1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/35/9/10.1118/1.2969070
1.
1.TG-40, “Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40,” Med. Phys. 21, 581618 (1994).
http://dx.doi.org/10.1118/1.597316
2.
2.TG-53, “American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning,” Med. Phys. 25, 17731829 (1998).
http://dx.doi.org/10.1118/1.598373
3.
3.P. D. LaRiviere, “The quality of high-energy x-ray beams,” Br. J. Radiol. 62, 473481 (1989).
4.
4.A. Kosunen and D. W. O. Rogers, “Beam quality specification fro photon beam dosimetry,” Med. Phys. 20, 11811188 (1993).
http://dx.doi.org/10.1118/1.597150
5.
5.N. I. Kalach and D. W. O. Rogers, “Which accelerator photon beams are clinic-like for reference dosimetry purposes?,” Med. Phys. 30, 15461555 (2003).
http://dx.doi.org/10.1118/1.1573205
6.
6.D. S. Followill, R. C. Tailor, V. M. Tello, and W. F. Hanson, “An empirical relationship for determining photon beam quality in TG-21 from a ratio of percent depth doses,” Med. Phys. 25, 12021205 (1998).
http://dx.doi.org/10.1118/1.598396
7.
7.R. C. Tailor, V. M. Tello, C. B. Schroy, M. Vossler, and W. F. Hanson, “A generic off-axis energy correction for linac photon beam dosimetry,” Med. Phys. 25, 662667 (1998).
http://dx.doi.org/10.1118/1.598249
8.
8.R. C. Tailor, D. S. Followill, and W. F. Hanson, “A first order approximation of field-size and depth dependence of wedge transmission,” Med. Phys. 25, 241244 (1998).
http://dx.doi.org/10.1118/1.598187
9.
9.A. Tzedakis, J. Damilakis, M. Mazonakis, J. Stratakis, H. Varveris, and N. Gourtsoyiannis, “Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams,” Med. Phys. 31, 907913 (2004).
http://dx.doi.org/10.1118/1.1668551
10.
10.G. X. Ding, “An investigation of accelerator head scatter and output factor in air,” Med. Phys. 31, 25272533 (2004).
http://dx.doi.org/10.1118/1.1784131
11.
11.G. X. Ding, “Using Monte Carlo simulations to commission photon beam output factors-a feasibility study,” Phys. Med. Biol. 48, 38653874 (2003).
http://dx.doi.org/10.1088/0031-9155/48/23/005
12.
12.P. J. Keall, J. V. Siebers, R. Jeraj, and R. Mohan, “The effect of dose calculation uncertainty on the evaluation of radiotherapy plans,” Med. Phys. 27, 478484 (2000).
http://dx.doi.org/10.1118/1.598916
13.
13.G. X. Ding, D. M. Duggan, and C. W. Coffey, “Commissioning stereotactic radiosurgery beams using both experimental and theoretical methods,” Phys. Med. Biol. 51, 25492566 (2006).
http://dx.doi.org/10.1088/0031-9155/51/10/013
14.
14.TG-10, “Code of practice for x-ray therapy linear accelerators,” Med. Phys. 2, 110121 (1975).
http://dx.doi.org/10.1118/1.594133
15.
15.R. Nath, P. J. Biggs, F. J. Bova, C. C. Ling, J. A. Purdy, J. Van de Geijn, and M. S. Weinhous, “AAPM code of practice for radiotherapy accelerators: Report of AAPM Radiation Therapy Task Group No. 45,” Med. Phys. 21, 10931121 (1994).
http://dx.doi.org/10.1118/1.597398
16.
16.IPEM Report No. 94, “Acceptance testing and commissioning of linear accelerators,” Institute of Physics and Engineering in Medicine, 2007.
17.
17.AAPM Report No. 54, Stereotactic Radiosurgery: Report of the Task Group 42, Radiation Therapy Committee, AAPM Report No. 54 (American Institute of Physics, Woodbury, NY, 1995).
18.
18.G. Ezzell, J. Galvin, D. Low, J. R. Palta, I. Rosen, M. B. Sharpe, P. Xia, Y. Xiao, L. Xing, and C. Yu, “Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee,” Med. Phys. 30, 20892115 (2003).
http://dx.doi.org/10.1118/1.1591194
19.
19.TG-120, “Working group on IMRT metrology,” (unpublished).
20.
20.TG-74, “In-air output ratio, , for megavoltage photon beams. Report of the AAPM Radiation Therapy Committee Task Group No. 74,” (unpublished).
21.
21.S. Pai, I. J. Das, J. F. Dempsey, K. L. Lam, T. J. LoSasso, A. J. Olch, J. R. Palta, L. E. Reinstein, D. Ritt, and E. E. Wilcox, “TG-69: Radiographic film for megavoltage beam dosimetry,” Med. Phys. 34, 22282258 (2007).
http://dx.doi.org/10.1118/1.2736779
22.
22.TG-70, “Recommendations for clinical electron beam dosimetry: supplement to the recommendations of Task Group 25,” (unpublished).
23.
23.AAPM Report No. 23, Total Skin Electron Therapy: Technique and Dosimetry, AAPM Report No. 23, (American Institute of Physics, Woodbury, NY, 1988).
24.
24.AAPM Report No. 17, “The physical aspects of total and half body photon irradiation,” American Association of Physicists in Medicine, 1986.
25.
25.M. G. Marshall, “Matching the photon beam characteristics of two dissimilar linear accelerators,” Med. Phys. 20, 17431746 (1992).
http://dx.doi.org/10.1118/1.596961
26.
26.J. Hrbacek, T. Depuydt, A. Nulens, A. Swinnen, and F. Van den Heuvel, “Quantitative evaluation of a beam-matching procedure using one-dimensional gamma analysis,” Med. Phys. 34, 29172927 (2007).
http://dx.doi.org/10.1118/1.2745239
27.
27.I. J. Das and T. C. Zhu, “Thermal and temporal response of ionization chambers in radiation dosimetry,” Med. Phys. 31, 573578 (2004).
http://dx.doi.org/10.1118/1.1644520
28.
28.A. Ho and B. R. Paliwal, “Stopping-power and mass energy-absorption coefficient ratios for solid water,” Med. Phys. 13, 403404 (1986).
http://dx.doi.org/10.1118/1.595884
29.
29.V. M. Tello, R. C. Tailor, and W. F. Hanson, “How water equivalent are water-equivalent solid materials for output calibration of photon and electron beams?,” Med. Phys. 22, 11771189 (1995).
http://dx.doi.org/10.1118/1.597613
30.
30.R. C. Tailor, C. Chu, D. S. Followill, and W. F. Hanson, “Equilibration of air temperature inside the thimble of a Farmer-type ion chamber,” Med. Phys. 25, 496502 (1998).
http://dx.doi.org/10.1118/1.598226
31.
31.L. Weber, P. Nilsson, and A. Ahnesjö, “Build-up cap materials for measurement of photon head-scatter factors,” Phys. Med. Biol. 42, 18751886 (1997).
http://dx.doi.org/10.1088/0031-9155/42/10/002
32.
32.J. Li and T. C. Zhu, “Measurement of in-air output ratios using different miniphantom materials,” Phys. Med. Biol. 51, 38193834 (2006).
http://dx.doi.org/10.1088/0031-9155/51/15/015
33.
33.L. J. Humphries and J. A. Purdy, in Advances in Radiation Oncology Physics Dosimetry, Treatment Planning, and Brachytherapy: Medical Physics Monograph No. 19, edited by J. A. Purdy (American Institute of Physics, New York, 1992), pp. 111147.
34.
34.G. Rickner, “Silicon diodes as detectors in relative dosimetry of photon, electron and proton radiation fields,” Uppsala Universsitet, 1983.
35.
35.G. Rickner and E. Grusell, “Effect of radiation damage on -type silicon detectors,” Phys. Med. Biol. 28, 12611267 (1983).
http://dx.doi.org/10.1088/0031-9155/28/11/006
36.
36.G. Rickner and E. Grusell, “General specifications for silicon semiconductors for use in radiation dosimetry,” Phys. Med. Biol. 32, 11091117 (1987).
http://dx.doi.org/10.1088/0031-9155/32/9/004
37.
37.A. S. Saini and T. C. Zhu, “Temperature dependence of commercially available diode detectors,” Med. Phys. 29, 622630 (2002).
http://dx.doi.org/10.1118/1.1461842
38.
38.A. S. Saini and T. C. Zhu, “Dose rate and SDD dependence of commercially available diode detectors,” Med. Phys. 31, 914924 (2004).
http://dx.doi.org/10.1118/1.1650563
39.
39.TG-62, Diode in vivo dosimetry for patients receiving external beam radiation therapy, Report of the AAPM radiation therapy committee Task Group No. 62 (Medical Physics, Madison, WI, 2005).
40.
40.I. Griessbach, M. Lapp, J. Bohsung, G. Gademann, and D. Harder, “Dosimetric characteristics of a new unshielded silicon diode and its application in clinical photon and electron beams,” Med. Phys. 32, 37503754 (2005).
http://dx.doi.org/10.1118/1.2124547
41.
41.J. Shi, W. E. Simon, and T. C. Zhu, “Modeling the instantaneous dose rate dependence of radiation diode detectors,” Med. Phys. 30, 25092519 (2003).
http://dx.doi.org/10.1118/1.1602171
42.
42.H. Song, M. Ahmad, J. Deng, Z. Chen, N. J. Yue, and R. Nath, “Limitations of silicon diodes for clinical electron dosimetry,” Radiat. Prot. Dosim. 120, 5659 (2006).
43.
43.L. L. Wang and D. W. Rogers, “Monte Carlo study of Si diode response in electron beams,” Med. Phys. 34, 17341742 (2007).
http://dx.doi.org/10.1118/1.2722720
44.
44.N. P. Sidhu, “Interfacing a linear diode array to a conventional water scanner for the measurement of dynamic dose distributions and comparison with a linear ion chamber array,” Med. Dosim. 24, 5760 (1999).
45.
45.T. C. Zhu, L. Ding, C. R. Liu, J. R. Palta, W. E. Simon, and J. Shi, “Performance evaluation of a diode array for enhanced dynamic wedge dosimetry,” Med. Phys. 24, 11731180 (1997).
http://dx.doi.org/10.1118/1.598019
46.
46.M. Heydarian, P. W. Hoban, W. A. Beckham, I. A. Borchardt, and A. H. Beddoe, “Evaluation of a PTW diamond detector for electron beam measurements,” Phys. Med. Biol. 38, 10351042 (1993).
http://dx.doi.org/10.1088/0031-9155/38/8/002
47.
47.P. W. Hoban, M. Heydarian, W. A. Beckham, and A. H. Beddoe, “Dose rate dependence of a PTW diamond detector in the dosimetry of a photon beam,” Phys. Med. Biol. 39, 12191229 (1994).
http://dx.doi.org/10.1088/0031-9155/39/8/003
48.
48.V. S. Khrunov, S. S. Martynov, S. M. Vatnisky, I. A. Ermakov, A. M. Chervjakov, D. L. Karlin, V. I. Fominych, and Y. V. Tarbeyev, “Diamond detectors in relative dosimetry of photon, electron and proton radiation fields,” Radiat. Prot. Dosim. 33, 155157 (1990).
49.
49.W. U. Laub, T. W. Kaulich, and F. Nusslin, “Energy and dose rate dependence of a diamond detector in the dosimetry of photon beams,” Med. Phys. 24, 535536 (1997).
http://dx.doi.org/10.1118/1.597902
50.
50.S. Vatnitsky and H. Järvinen, “Application of natural diamond detector for the measurement of relative dose distributions in radiotherapy,” Phys. Med. Biol. 38, 173184 (1993).
http://dx.doi.org/10.1088/0031-9155/38/1/013
51.
51.Y. S. Horowitz, “The theoretical and microdosimetric basis of thermoluminescence and applications to dosimetry,” Phys. Med. Biol. 26, 765824 (1981).
http://dx.doi.org/10.1088/0031-9155/26/5/001
52.
52.P. N. Mobit, P. Mayles, and A. E. Nahum, “The quality dependence of LiF TLD in megavoltage photon beams: Monte Carlo simulation and experiments,” Phys. Med. Biol. 41, 387398 (1996).
http://dx.doi.org/10.1088/0031-9155/41/3/004
53.
53.P. N. Mobit, A. E. Nahum, and P. Mayles, “The energy correction factor of LiF thermoluminescent dosemeters in megavoltage electron beams: Monte Carlo simulations and experiments,” Phys. Med. Biol. 41, 979993 (1996).
http://dx.doi.org/10.1088/0031-9155/41/6/003
54.
54.L. Duggan, C. Hood, H. Warren-Forward, M. Haque, and T. Kron, “Variations in dose response with x-ray energy of LiF:Mg, Cu, P thermoluminescence dosimeters: Implications for clinical dosimetry,” Phys. Med. Biol. 49, 38313845 (2004).
http://dx.doi.org/10.1088/0031-9155/49/17/001
55.
55.A. Niroomand-Rad, C. R. Blackwell, B. M. Coursey, K. P. Gall, J. M. Galvin, W. L. McLaughlin, A. S. Meigooni, R. Nath, J. E. Rodgers, and C. G. Soares, “Radiographic film dosimetry: Recommendations of AAPM Radiation Therapy Committee Task Group 55,” Med. Phys. 25, 20932115 (1998).
http://dx.doi.org/10.1118/1.598407
56.
56.TG-25, “Clinical electron beam dosimetry: Report of AAPM Radiation Therapy Committee Task Group No. 25,” Med. Phys. 18, 73109 (1991).
http://dx.doi.org/10.1118/1.596695
57.
57.R. Ramani, A. W. Lightstone, D. L. Mason, and P. F. O’Brien, “The use of radiochromic film in treatment verification of dynamic stereotactic radiosurgery,” Med. Phys. 21, 389392 (1994).
http://dx.doi.org/10.1118/1.597385
58.
58.J. L. Robar and B. G. Clark, “The use of radiographic film for linear accelerator stereotactic radiosurgical dosimetry,” Med. Phys. 26, 21442150 (1999).
http://dx.doi.org/10.1118/1.598730
59.
59.D. D. Leavitt and E. Klein, “Dosimetry measurement tools for commissioning enhanced dynamic wedge,” Med. Dosim. 22, 171176 (1997).
60.
60.F. F. Yin, “Physical penumbra change of beam profile due to film digitization,” Med. Phys. 22, 803805 (1995).
http://dx.doi.org/10.1118/1.597481
61.
61.R. Ramani, S. Russell, and P. F. O’Brien, “Clinical dosimetry using MOSFETs,” Int. J. Radiat. Oncol., Biol., Phys. 37, 959964 (1997).
http://dx.doi.org/10.1016/S0360-3016(96)00600-1
62.
62.C. F. Chuang, L. Verhey, and P. Xia, “Investigation of the use of MOSFET for clinical IMRT dosimetric verification,” Med. Phys. 29, 11091115 (2002).
http://dx.doi.org/10.1118/1.1481520
63.
63.G. S. Ibbott, M. J. Maryanski, P. Eastman, S. D. Holcomb, Y. Zhang, R. G. Avison, M. Sanders, and J. C. Gore, “Three-dimensional visualization and measurement of conformal dose distributions using magnetic resonance imaging of BANG polymer gel dosimeters,” Int. J. Radiat. Oncol., Biol., Phys. 38, 10971103 (1997).
http://dx.doi.org/10.1016/S0360-3016(97)00146-6
64.
64.R. K. Rice, J. L. Hansen, G. K. Svensson, and R. L. Siddon, “Measurements of dose distributions in small beams of x-rays,” Phys. Med. Biol. 32, 10871099 (1987).
http://dx.doi.org/10.1088/0031-9155/32/9/002
65.
65.P. Francescon, S. Cora, and P. Chiovati, “Dose verification of an IMRT treatment planning system with BEAM, EGS-based Monte Carlo code,” Med. Phys. 30, 144157 (2003).
http://dx.doi.org/10.1118/1.1538236
66.
66.W. U. Laub and T. Wong, “The volume effect of detectors in the dosimetry of small fields used in IMRT,” Med. Phys. 30, 341347 (2003).
http://dx.doi.org/10.1118/1.1544678
67.
67.F. Sanchez-Doblado, R. Capote, A. Leal, J. V. Rosello, J. I. Lagares, R. Arrans, and G. H. Hartmann, “Micro ionization chamber for reference dosimetry in IMRT verification: Clinical implications on OAR dosimetric errors,” Phys. Med. Biol. 50, 959970 (2005).
http://dx.doi.org/10.1088/0031-9155/50/5/018
68.
68.F. Araki, “Monte Carlo study of a Cyberknife stereotactic radiosurgery system,” Med. Phys. 33, 29552963 (2006).
http://dx.doi.org/10.1118/1.2219774
69.
69.G. Bednarz, S. Huq, and U. F. Rosenow, “Deconvolution of detector size effect for output factor measurement for narrow Gamma Knife radiosurgery beams,” Phys. Med. Biol. 47, 36433649 (2002).
http://dx.doi.org/10.1088/0031-9155/47/20/306
70.
70.P. D. Higgins, C. H. Sibata, L. Siskind, and J. W. Sohn, “Deconvolution of detector size effect for small field measurement,” Med. Phys. 22, 16631666 (1995).
http://dx.doi.org/10.1118/1.597427
71.
71.F. Garcia-Vicente, J. M. Delgado, and C. Peraza, “Experimental determination of the convolution kernel for the study of the spatial response of a detector,” Med. Phys. 25, 202207 (1998).
http://dx.doi.org/10.1118/1.598182
72.
72.P. Charland, E. el-Khatib, and J. Wolters, “The use of deconvolution and total least squares in recovering a radiation detector line spread function,” Med. Phys. 25, 152160 (1998).
http://dx.doi.org/10.1118/1.598176
73.
73.D. Herrup, J. Chu, H. Cheung, and M. Pankuch, “Determination of penumbral widths from ion chamber measurements,” Med. Phys. 32, 36363640 (2005).
http://dx.doi.org/10.1118/1.2128086
74.
74.K. S. Chang, F. F. Yin, and K. W. Nie, “The effect of detector size to the broadening of the penumbra—A computer simulated study,” Med. Phys. 23, 14071411 (1996).
http://dx.doi.org/10.1118/1.597724
75.
75.C. H. Sibata, H. C. Mota, A. S. Beddar, P. D. Higgins, and K. H. Shin, “Influence of detector size in photon beam profile measurements,” Phys. Med. Biol. 36, 621631 (1991).
http://dx.doi.org/10.1088/0031-9155/36/5/005
76.
76.D. J. Dawson, J. M. Harper, and A. C. Akinradewo, “Analysis of physical parameters associated with the measurement of high-energy x-ray penumbra,” Med. Phys. 11, 491497 (1984).
http://dx.doi.org/10.1118/1.595542
77.
77.P. Metcalfe, T. Kron, A. Elliott, T. Wong, and P. Hoban, “Dosimetry of x-ray beam penumbra,” Med. Phys. 20, 14391445 (1993).
http://dx.doi.org/10.1118/1.597107
78.
78.T. Kron, A. Elliott, and P. Metcalfe, “The penumbra of a x-ray beam as measured by thermoluminescent dosimetry and evaluated using an inverse square root function,” Med. Phys. 20, 14291438 (1993).
http://dx.doi.org/10.1118/1.597157
79.
79.D. E. Mellenberg, R. A. Dahl, and C. R. Blackwell, “Acceptance testing of an automated scanning water phantom,” Med. Phys. 17, 311314 (1990).
http://dx.doi.org/10.1118/1.596510
80.
80.M. G. Schmid and R. L. Morris, “A water phantom controller for automated acquisition of linac beam parameters,” Med. Phys. 16, 126129 (1989).
http://dx.doi.org/10.1118/1.596414
81.
81.Y. K. Kim, S. H. Park, H. S. Kim, S. M. Kang, J. H. Ha, C. E. Chung, S. Y. Cho, and J. K. Kim, “Polarity effect of the thimble-type ionization chamber at a low dose rate,” Phys. Med. Biol. 50, 49955003 (2005).
82.
82.TG-51, “AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams,” Med. Phys. 26, 18471870 (1999).
http://dx.doi.org/10.1118/1.598691
83.
83.B. Gross, “The Compton current,” Z. Phys. 155, 479487 (1959).
84.
84.J. F. Fowler and F. T. Farmer, “Conductivity induced in insulating materials by x-rays,” Nature (London) 173, 317318 (1954).
85.
85.J. J. Spokas and R. D. Meeker, “Investigation of cables for ionization chambers,” Med. Phys. 7, 135140 (1980).
http://dx.doi.org/10.1118/1.594676
86.
86.I. J. Das, J. F. Copeland, and H. S. Bushe, “Spatial distribution of bremsstrahlung in a dual electron beam used in total skin electron treatments: Errors due to ionization chamber cable irradiation,” Med. Phys. 21, 17331738 (1994).
http://dx.doi.org/10.1118/1.597215
87.
87.I. J. Das, S. W. McNeeley, and C.-W. Cheng, “Ionization chamber shift correction and surface dose measurements in electron beams,” Phys. Med. Biol. 43, 34193424 (1998).
http://dx.doi.org/10.1088/0031-9155/43/11/016
88.
88.F. M. Khan, The Physics of Radiation Therapy, 3rd ed. (Lippincott Williams & Wilkins, Philadelphia, PA, 2003).
89.
89.G. S. Ibbott, J. E. Barne, G. R. Hall, and W. R. Hendee, “Stem corrections for ionization chambers,” Med. Phys. 2, 328330 (1975).
http://dx.doi.org/10.1118/1.594202
90.
90.B. J. Gerbi and F. M. Khan, “Measurement of dose in the buildup region using fixed-separation plane-parallel ion chambers,” Med. Phys. 17, 1726 (1990).
http://dx.doi.org/10.1118/1.596522
91.
91.R. L. Stern and H. D. Kubo, “Considerations for superficial photon dosimetry,” Med. Phys. 22, 14691470 (1995).
http://dx.doi.org/10.1118/1.597571
92.
92.B. Nilsson and A. Brahme, “Electron contamination from photon beam collimators,” Radiother. Oncol. 5, 235244 (1986).
http://dx.doi.org/10.1016/S0167-8140(00)00316-9
93.
93.R. Sjögren and M. Karlsson, “Electron contamination in clinical high energy photon beams,” Med. Phys. 23, 18731881 (1996).
http://dx.doi.org/10.1118/1.597750
94.
94.B. Nilsson, “Electron contamination from different materials in high energy photon beams,” Phys. Med. Biol. 30, 139151 (1985).
http://dx.doi.org/10.1088/0031-9155/30/2/003
95.
95.F. M. Khan, V. C. Moore, and S. H. Levitt, “Effect of various atomic number absorbers on skin dose for x rays,” Radiology 109, 209212 (1973).
96.
96.P. J. Biggs and M. D. Russell, “An investigation into the presence of secondary electrons in megavoltage photon beams,” Phys. Med. Biol. 28, 10331043 (1983).
http://dx.doi.org/10.1088/0031-9155/28/9/003
97.
97.T. C. Zhu and J. R. Palta, “Electron contamination in 8 and photon beams,” Med. Phys. 25, 1219 (1998).
http://dx.doi.org/10.1118/1.598169
98.
98.P. J. Biggs and C. C. Ling, “Electrons as the cause of the observed dmax shift with field size in high energy photon beams,” Med. Phys. 6, 291295 (1979).
http://dx.doi.org/10.1118/1.594580
99.
99.E. D. Yorke, C. C. Ling, and S. Rustgi, “Air-generated electron contamination of 4 and photon beams: A comparison of theory and experiment,” Phys. Med. Biol. 30, 13051314 (1985).
http://dx.doi.org/10.1088/0031-9155/30/12/004
100.
100.B. E. Bjärngard, P. Vadash, and T. Zhu, “Doses near the surface in high-energy x-ray beams,” Med. Phys. 22, 465468 (1995).
http://dx.doi.org/10.1118/1.597477
101.
101.A. Lopez Medina, A. Teijeiro, J. Garcia, J. Esperon, J. A. Terron, D. P. Ruiz, and M. C. Carrion, “Characterization of electron contamination in megavoltage photon beams,” Med. Phys. 32, 12811292 (2005).
http://dx.doi.org/10.1118/1.1895793
102.
102.E. E. El-Khatib, J. Scrimger, and B. Murray, “Reduction of the bremsstrahlung component of clinical electron beams: implications for electron arc therapy and total skin electron irradiation,” Phys. Med. Biol. 36, 111118 (1991).
http://dx.doi.org/10.1088/0031-9155/36/1/010
103.
103.H. Svensson, “Influence of scattering foils, transmission monitors and collimating system on the absorbed dose distribution from electron irradiation,” Acta Radiol. Ther. Phys. Biol. 10, 443453 (1971).
104.
104.BJR Supply 25, “Central axis depth dose data for use in radiotherapy: 1996,” Br. J. Radiol. Supplement 25, British Institute of Radiology, 1996.
105.
105.N. Dogan and G. Glasgow, “Surface and build-up region dosimetry for obliquely incident intensity modulated radiotherapy x rays,” Med. Phys. 30, 30913096 (2003).
http://dx.doi.org/10.1118/1.1625116
106.
106.A. R. Hounsell and J. M. Wilkinson, “Electron contamination and build-up doses in conformal radiotherapy fields,” Phys. Med. Biol. 44, 4355 (1999).
http://dx.doi.org/10.1088/0031-9155/44/1/005
107.
107.A. Lamb and S. Blake, “Investigation and modeling of the surface dose from linear accelerator produced 6 and photon beams,” Phys. Med. Biol. 43, 11331146 (1998).
http://dx.doi.org/10.1088/0031-9155/43/5/006
108.
108.M. G. McKenna, X. G. Chen, M. D. Altschuler, and P. Block, “Calculation of the dose in the build-up region for high energy photon beam. Treatment planning when beam spoilers are employed,” Radiother. Oncol. 34, 6368 (1995).
http://dx.doi.org/10.1016/0167-8140(95)01504-A
109.
109.D. P. Fontenla, J. J. Napoli, M. Hunt, D. Fass, B. McCormick, and G. J. Kutcher, “Effects of beam modifiers and immobilization devices on the dose in the build-up region,” Int. J. Radiat. Oncol., Biol., Phys. 30, 211219 #x0028;1994).
110.
110.E. C. McCullough, “A measurement and analysis of buildup region dose for open field photon beams (Co-60 through ),” Med. Dosim. 19, 514 (1994).
111.
111.F. Habibollahi, H. M. O. Mayles, P. J. Winter, D. Tong, I. S. Fentiman, M. A. Chaudary, and J. L. Hayward, “Assessment of skin dose and its relation to cosmesis in the conservative treatment of early breast cancer,” Int. J. Radiat. Oncol., Biol., Phys. 14, 291296 (1988).
112.
112.D. E. Velkley, D. J. Manson, J. A. Purdy, and G. D. Oliver, “Buildup region of megavoltage photon radiation sources,” Med. Phys. 2, 1419 (1975).
http://dx.doi.org/10.1118/1.594158
113.
113.E. E. Klein, J. Esthappan, and Z. Li, “Surface and buildup dose characteristics for 6, 10, and photons from an Elekta Precise linear accelerator,” J. Appl. Clin. Med. Phys. 4, 17 (2003).
http://dx.doi.org/10.1120/1.1520113
114.
114.K. Y. Quach, J. Morales, M. J. Butson, A. B. Rosenfeld, and P. E. Metcalfe, “Measurement of radiotherapy x-ray skin dose on a chest wall phantom,” Med. Phys. 27, 16761680 (2000).
http://dx.doi.org/10.1118/1.599035
115.
115.S. Kim, C. R. Liu, T. C. Zhu, and J. R. Palta, “Photon beam skin dose analyses for different clinical setups,” Med. Phys. 25, 860866 (1998).
http://dx.doi.org/10.1118/1.598261
116.
116.D. J. Manson, D. Velkley, J. A. Purdy, and G. D. Oliver, “Measurements of surface dose using build-up curves obtained with an extrapolation chamber,” Radiology 115, 473474 (1975).
117.
117.S. Heukelom, J. H. Lanson, and B. J. Mijnheer, “Comparison of entrance and exit dose measurements using ionization chambers and silicon diodes,” Phys. Med. Biol. 36, 4759 (1991).
http://dx.doi.org/10.1088/0031-9155/36/1/005
118.
118.D. Georg, B. De Ost, M. T. Hoornaert, P. Pilette, J. Van Dam, M. Van Dyke, and D. Huyskens, “Build-up modification of commercial diodes for entrance dose measurements in ‘higher energy’ photon beams,” Radiother. Oncol. 51, 249256 (1999).
http://dx.doi.org/10.1016/S0167-8140(99)00058-4
119.
119.D. E. Mellenberg, “Determination of buildup-up region over-response corrections for a Markus-type chamber,” Med. Phys. 17, 10411044 (1990).
http://dx.doi.org/10.1118/1.596579
120.
120.M. Butson, A. Rozenfeld, J. N. Mathur, M. Carolan, T. P. Y. Wong, and P. E. Metcalfe, “A new radiotherapy surface dose detector: The MOSFET,” Med. Phys. 23, 655658 (1996).
http://dx.doi.org/10.1118/1.597702
121.
121.M. J. Butson, J. N. Mathur, and P. E. Metcalfe, “Radiochromic film as a radiotherapy surface-dose detector,” Phys. Med. Biol. 41, 10731078 (1996).
http://dx.doi.org/10.1088/0031-9155/41/6/011
122.
122.A. Ahnesjö, L. Weber, A. Murman, M. Saxner, I. Thorslund, and E. Traneus, “Beam modeling and verification of a photon beam multisource model,” Med. Phys. 32, 17221737 (2005).
http://dx.doi.org/10.1118/1.1898485
123.
123.P. Keall, S. Zavgorodni, L. Schidt, and D. Haskard, “Improving wedged field dose distributions,” Phys. Med. Biol. 42, 21832192 (1997).
http://dx.doi.org/10.1088/0031-9155/42/11/013
124.
124.U. Myler and J. J. Szabo, “Dose calculation along the nonwedged direction,” Med. Phys. 29, 746754 (2002).
125.
125.I. J. Das, G. E. Desobry, S. W. McNeeley, E. C. Cheng, and T. S. Schultheiss, “Beam characteristics of a retrofitted double-focused multileaf collimator,” Med. Phys. 25, 16761684 (1998).
http://dx.doi.org/10.1118/1.598348
126.
126.J. M. Galvin, K. Han, and R. Cohen, “A comparison of multileaf collimator and alloy-block field shaping,” Int. J. Radiat. Oncol., Biol., Phys. 40, 721731 (1998).
http://dx.doi.org/10.1016/S0360-3016(97)00815-8
127.
127.P. Xia, P. Geis, L. Xing, C. Ma, D. Findley, K. Forster, and A. Boyer, “Physical characteristics of a miniature multileaf collimator,” Med. Phys. 26, 6570 (1999).
http://dx.doi.org/10.1118/1.598478
128.
128.J. R. Sykes and P. C. Williams, “An experimental investigation of the tongue and groove effect for the Philips multileaf collimator,” Phys. Med. Biol. 43, 31573165 (1998).
http://dx.doi.org/10.1088/0031-9155/43/10/034
129.
129.S. Webb, T. Bortfeld, J. Stein, and D. Convery, “The effect of stair-step leaf transmission on the ‘tongue-and-groove problem’ in dynamic radiotherapy with a multileaf collimator,” Phys. Med. Biol. 42, 595602 (1997).
http://dx.doi.org/10.1088/0031-9155/42/3/011
130.
130.A. S. Shiu, H. M. Kooy, J. R. Ewton, S. S. Tung, J. Wong, K. Antes, and M. H. Maor, “Comparison of miniature multileaf collimation (MMLCC) with circular collimation for stereotactic treatment,” Int. J. Radiat. Oncol., Biol., Phys. 37, 679688 (1997).
http://dx.doi.org/10.1016/S0360-3016(96)00507-X
131.
131.D. A. Low, J. W. Sohn, E. E. Klein, J. Markman, S. Mutic, and J. F. Dempsey, “Characterization of a commercial multileaf collimator used for intensity modulated radiation therapy,” Med. Phys. 28, 752756 (2001).
http://dx.doi.org/10.1118/1.1367863
132.
132.AAPM Report No. 72, Basic Applications of Multileaf Collimators: Report of the AAPM Radiation Therapy Committee Task Group No. 50, AAPM Report No. 50 (American Institute of Physics by Medical Physics Publishing, Madison, WI, 2001).
133.
133.T. LoSasso, C. Chui, and C. Ling, “Comprehensive quality assurance for the delivery of intensity modulated radiotherapy with a multileaf collimator used in the dynamic mode,” Med. Phys. 28, 22092219 (2001).
http://dx.doi.org/10.1118/1.1410123
134.
134.M. Woo, P. Charland, B. Kim, and A. Nico, “Commissioning, evaluation, quality assurance and clinical application of a virtual micro MLC technique,” Med. Phys. 30, 138143 (2003).
http://dx.doi.org/10.1118/1.1534110
135.
135.J. E. Bayouth and S. M. Morrill, “MLC dosimetric characteristics for small field and IMRT applications,” Med. Phys. 30, 25452552 (2003).
http://dx.doi.org/10.1118/1.1603743
136.
136.J. M. Galvin, A. R. Smith, and B. Lilly, “Characterization of a multi-leaf collimator system,” Int. J. Radiat. Oncol., Biol., Phys. 25, 181192 (1993).
137.
137.T. J. Jordan and P. C. Williams, “The design and performance characteristics of a multileaf collimator,” Phys. Med. Biol. 39, 231251 (1994).
http://dx.doi.org/10.1088/0031-9155/39/2/002
138.
138.M. S. Huq, I. J. Das, T. Steinberg, and J. M. Galvin, “A dosimetric comparison of various multileaf collimators,” Phys. Med. Biol. 47, N159N170 (2002).
http://dx.doi.org/10.1088/0031-9155/47/12/401
139.
139.G. H. Hartmann and F. Fohlisch, “Dosimetric characterization of a new miniature multileaf collimator,” Phys. Med. Biol. 47, N171N177 (2002).
http://dx.doi.org/10.1088/0031-9155/47/12/402
140.
140.F. Crop, N. Reynaert, G. Pittomvils, L. Paelinck, W. De Gersem, C. De Wagter, L. Vakaet, W. De Neve, and H. Thierens, “Monte Carlo modeling of the ModuLeaf miniature MLC for small field dosimetry and quality assurance of the clinical treatment planning system,” Phys. Med. Biol. 52, 32753290 (2007).
http://dx.doi.org/10.1088/0031-9155/52/11/022
141.
141.A. L. Boyer, T. G. Ochran, C. E. Nyerick, T. J. Waldron, and C. J. Huntzinger, “Clinical dosimetry for implementation of a multileaf collimator,” Med. Phys. 19, 12551261 (1992).
http://dx.doi.org/10.1118/1.596757
142.
142.E. E. Klein, W. B. Harms, D. A. Low, V. Willcut, and J. A. Purdy, “Clinical implementation of a commercial multileaf collimator: Dosimetry, networking, simulation, and quality assurance,” Int. J. Radiat. Oncol., Biol., Phys. 33, 11951208 (1995).
http://dx.doi.org/10.1016/0360-3016(95)00198-0
143.
143.V. P. Cosgrove, U. Jahn, M. Pfaender, S. Bauer, V. Budach, and R. E. Wurm, “Commissioning of a micro multileaf collimator and planning system for stereotactic radiosurgery,” Radiother. Oncol. 50, 325336 (1999).
http://dx.doi.org/10.1016/S0167-8140(99)00020-1
144.
144.G. J. Budgell, J. H. Mott, P. C. Williams, and K. J. Brown, “Requirements for leaf position accuracy for dynamic multileaf collimation,” Phys. Med. Biol. 45, 12111227 (2000).
http://dx.doi.org/10.1088/0031-9155/45/5/310
145.
145.TG-50, American Association of Physicists in Medicine Radiation Therapy Committee Report No. 72. Basic Application of Multileaf Collimators (Medical Physics Publishing, Madison, WI, 2001).
146.
146.C. D. Mubata, P. Childs, and A. M. Bidmead, “A quality assurance procedure for the Varian multi-leaf collimator,” Phys. Med. Biol. 42, 423431 (1997).
http://dx.doi.org/10.1088/0031-9155/42/2/014
147.
147.M. F. Clarke and G. J. Budgell, “Use of an amorphous silicon EPID for measuring MLC calibration at various gantry angle,” Phys. Med. Biol. 53, 473485 (2008).
http://dx.doi.org/10.1088/0031-9155/53/2/013
148.
148.G. Mu, E. Ludlum, and P. Xia, “Impact of MLC leaf position errors on simple and complex IMRT plans for head and neck cancer,” Phys. Med. Biol. 53, 7788 (2008).
http://dx.doi.org/10.1088/0031-9155/53/1/005
149.
149.H. V. James, S. Atherton, G. J. Budgell, M. C. Kirby, and P. C. Williams, “Verification of dynamic multileaf collimation using an electronic portal imaging device,” Phys. Med. Biol. 45, 495509 (2000).
http://dx.doi.org/10.1088/0031-9155/45/2/316
150.
150.S. M. Huq, Y. Yu, Z.-P. Chen, and N. Suntharalingam, “Dosimetric characteristics of a commercial multileaf collimator,” Med. Phys. 22, 241247 (1995).
http://dx.doi.org/10.1118/1.597461
151.
151.C. W. Cheng, S. H. Cho, M. Taylor, and I. J. Das, “Determination of zero field size percent depth doses and tissue maximum ratios for stereotactic radiosurgery and IMRT dosimetry: Comparison between experimental measurements and Monte Carlo simulation,” Med. Phys. 34, 31493157 (2007).
http://dx.doi.org/10.1118/1.2750968
152.
152.I. J. Das, G. X. Ding, and A. Ahnesjö, “Small fields: Non-equilibrium radiation dosimetry,” Med. Phys. 35, 206215 (2008).
http://dx.doi.org/10.1118/1.2815356
153.
153.P. Francescon, S. Cora, and C. Cavedon, “Total scatter factors of small beams: A multidetector and Monte Carlo study,” Med. Phys. 35, 504513 (2008).
http://dx.doi.org/10.1118/1.2828195
154.
154.D. W. O. Rogers and A. F. Bielajew, in The Dosimetry of Ionizing Radiation Volume III, edited by K. R. Kase, B. E. Bjarngard, and F. H. Attix (Academic, New York, 1990), pp. 427539.
155.
155.T. R. Mackie, in The Dosimetry of Ionizing Radiation Volume III, edited by K. R. Kase, B. E. Bjarngard, and F. H. Attix (Academic, New York, 1990), pp. 541562.
156.
156.P. Andreo, “Monte Carlo techniques in medical radiation physics,” Phys. Med. Biol. 36, 861920 (1991).
http://dx.doi.org/10.1088/0031-9155/36/7/001
157.
157.D. W. O. Rogers, B. A. Faddegon, G. X. Ding, C.-M. Ma, and J. We, “BEAM: A Monte Carlo code to simulate radiotherapy treatment units,” Med. Phys. 22, 503524 (1995).
http://dx.doi.org/10.1118/1.597552
158.
158.D. Sheikh-Bagheri and D. W. Rogers, “Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code,” Med. Phys. 29, 391402 (2002).
http://dx.doi.org/10.1118/1.1445413
159.
159.I. J. Chetty, B. Curran, J. E. Cygler, J. J. DeMarco, G. Ezzell, B. A. Faddegon, I. Kawrakow, P. J. Keall, H. Liu, C. M. Ma, D. W. Rogers, J. Seuntjens, D. Sheikh-Bagheri, and J. V. Siebers, “Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning,” Med. Phys. 34, 48184853 (2007).
http://dx.doi.org/10.1118/1.2795842
160.
160.K. De Vlamynck, C. De Wagter, and W. De Neve, “Diamond detector measurements near simulated air channels for narrow photon beams,” Radiother. Oncol. 53, 155159 (1999).
http://dx.doi.org/10.1016/S0167-8140(99)00140-1
161.
161.C. M. Ma, M. Ding, J. S. Li, M. C. Lee, T. Pawlicki, and J. Deng, “A comparative dosimetric study on tangential photon beams, intensity-modulated radiation therapy (IMRT) and modulated electron radiotherapy (MERT) for breast cancer treatment,” Phys. Med. Biol. 48, 909924 (2003).
http://dx.doi.org/10.1088/0031-9155/48/7/308
162.
162.X. R. Zhu, M. T. Gillin, K. Ehlers, F. Lopez, D. F. Grimm, J. J. Rownd, and T. H. Steinberg, “Dependence of virtual wedge factor on dose calibration and monitor units,” Med. Phys. 28, 174177 (2001).
http://dx.doi.org/10.1118/1.1344204
163.
163.F. Verhaegen, I. J. Das, and H. Palmans, “Monte Carlo dosimetry study of stereotactic radiosurgery unit,” Phys. Med. Biol. 43, 27552768 (1998).
http://dx.doi.org/10.1088/0031-9155/43/10/006
164.
164.O. A. Sauer and J. Wilbert, “Measurement of output factors for small photon beams,” Med. Phys. 34, 19831988 (2007).
http://dx.doi.org/10.1118/1.2734383
165.
165.S. Kim, J. R. Palta, and T. C. Zhu, “A generalized solution for the calculation of in-air output factors in irregular fields,” Med. Phys. 25, 16921701 (1998).
http://dx.doi.org/10.1118/1.598350
166.
166.K. R. Kase and G. K. Svensson, “Head scatter data for several linear accelerators ,” Med. Phys. 13, 530532 (1986).
http://dx.doi.org/10.1118/1.595857
167.
167.M. Tatcher and B. Bjarngard, “Head-scatter factors and effective x-ray source positions in a linear accelerator,” Med. Phys. 19, 685686 (1992).
http://dx.doi.org/10.1118/1.596811
168.
168.R. D. Bar-Deroma and B. E. Bjärngard, “The relation between wedge factors in air and water,” Med. Phys. 21, 10431047 (1994).
http://dx.doi.org/10.1118/1.597346
169.
169.S. Heukelom, J. H. Lanson, and B. J. Mijnheer, “Wedge factor constituents of high energy photon beams: Head and phantom scatter components,” Radiother. Oncol. 32, 7383 (1994).
http://dx.doi.org/10.1016/0167-8140(94)90451-0
170.
170.E. C. McCullough, J. Gortney, and C. R. Blackwell, “A depth dependence determination of the wedge transmission factor for photon beams,” Med. Phys. 15, 621623 (1988).
http://dx.doi.org/10.1118/1.596216
171.
171.J. R. Palta, I. Daftari, and N. Suntharlingam, “Field size dependence of wedge factors,” Med. Phys. 15, 624626 (1988).
http://dx.doi.org/10.1118/1.596217
172.
172.R. C. Tailor, D. S. Followill, and W. F. Hanson, “A first order approximation of field size and depth dependence of wedge transmission,” Med. Phys. 25, 241244 (1998).
http://dx.doi.org/10.1118/1.598187
173.
173.S. J. Thomas, “The effect on wedge factors of scattered radiation from the wedge,” Radiother. Oncol. 32, 271273 (1994).
http://dx.doi.org/10.1016/0167-8140(94)90028-0
174.
174.S. J. Thomas, “The variation of wedge factors with field size on a linear accelerator,” Br. J. Radiol. 63, 355356 (1990).
175.
175.C. W. Cheng, W. L. Tang, and I. J. Das, “Beam characteristics of upper and lower physical wedge systems of Varian accelerators,” Phys. Med. Biol. 48, 36673683 (2003).
http://dx.doi.org/10.1088/0031-9155/48/22/004
176.
176.E. E. Klein, R. Gerber, X. R. Zhu, F. Oehmke, and J. A. Purdy, “Multiple machine implementation of enhanced dynamic wedge,” Instrum. Control Syst. 40, 977985 (1998).
177.
177.J. P. Gibbons, “Calculation of enhanced dynamic wedge factors for symmetric and asymmetric photon fields,” Med. Phys. 25, 14111418 (1998).
http://dx.doi.org/10.1118/1.598313
178.
178.G. E. Desobry, T. J. Waldron, and I. J. Das, “Validation of new virtual wedge model,” Med. Phys. 25, 7172 (1998).
http://dx.doi.org/10.1118/1.598172
179.
179.M. J. Zelefsky, T. Hollister, A. Raben, S. Matthews, and K. E. Wallner, “Five-year biochemical outcome and toxicity with transperineal CT-planned permanent I-125 prostate implantation for patients with localized prostate cancer,” Int. J. Radiat. Oncol., Biol., Phys. 47, 12611266 (2000).
http://dx.doi.org/10.1016/S0360-3016(00)00550-2
180.
180.E. E. Klein, D. A. Low, A. S. Meigooni, and J. A. Purdy, “Dosimetry and clinical implementation of dynamic wedge,” Int. J. Radiat. Oncol., Biol., Phys. 31, 583592 (1995).
http://dx.doi.org/10.1016/0360-3016(94)00369-V
181.
181.M. H. Phillips, H. Parsaei, and P. S. Cho, “Dynamic and omni wedge implementation on an Elekta SL linac,” Med. Phys. 27, 16231634 (2000).
http://dx.doi.org/10.1118/1.599029
182.
182.H. Shackford, B. E. Bjarngard, and P. Vadash, “Dynamic universal wedge,” Med. Phys. 22, 17351741 (1995).
http://dx.doi.org/10.1118/1.597537
183.
183.B. D. Milliken, J. V. Turian, R. J. Hamilton, S. J. Rubin, F. T. Kuchnir, C. X. Yu, and J. W. Wong, “Verification of the omni wedge technique,” Med. Phys. 25, 14191423 (1998).
http://dx.doi.org/10.1118/1.598314
184.
184.J. Dai, Y. Zhu, and X. Wu, “Verification of the super-omni wedge concept,” Phys. Med. Biol. 46, 24472455 (2001).
http://dx.doi.org/10.1088/0031-9155/46/9/313
185.
185.S. C. Sharma and M. W. Johnson, “Recommendations for measurement of tray and wedge factors for high energy photons,” Med. Phys. 21, 573575 (1994).
http://dx.doi.org/10.1118/1.597392
186.
186.A. E. Nahum, “Perturbation effects in dosimetry: Part I. Kilovoltage x-rays and electrons,” Phys. Med. Biol. 41, 15311580 (1996).
http://dx.doi.org/10.1088/0031-9155/41/9/001
187.
187.F. Sanchez-Doblado, P. Andreo, R. Capote, A. Leal, M. Perucha, R. Arrans, L. Nunez, E. Mainegra, J. I. Lagares, and E. Carrasco, “Ionization chamber dosimetry of small photon fields: a Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams,” Phys. Med. Biol. 48, 20812099 (2003).
http://dx.doi.org/10.1088/0031-9155/48/14/304
188.
188.R. Capote, F. Sanchez-Doblado, A. Leal, J. I. Lagares, R. Arrans, and G. H. Hartmann, “An EGSnrc Monte Carlo study of the microionization chamber for reference dosimetry of narrow irregular IMRT beamlets,” Med. Phys. 31, 24162422 (2004).
http://dx.doi.org/10.1118/1.1767691
189.
189.P. Björk, T. Knöös, and P. Nilsson, “Measurements of output factors with different detector types and Monte Carlo calculations of stopping-power ratios for degraded electron beams,” Phys. Med. Biol. 49, 44934506 (2004).
http://dx.doi.org/10.1088/0031-9155/49/19/004
190.
190.A. Wu, R. D. Zwicker, A. M. Kalend, and Z. Zheng, “Comments on dose measurements for a narrow beam in radiosurgery,” Med. Phys. 20, 777779 (1993).
http://dx.doi.org/10.1118/1.597032
191.
191.J. Seuntjens and F. Verhaegen, “Comments on ‘ionization chamber dosimetry of small photon fields: A Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams,'” Phys. Med. Biol. 48, L43L45 (2003).
http://dx.doi.org/10.1088/0031-9155/48/21/L01
192.
192.A. O. Jones and I. J. Das, “Comparison of inhomogeneity correction algorithms in small photon fields,” Med. Phys. 32, 766776 (2005).
http://dx.doi.org/10.1118/1.1861154
193.
193.M. Roach, M. DeSilvio, C. Lawton, V. Uhl, M. Machtay, M. J. Seider, M. Rotman, C. Jones, S. O. Asbell, R. K. Valicenti, S. Han, C. R. Thomas, and W. S. Shipley, “Phase III trial comparing versus prostate-only radiotherapy and neoadjuvant versus adjuvant combined androgen suppression: Radiation therapy oncology group 9413,” J. Clin. Oncol. 21, 19041911 (2003).
http://dx.doi.org/10.1200/JCO.2003.05.004
194.
194.C. Martens, C. De Wagter, and W. De Neve, “The value of the PinPoint ion chamber for characterization of small field segments used in intensity-modulated radiotherapy,” Phys. Med. Biol. 45, 25192530 (2000).
http://dx.doi.org/10.1088/0031-9155/45/9/306
195.
195.I. J. Das, M. B. Downes, A. Kassaee, and Z. Tochner, “Choice of radiation detector in dosimetry of stereotactic radiosurgery-radiotherapy,” J. Radiosurg. 3, 177185 (2000).
196.
196.L. B. Leybovich, A. Sethi, and N. Dogan, “Comparison of ionization chambers of various volumes for IMRT absolute dose verification,” Med. Phys. 30, 119123 (2003).
http://dx.doi.org/10.1118/1.1536161
197.
197.J. W. Sohn, J. F. Dempsey, T. S. Suh, and D. A. Low, “Analysis of various beamlet sizes for IMRT with photons,” Med. Phys. 30, 24322439 (2003).
http://dx.doi.org/10.1118/1.1596785
198.
198.G. X. Ding, J. E. Cygler, and C. B. Kwok, “Clinical reference dosimetry: Comparison between AAPM TG-21 and TG-51 protocols,” Med. Phys. 27, 12171225 (2000).
http://dx.doi.org/10.1118/1.598999
199.
199.G. Ding, “Dose discrepancies between Monte Carlo calculations and measurements in the buildup region for a high-energy photon beam,” Med. Phys. 29, 24592463 (2002).
http://dx.doi.org/10.1118/1.1514237
200.
200.F. Haryanto, M. Fippel, W. Laub, O. Dohm, and F. Nusslin, “Investigation of photon beam output factors for conformal radiation therapy-Monte Carlo simulations and measurements,” Phys. Med. Biol. 47, N133N143 (2002).
http://dx.doi.org/10.1088/0031-9155/47/11/401
201.
201.H. Bouchard and J. Seuntjens, “Ionization chamber-based reference dosimetry of intensity modulated radiation beams,” Med. Phys. 31, 24542465 (2004).
http://dx.doi.org/10.1118/1.1781333
202.
202.F. F. Yin, J. Zhu, H. Yan, H. Gaun, R. Hammoud, S. Ryu, and J. H. Kim, “Dosimetric characteristics of Novalis shaped beam surgery unit,” Med. Phys. 29, 17291738 (2002).
http://dx.doi.org/10.1118/1.1494830
203.
203.S. Li, A. Rashid, S. He, and D. Djajaputra, “A new approach in dose measurement and error analysis for narrow photon beams (beamlets) shaped by different multileaf collimators using a small detector,” Med. Phys. 31, 20202032 (2004).
http://dx.doi.org/10.1118/1.1760191
204.
204.D. S. Followill, D. S. Davis, and G. S. Ibbott, “Comparison of electron beam characteristics from multiple accelerators,” Int. J. Radiat. Oncol., Biol., Phys. 59, 905910 (2004).
205.
205.ICRU 35, Radiation Dosimetry: Electron Beams with Energies Between , ICRU Report 35 (International Commission on Radiation Units and Measurements, Bethesda, MD, 1984).
206.
206.T. C. Zhu, I. J. Das, and B. E. Bjärngard, “Characteristics of bremsstrahlung in electron beams,” Med. Phys. 28, 13521358 (2001).
http://dx.doi.org/10.1118/1.1382608
207.
207.M. D. Mills, K. R. Hogstrom, and P. R. Almond, “Prediction of electron beam output factors,” Med. Phys. 9, 6068 (1982).
http://dx.doi.org/10.1118/1.595138
208.
208.P. A. Jursinic and T. R. Mackie, “Characteristics of secondary electrons produced by 6, 10, and x-ray beams,” Phys. Med. Biol. 41, 14991509 (1996).
http://dx.doi.org/10.1088/0031-9155/41/8/016
209.
209.F. M. Khan, P. D. Higgins, B. J. Gerbi, F. C. Deibel, A. Sethi, and D. N. Mihailidis, “Calculation of depth dose and dose per monitor unit for irregularly shaped electron fields,” Phys. Med. Biol. 43, 27412754 (1998).
http://dx.doi.org/10.1088/0031-9155/43/10/005
210.
210.C. M. Ma, B. A. Faddegon, D. W. Rogers, and T. R. Mackie, “Accurate characterization of Monte Carlo calculated electron beams for radiotherapy,” Med. Phys. 24, 401416 (1997).
http://dx.doi.org/10.1118/1.597908
211.
211.L. J. van Battum and H. Huizenga, “On the initial angular variances of clinical electron beams,” Phys. Med. Biol. 44, 28032820 (1999).
http://dx.doi.org/10.1088/0031-9155/44/11/309
212.
212.E. R. Cecatti, J. F. Goncalves, S. G. P. Cecatti, and M. P. Silva, “Effect of the accelerator design on the position of the effective electron source,” Med. Phys. 10, 683686 (1983).
http://dx.doi.org/10.1118/1.595406
213.
213.A. Jamshidi, F. T. Kuchnir, and C. S. Reft, “Determination of the source position for the electron beams from a high-energy linear accelerator,” Med. Phys. 13, 942948 (1986).
http://dx.doi.org/10.1118/1.595823
214.
214.K. Y. Quach, M. J. Butson, and P. E. Metcalfe, “Comparison of effective source-surface distances for electron beams derived from measurements made under different scatter conditions,” Australas. Phys. Eng. Sci. Med. 22, 99102 (1999).
215.
215.D. M. Roback, F. M. Khan, J. P. Gibbons, and A. Sethi, “Effective SSD for electron beams as a function of energy and beam collimation,” Med. Phys. 22, 20932095 (1995).
http://dx.doi.org/10.1118/1.597651
216.
216.F. M. Khan, W. Sewchand, and S. H. Levitt, “Effect of air space on depth dose in electron beam therapy,” Radiother. Oncol. 126, 249251 (1978).
217.
217.L. J. van Battum and H. Huizenga, “Film dosimetry of clinical electron beams,” Int. J. Radiat. Oncol., Biol., Phys. 18, 6976 (1990).
218.
218.C. M. Ma and S. B. Jiang, “Monte Carlo modeling of electron beams from medical accelerators,” Phys. Med. Biol. 44, R157R189 (1999).
http://dx.doi.org/10.1088/0031-9155/44/12/201
219.
219.S. B. Jiang, A. Kapur, and C. M. Ma, “Electron beam modeling and commissioning for Monte Carlo treatment planning,” Med. Phys. 27, 180191 (2000).
http://dx.doi.org/10.1118/1.598883
220.
220.A. Kapur, C. M. Ma, E. C. Mok, D. O. Findley, and A. L. Boyer, “Monte Carlo calculations of electron beam output factors for a medical linear accelerator,” Phys. Med. Biol. 43, 34793494 (1998).
http://dx.doi.org/10.1088/0031-9155/43/12/007
221.
221.J. A. Antolak, M. R. Bieda, and K. R. Hogstrom, “Using Monte Carlo methods to commission electron beams: A feasibility study,” Med. Phys. 29, 771786 (2002).
http://dx.doi.org/10.1118/1.1469626
222.
222.J. E. Cygler, G. M. Daskalov, G. H. Chan, and G. X. Ding, “Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning,” Med. Phys. 31, 142153 (2004).
http://dx.doi.org/10.1118/1.1633105
223.
223.G. X. Ding, D. M. Duggan, C. W. Coffey, P. Shokrani, and J. E. Cygler, “First macro Monte Carlo based commercial dose calculation module for electron beam treatment planning—New issues for clinical consideration,” Phys. Med. Biol. 51, 27812799 (2006).
http://dx.doi.org/10.1088/0031-9155/51/11/007
224.
224.R. A. Popple, R. Weinber, J. A. Antolak, S. J. Ye, P. N. Pareek, J. Duan, S. Shen, and I. A. Brezovich, “Comprehensive evaluation of a commercial macro Monte Carlo electron dose calculation implementation using a standard verification data set,” Med. Phys. 33, 15401551 (2006).
http://dx.doi.org/10.1118/1.2198328
225.
225.M. Udale Smith, “Monte Carlo calculations of electron beam parameters for three Philips linear accelerators,” Phys. Med. Biol. 37, 85105 (1992).
http://dx.doi.org/10.1088/0031-9155/37/1/006
226.
226.J. Sempau, A. Sánchez-Reyes, F. Salvat, H. Oulad ben Tahar, S. B. Jiang, and J. M. Fernández-Varea, “Monte Carlo simulation of electron beams from an accelerator head using PENELOPE,” Phys. Med. Biol. 46, 11631186 (2001).
http://dx.doi.org/10.1088/0031-9155/46/4/318
227.
227.P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).
228.
228.W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, New York, 1992).
229.
229.MATLAB documentation version 7.2.0.232 The Mathworks, Natick, MA, 2006.
230.
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/35/9/10.1118/1.2969070
Loading
/content/aapm/journal/medphys/35/9/10.1118/1.2969070
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/35/9/10.1118/1.2969070
2008-08-22
2015-07-05

Abstract

For commissioning a linear accelerator for clinical use, medical physicists are faced with many challenges including the need for precision, a variety of testing methods, data validation, the lack of standards, and time constraints. Since commissioning beam data are treated as a reference and ultimately used by treatment planning systems, it is vitally important that the collected data are of the highest quality to avoid dosimetric and patient treatment errors that may subsequently lead to a poor radiation outcome. Beam data commissioning should be performed with appropriate knowledge and proper tools and should be independent of the person collecting the data. To achieve this goal, Task Group 106 (TG-106) of the Therapy Physics Committee of the American Association of Physicists in Medicine was formed to review the practical aspects as well as the physics of linear accelerator commissioning. The report provides guidelines and recommendations on the proper selection of phantoms and detectors, setting up of a phantom for data acquisition (both scanning and no-scanning data), procedures for acquiring specific photon and electron beam parameters and methods to reduce measurement errors , beam data processing and detector size convolution for accurate profiles. The TG-106 also provides a brief discussion on the emerging trend in Monte Carlo simulation techniques in photon and electron beam commissioning. The procedures described in this report should assist a qualified medical physicist in either measuring a complete set of beam data, or in verifying a subset of data before initial use or for periodic quality assurance measurements. By combining practical experience with theoretical discussion, this document sets a new standard for beam data commissioning.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/35/9/1.2969070.html;jsessionid=3df75lbm98axt.x-aip-live-03?itemId=/content/aapm/journal/medphys/35/9/10.1118/1.2969070&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/35/9/10.1118/1.2969070
10.1118/1.2969070
SEARCH_EXPAND_ITEM