatter conditions,” Australas. Phys. Eng. Sci. Med. 22, 99102 (1999).
215.D. M. Roback, F. M. Khan, J. P. Gibbons, and A. Sethi, “Effective SSD for electron beams as a function of energy and beam collimation,” Med. Phys. 22, 20932095 (1995).
216.F. M. Khan, W. Sewchand, and S. H. Levitt, “Effect of air space on depth dose in electron beam therapy,” Radiother. Oncol. 126, 249251 (1978).
217.L. J. van Battum and H. Huizenga, “Film dosimetry of clinical electron beams,” Int. J. Radiat. Oncol., Biol., Phys. 18, 6976 (1990).
218.C. M. Ma and S. B. Jiang, “Monte Carlo modeling of electron beams from medical accelerators,” Phys. Med. Biol. 44, R157R189 (1999).
219.S. B. Jiang, A. Kapur, and C. M. Ma, “Electron beam modeling and commissioning for Monte Carlo treatment planning,” Med. Phys. 27, 180191 (2000).
220.A. Kapur, C. M. Ma, E. C. Mok, D. O. Findley, and A. L. Boyer, “Monte Carlo calculations of electron beam output factors for a medical linear accelerator,” Phys. Med. Biol. 43, 34793494 (1998).
221.J. A. Antolak, M. R. Bieda, and K. R. Hogstrom, “Using Monte Carlo methods to commission electron beams: A feasibility study,” Med. Phys. 29, 771786 (2002).
222.J. E. Cygler, G. M. Daskalov, G. H. Chan, and G. X. Ding, “Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning,” Med. Phys. 31, 142153 (2004).
223.G. X. Ding, D. M. Duggan, C. W. Coffey, P. Shokrani, and J. E. Cygler, “First macro Monte Carlo based commercial dose calculation module for electron beam treatment planning—New issues for clinical consideration,” Phys. Med. Biol. 51, 27812799 (2006).
224.R. A. Popple, R. Weinber, J. A. Antolak, S. J. Ye, P. N. Pareek, J. Duan, S. Shen, and I. A. Brezovich, “Comprehensive evaluation of a commercial macro Monte Carlo electron dose calculation implementation using a standard verification data set,” Med. Phys. 33, 15401551 (2006).
225.M. Udale Smith, “Monte Carlo calculations of electron beam parameters for three Philips linear accelerators,” Phys. Med. Biol. 37, 85105 (1992).
226.J. Sempau, A. Sánchez-Reyes, F. Salvat, H. Oulad ben Tahar, S. B. Jiang, and J. M. Fernández-Varea, “Monte Carlo simulation of electron beams from an accelerator head using PENELOPE,” Phys. Med. Biol. 46, 11631186 (2001).
227.P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).
228.W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, New York, 1992).
229.MATLAB documentation version The Mathworks, Natick, MA, 2006.

Data & Media loading...


Article metrics loading...



For commissioning a linear accelerator for clinical use, medical physicists are faced with many challenges including the need for precision, a variety of testing methods, data validation, the lack of standards, and time constraints. Since commissioning beam data are treated as a reference and ultimately used by treatment planning systems, it is vitally important that the collected data are of the highest quality to avoid dosimetric and patient treatment errors that may subsequently lead to a poor radiation outcome. Beam data commissioning should be performed with appropriate knowledge and proper tools and should be independent of the person collecting the data. To achieve this goal, Task Group 106 (TG-106) of the Therapy Physics Committee of the American Association of Physicists in Medicine was formed to review the practical aspects as well as the physics of linear accelerator commissioning. The report provides guidelines and recommendations on the proper selection of phantoms and detectors, setting up of a phantom for data acquisition (both scanning and no-scanning data), procedures for acquiring specific photon and electron beam parameters and methods to reduce measurement errors , beam data processing and detector size convolution for accurate profiles. The TG-106 also provides a brief discussion on the emerging trend in Monte Carlo simulation techniques in photon and electron beam commissioning. The procedures described in this report should assist a qualified medical physicist in either measuring a complete set of beam data, or in verifying a subset of data before initial use or for periodic quality assurance measurements. By combining practical experience with theoretical discussion, this document sets a new standard for beam data commissioning.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd