Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.L. Leksell, “The stereotaxic method and radiosurgery of the brain,” Acta Chir. Scand. 102, 316319 (1951).
2.G. H. Barnett, M. E. Linskey, J. R. Adler, J. W. Cozzens, W. A. Friedman, M. P. Heilbrun, L. D. Lunsford, M. Schulder, and A. E. Sloan, “Stereotactic radiosurgery—An organized neurosurgery-sanctioned definition,” J. Neurosurg. 106, 15 (2007).
3.R. H. Clarke and V. Horsley, “On a method of investigating the deep ganglia and tracts of the central nervous system (cerebellum),” Br. Med. J. 2, 17991800 (1906).
4.E. A. Spiegel, H. T. Wycis, M. Marks, and A. J. Lee, “Stereotaxic apparatus for operations on the human brain,” Science 106, 349350 (1947).
5.L. Leksell, “A stereotactic apparatus for intracerebral surgery,” Acta Chir. Scand. 99, 229233 (1949).
6.P. J. Kelly, “Stereotactic navigation, Jean Talairach, and I,” Neurosurgery 54, 454464 (2004).
7.J. Talairach and G. Szikla, “Application of stereotactic concepts to the surgery of epilepsy,” Acta Neurochir. Suppl. (Wien) 30, 3554 (1980).
8.R. A. Brown, “A stereotactic head frame for use with CT body scanners,” Invest. Radiol. 14, 300304 (1979).
9.B. Larsson, L. Leksell, B. Rexed, P. Sourander, W. Mair, and B. Andersson, “The high-energy proton beam as a neurosurgical tool,” Nature (London) 182, 12221223 (1958).
10.B. Larsson and B. Sarby, “Equipment for radiation surgery using narrow proton beams. Dosimetry and design,” Acta Oncol. 26, 143158 (1987).
11.L. Leksell, B. Larsson, B. Andersson, B. Rexed, P. Sourander, and W. Mair, “Lesions in the depth of the brain produced by a beam of high energy protons,” Acta Radiol. (1921-1962) 54, 251264 (1960).
12.L. Leksell, B. Larsson, B. Andersson, B. Rexed, P. Sourander, and W. Mair, “Research on ‘localized radio-lesions’. VI. Restricted radio-lesions in the depth of the brain produced by a beam of high energy protons,” AFOSR TN United States Air Force Off. Sci. Res. 60–1406, 113 (1960).
13.K. Liden, “Physikalische Grundlagen fur die Verwendung ionisierender Strahlung bei gezielter Hirnchirurgie,” in Handbuch der Neuochirurgie, edited by H. Olivecrona and W. Tonnis (Springer, Berlin, 1957), p. 199.
14.B. Larsson, K. Liden, and B. Sarby, “Irradiation of small structures through the intact skull,” Acta Radiol. Ther. Phys. Biol. 13, 512534 (1974).
15.L. Leksell, “Cerebral radiosurgery. I. Gammathalanotomy in two cases of intractable pain,” Acta Chir. Scand. 134, 585595 (1968).
16.D. Leksell, “Personal communication: History of the first gamma unit,” edited by S. Goetsch, 2008.
17.B. Sarby, “Cerebral radiation surgery with narrow gamma beams; physical experiments,” Acta Radiol. Ther. Phys. Biol. 13, 425445 (1974).
18.M. Leimdoerfer, “A Monte Carlo method for calculating the penetration and energy deposition of gamma radiation from distributed sources in laminated shields,” Trans. Am. Nucl. Soc. 6, 427428 (1963).
19.T. E. Burlin, “A general theory of cavity ionisation,” Br. J. Radiol. 39, 727734 (1966).
20.B. Larsson, “Blood vessel changes following local irradiation of the brain with high-energy protons,” Acta Soc. Med. Ups 65, 5171 (1960).
21.B. Larsson, “Pre-therapeutic physical experiments with high energy protons,” Br. J. Radiol. 34, 143151 (1961).
22.B. Larsson and B. A. Kihlman, “Chromosome aberrations following irradiation with high-energy protons and their secondary radiation: A study of dose distribution and biological efficiency using root-tips of Vicia faba and Allium cepa,” Int. J. Radiat. Biol. 2, 819 (1960).
23.B. Larsson, L. Leksell, B. Rexed, and P. Sourander, “Effect of high energy protons on the spinal cord,” Acta Radiol. (1921-1962) 51, 5264 (1959).
24.B. Larsson and S. Stenson, “Reduction of radiation damage to the intestinal mucous membrane by local hypoxia,” Nature (London) 205, 364365 (1965).
25.H. Dahlin and B. Sarby, “Destruction of small intracranial tumours with 60Co gamma radiation. Physical and technical considerations,” Acta Radiol. Ther. Phys. Biol. 14, 209227 (1975).
26.H. Dahlin, “Computerized calculation of dosage in external radiotherapy,” Nord. Med. 85, 1248 (1971).
27.H. Dahlin, B. Larrson, K. Rosander, and J. Svedberg, “Optimization of dosage distribution in clinical cerebral radiation surgery,” Nord. Med. 85, 1245 (1971).
28.L. Steiner, L. Leksell, T. Greitz, D. M. Forster, and E. O. Backlund, “Stereotaxic radiosurgery for cerebral arteriovenous malformations. Report of a case,” Acta Chir. Scand. 138, 459464 (1972).
29.S. Levin (personal communication, 2006).
30.A. Wu, G. Lindner, A. H. Maitz, A. M. Kalend, L. D. Lunsford, J. C. Flickinger, and W. D. Bloomer, “Physics of gamma knife approach on convergent beams in stereotactic radiosurgery,” Int. J. Radiat. Oncol., Biol., Phys. 18, 941949 (1990).
31.M. Sable, W. G. Gunn, D. Penning, and A. Gardner, “Performance of a new standing wave linear accelerator,” Radiology 97, 169174 (1970).
32.J. L. Barcia-Salorio, G. Hernandez, J. Broseta, J. Gonzalez-Darder, and J. Ciudad, “Radio surgical treatment of carotid cavernous fistula,” Appl. Neurophysiol. 45, 520522 (1982).
33.O. Betti and V. Derechinsky, “Multiple-beam stereotaxic irradiation,” Neurochirurgie 29, 295298 (1983).
34.O. O. Betti, “Treatment of arteriovenous malformations with the linear accelerator,” Appl. Neurophysiol. 50, 262 (1987).
35.O. O. Betti and V. E. Derechinsky, “Hyperselective encephalic irradiation with linear accelerator,” Acta Neurochir. Suppl. (Wien) 33, 385390 (1984).
36.O. O. Betti, D. Galmarini, and V. Derechinsky, “Radiosurgery with a linear accelerator. Methodological aspects,” Stereotact. Funct. Neurosurg. 57, 8798 (1991).
37.M. D. Heifetz, M. Wexler, and R. Thompson, “Single-beam radiotherapy knife. A practical theoretical model,” J. Neurosurg. 60, 814818 (1984).
38.R. C. Avanzo, G. Chierego, C. Marchetti, F. Pozza, F. Colombo, A. Benedetti, and A. Zanardo, “Stereotaxic irradiation with a linear accelerator,” Radiol. Med. (Torino) 70, 124129 (1984).
39.F. Colombo, A. Benedetti, F. Pozza, R. Avanzo, G. Chierego, C. Marchetti, P. Dettori, L. Bernardi, and V. Pinna, “Radiosurgery using a linear accelerator. Technique and radiobiologic implications,” Acta Radiol., Suppl. 369, 603607 (1986).
40.F. Colombo, A. Benedetti, F. Pozza, R. C. Avanzo, C. Marchetti, G. Chierego, and A. Zanardo, “External stereotactic irradiation by linear accelerator,” Neurosurgery 16, 154160 (1985).
41.F. Colombo, A. Benedetti, F. Pozza, A. Zanardo, R. C. Avanzo, G. Chierego, and C. Marchetti, “Stereotactic radiosurgery utilizing a linear accelerator,” Appl. Neurophysiol. 48, 133145 (1985).
42.G. H. Hartmann, W. Schlegel, V. Sturm, B. Kober, O. Pastyr, and W. J. Lorenz, “Cerebral radiation surgery using moving field irradiation at a linear accelerator facility,” Int. J. Radiat. Oncol., Biol., Phys. 11, 11851192 (1985).
43.P. V. Houdek, J. V. Fayos, J. M. Van Buren, and M. S. Ginsberg, “Stereotaxic radiotherapy technique for small intracranial lesions,” Med. Phys. 12, 469472 (1985).
44.J. M. Van Buren, P. Houdek, and M. Ginsberg, “A multipurpose CT-guided stereotactic instrument of simple design,” Appl. Neurophysiol. 46, 211216 (1983).
45.W. Lutz, K. R. Winston, and N. Maleki, “A system for stereotactic radiosurgery with a linear accelerator,” Int. J. Radiat. Oncol., Biol., Phys. 14, 373381 (1988).
46.E. B. Podgorsak, A. Olivier, M. Pla, J. Hazel, A. de Lotbiniere, and B. Pike, “Physical aspects of dynamic stereotactic radiosurgery,” Appl. Neurophysiol. 50, 263268 (1987).
47.E. B. Podgorsak, A. Olivier, M. Pla, P. Y. Lefebvre, and J. Hazel, “Dynamic stereotactic radiosurgery,” Int. J. Radiat. Oncol., Biol., Phys. 14, 115126 (1988).
48.K. R. Winston and W. Lutz, “Linear accelerator as a neurosurgical tool for stereotactic radiosurgery,” Neurosurgery 22, 454464 (1988).
49.J. Milan and R. E. Bentley, “The storage and manipulation of radiation dose data in a small digital computer,” Br. J. Radiol. 47, 115121 (1974).
50.B. Pike, E. B. Podgorsak, T. M. Peters, and C. Pla, “Dose distributions in dynamic stereotactic radiosurgery,” Med. Phys. 14, 780789 (1987).
51.R. Wilson, “Radiological use of fast protons,” Radiology 47, 487491 (1946).
52.R. Wilson, A Brief History of the Harvard University Cyclotrons (Harvard University Press, Cambridge, MA, 2004).
53.R. N. Kjellberg, A. Shintani, A. G. Frantz, and B. Kliman, “Proton-beam therapy in acromegaly,” N. Engl. J. Med. 278, 689695 (1968).
54.R. L. Siddon and N. H. Barth, “Stereotaxic localization of intracranial targets,” Int. J. Radiat. Oncol., Biol., Phys. 13, 12411246 (1987).
55.W. M. Saunders, K. R. Winston, R. L. Siddon, G. H. Svensson, P. K. Kijewski, R. K. Rice, J. L. Hansen, and N. H. Barth, “Radiosurgery for arteriovenous malformations of the brain using a standard linear accelerator: Rationale and technique,” Int. J. Radiat. Oncol., Biol., Phys. 15, 441447 (1988).
56.J. S. Loeffler, E. Alexander III, R. L. Siddon, W. M. Saunders, C. N. Coleman, and K. R. Winston, “Stereotactic radiosurgery for intracranial arteriovenous malformations using a standard linear accelerator,” Int. J. Radiat. Oncol., Biol., Phys. 17, 673677 (1989).
57.T. M. Peters, J. Clark, B. Pike, M. Drangova, and A. Olivier, “Stereotactic surgical planning with magnetic resonance imaging, digital subtraction angiography and computed tomography,” Appl. Neurophysiol. 50, 3338 (1987).
58.B. Pike, T. M. Peters, E. Podgorsak, C. Pla, A. Olivier, and A. de Lotbiniere, “Stereotactic external beam calculations for radiosurgical treatment of brain lesions,” Appl. Neurophysiol. 50, 269273 (1987).
59.L. R. Schad, R. Boesecke, W. Schlegel, G. H. Hartmann, V. Sturm, L. G. Strauss, and W. J. Lorenz, “Three dimensional image correlation of CT, MR, and PET studies in radiotherapy treatment planning of brain tumors,” J. Comput. Assist. Tomogr. 11, 948954 (1987).
60.H. M. Kooy, M. van Herk, P. D. Barnes, E. Alexander III, S. F. Dunbar, N. J. Tarbell, R. V. Mulkern, E. J. Holupka, and J. S. Loeffler, “Image fusion for stereotactic radiotherapy and radiosurgery treatment planning,” Int. J. Radiat. Oncol., Biol., Phys. 28, 12291234 (1994).
61.F. J. Bova, W. A. Friedman, and W. M. Mendenhall, “Stereotactic radiosurgery,” Med. Prog. Technol. 18, 239251 (1992).
62.W. A. Friedman and F. J. Bova, “The University of Florida radiosurgery system,” Surg. Neurol. 32, 334342 (1989).
63.W. A. Friedman and F. J. Bova, “Linear accelerator radiosurgery for arteriovenous malformations,” J. Neurosurg. 77, 832841 (1992).
64.W. A. Friedman and F. J. Bova, “Radiosurgery for arteriovenous malformations,” Clin. Neurosurg. 40, 446464 (1993).
65.W. A. Friedman, F. J. Bova, and R. Spiegelmann, “Linear accelerator radiosurgery at the University of Florida,” Neurosurg. Clin. N. Am. 3, 141166 (1992).
66.B. G. Clark, E. B. Podgorsak, L. Souhami, A. Olivier, K. E. Sixel, and J. L. Caron, “A halo-ring technique for fractionated stereotactic radiotherapy,” Br. J. Radiol. 66, 522527 (1993).
67.E. B. Podgorsak, L. Souhami, J. L. Caron, M. Pla, B. Clark, C. Pla, and P. Cadman, “A technique for fractionated stereotactic radiotherapy in the treatment of intracranial tumors,” Int. J. Radiat. Oncol., Biol., Phys. 27, 12251230 (1993).
68.D. D. Leavitt, F. A. Gibbs, Jr., M. P. Heilbrun, J. H. Moeller, and G. A. Takach, Jr., “Dynamic field shaping to optimize stereotactic radiosurgery,” Int. J. Radiat. Oncol., Biol., Phys. 21, 12471255 (1991).
69.E. Cosman, Patent No. 5 748 703 (May 5, 1998).
70.F. F. Yin, J. Zhu, H. Yan, H. Gaun, R. Hammoud, S. Ryu, and J. H. Kim, “Dosimetric characteristics of Novalis shaped beam surgery unit,” Med. Phys. 29, 17291738 (2002).
71.S. H. Benedict, R. M. Cardinale, Q. Wu, R. D. Zwicker, W. C. Broaddus, and R. Mohan, “Intensity-modulated stereotactic radiosurgery using dynamic micro-multileaf collimation,” Int. J. Radiat. Oncol., Biol., Phys. 50, 751758 (2001).
72.B. G. Clark, J. L. Robar, and A. M. Nichol, “Analysis of treatment parameters for conformal shaped field stereotactic irradiation: comparison with non-coplanar arcs,” Phys. Med. Biol. 46, 30893103 (2001).
73.V. P. Cosgrove, U. Jahn, M. Pfaender, S. Bauer, V. Budach, and R. E. Wurm, “Commissioning of a micro multi-leaf collimator and planning system for stereotactic radiosurgery,” Radiother. Oncol. 50, 325336 (1999).
74.R. J. Hamilton, F. T. Kuchnir, P. Sweeney, S. J. Rubin, M. Dujovny, C. A. Pelizzari, and G. T. Chen, “Comparison of static conformal field with multiple noncoplanar arc techniques for stereotactic radiosurgery or stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 33, 12211228 (1995).
75.H. D. Kubo, C. T. Pappas, and R. B. Wilder, “A comparison of arc-based and static mini-multileaf collimator-based radiosurgery treatment plans,” Radiother. Oncol. 45, 8993 (1997).
76.D. D. Leavitt, “Beam shaping for SRT/SRS,” Med. Dosim. 23, 229236 (1998).
77.A. S. Shiu, H. M. Kooy, J. R. Ewton, S. S. Tung, J. Wong, K. Antes, and M. H. Maor, “Comparison of miniature multileaf collimation (MMLC) with circular collimation for stereotactic treatment,” Int. J. Radiat. Oncol., Biol., Phys. 37, 679688 (1997).
78.T. D. Solberg, K. L. Boedeker, R. Fogg, M. T. Selch, and A. A. DeSalles, “Dynamic arc radiosurgery field shaping: A comparison with static field conformal and noncoplanar circular arcs,” Int. J. Radiat. Oncol., Biol., Phys. 49, 14811491 (2001).
79.P. Xia, P. Geis, L. Xing, C. Ma, D. Findley, K. Forster, and A. Boyer, “Physical characteristics of a miniature multileaf collimator,” Med. Phys. 26, 6570 (1999).
80.S. S. Gill, D. G. Thomas, A. P. Warrington, and M. Brada, “Relocatable frame for stereotactic external beam radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 20, 599603 (1991).
81.H. M. Kooy, S. F. Dunbar, N. J. Tarbell, E. Mannarino, N. Ferarro, S. Shusterman, M. Bellerive, L. Finn, C. V. McDonough, and J. S. Loeffler, “Adaptation and verification of the relocatable Gill–Thomas–Cosman frame in stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 30, 685691 (1994).
82.L. V. Laitinen, B. Liliequist, M. Fagerlund, and A. T. Eriksson, “An adapter for computed tomography-guided stereotaxis,” Surg. Neurol. 23, 559566 (1985).
83.B. J. Salter, M. Fuss, D. G. Vollmer, A. Sadeghi, C. A. Bogaev, D. A. Cheek, T. S. Herman, and J. M. Hevezi, “The TALON removable head frame system for stereotactic radiosurgery/radiotherapy: Measurement of the repositioning accuracy,” Int. J. Radiat. Oncol., Biol., Phys. 51, 555562 (2001).
84.D. C. Shrieve, H. M. Kooy, N. J. Tarbell, and J. S. Loeffler, “Fractionated stereotactic radiotherapy,” Important Adv. Oncol. 205224 (1996).
85.D. C. Shrieve, N. J. Tarbell, E. Alexander III, H. M. Kooy, P. M. Black, S. Dunbar, and J. S. Loeffler, “Stereotactic radiotherapy: A technique for dose optimization and escalation for intracranial tumors,” Acta Neurochir. Suppl. (Wien) 62, 118123 (1994).
86.W. Schlegel, O. Pastyr, T. Bortfeld, G. Gademann, M. Menke, and W. Maier-Borst, “Stereotactically guided fractionated radiotherapy: Technical aspects,” Radiother. Oncol. 29, 197204 (1993).
87.R. J. Maciunas, R. L. Galloway, Jr., J. Latimer, C. Cobb, E. Zaccharias, A. Moore, and V. R. Mandava, “An independent application accuracy evaluation of stereotactic frame systems,” Stereotact. Funct. Neurosurg. 58, 103107 (1992).
88.R. J. Maciunas, R. L. Galloway, Jr., and J. W. Latimer, “The application accuracy of stereotactic frames,” Neurosurgery 35, 682695 (1994).
89.R. J. Hamilton, F. T. Kuchnir, C. A. Pelizzari, P. J. Sweeney, and S. J. Rubin, “Repositioning accuracy of a noninvasive head fixation system for stereotactic radiotherapy,” Med. Phys. 23, 19091917 (1996).
90.J. S. Tsai, M. J. Engler, M. N. Ling, J. K. Wu, B. Kramer, T. Dipetrillo, and D. E. Wazer, “A non-invasive immobilization system and related quality assurance for dynamic intensity modulated radiation therapy of intracranial and head and neck disease,” Int. J. Radiat. Oncol., Biol., Phys. 43, 455467 (1999).
91.T. M. Peters, A. Olivier, and G. Bertrand, “The role of computed tomographic and digital radiographic techniques in stereotactic procedures for electrode implantation and mapping, and lesion localization,” Appl. Neurophysiol. 46, 200205 (1983).
92.D. Jones, D. A. Christopherson, J. T. Washington, M. D. Hafermann, J. W. Rieke, J. J. Travaglini, and S. S. Vermeulen, “A frameless method for stereotactic radiotherapy,” Br. J. Radiol. 66, 11421150 (1993).
93.L. Lemieux, N. D. Kitchen, S. W. Hughes, and D. G. Thomas, “Voxel-based localization in frame-based and frameless stereotaxy and its accuracy,” Med. Phys. 21, 13011310 (1994).
94.D. A. Jaffray, D. G. Drake, M. Moreau, A. A. Martinez, and J. W. Wong, “A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets,” Int. J. Radiat. Oncol., Biol., Phys. 45, 773789 (1999).
95.D. A. Jaffray and J. H. Siewerdsen, “Cone-beam computed tomography with a flat-panel imager: initial performance characterization,” Med. Phys. 27, 13111323 (2000).
96.J. H. Siewerdsen and D. A. Jaffray, “Cone-beam computed tomography with a flat-panel imager: effects of image lag,” Med. Phys. 26, 26352647 (1999).
97.J. H. Siewerdsen and D. A. Jaffray, “Cone-beam computed tomography with a flat-panel imager: magnitude and effects of x-ray scatter,” Med. Phys. 28, 220231 (2001).
98.N. L. Dorward, O. Alberti, J. D. Palmer, N. D. Kitchen, and D. G. Thomas, “Accuracy of true frameless stereotaxy: In vivo measurement and laboratory phantom studies. Technical note,” J. Neurosurg. 90, 160168 (1999).
99.K. L. Holloway, S. E. Gaede, P. A. Starr, J. M. Rosenow, V. Ramakrishnan, and J. M. Henderson, “Frameless stereotaxy using bone fiducial markers for deep brain stimulation,” J. Neurosurg. 103, 404413 (2005).
100.P. C. Gerszten, C. Ozhasoglu, S. A. Burton, W. J. Vogel, B. A. Atkins, S. Kalnicki, and W. C. Welch, “CyberKnife frameless stereotactic radiosurgery for spinal lesions: clinical experience in 125 cases,” Neurosurgery 55, 8999 (2004).
101.F. J. Bova, J. M. Buatti, W. A. Friedman, W. M. Mendenhall, C. C. Yang, and C. Liu, “The University of Florida frameless high-precision stereotactic radiotherapy system,” Int. J. Radiat. Oncol., Biol., Phys. 38, 875882 (1997).
102.F. J. Bova, S. L. Meeks, W. A. Friedman, and J. M. Buatti, “Optic-guided stereotactic radiotherapy,” Med. Dosim. 23, 221228 (1998).
103.S. D. Chang, W. Main, D. P. Martin, I. C. Gibbs, and M. P. Heilbrun, “An analysis of the accuracy of the CyberKnife: A robotic frameless stereotactic radiosurgical system,” Neurosurgery 52, 140147 (2003).
104.J. Rahimian, J. C. Chen, A. A. Rao, M. R. Girvigian, M. J. Miller, and H. E. Greathouse, “Geometrical accuracy of the Novalis stereotactic radiosurgery system for trigeminal neuralgia,” J. Neurosurg. 101, 351355 (2004).
105.A. W. Lightstone, S. H. Benedict, F. J. Bova, T. D. Solberg, and R. L. Stern, “Intracranial stereotactic positioning systems: Report of the American Association of Physicists in Medicine Radiation Therapy Committee Task Group No. 68,” Med. Phys. 32, 23802398 (2005).
106.P. Hobday, N. J. Hodson, J. Husband, R. P. Parker, and J. S. Macdonald, “Computed tomography applied to radiotherapy treatment planning: Techniques and results,” Radiology 133, 477482 (1979).
107.M. Goitein and M. Abrams, “Multi-dimensional treatment planning: I. Delineation of anatomy,” Int. J. Radiat. Oncol., Biol., Phys. 9, 777787 (1983).
108.M. Goitein, M. Abrams, D. Rowell, H. Pollari and J. Wiles, “Multi-dimensional treatment planning: II. Beam’s eye-view, back projection, and projection through CT sections,” Int. J. Radiat. Oncol., Biol., Phys. 9, 789797 (1983).
109.G. W. Sherouse, K. Novins and E. L. Chaney, “Computation of digitally reconstructed radiographs for use in radiotherapy treatment design,” Int. J. Radiat. Oncol., Biol., Phys. 18, 651658 (1990).
110.P. V. Houdek, J. M. VanBuren and J. V. Fayos, “Dosimetry of small radiation fields for x rays,” Med. Phys. 10, 333336 (1983).
111.T. R. Mackie, J. W. Scrimger and J. J. Battista, “A convolution method of calculating dose for x rays,” Med. Phys. 12, 188196 (1985).
112.J. Belec, H. Patrocinio, and F. Verhaegen, “Development of a Monte Carlo model for the Brainlab microMLC,” Phys. Med. Biol. 50, 787799 (2005).
113.A. Chaves, M. C. Lopes, C. C. Alves, C. Oliveira, L. Peralta, P. Rodrigues, and A. Trindade, “Basic dosimetry of radiosurgery narrow beams using Monte Carlo simulations: A detailed study of depth of maximum dose,” Med. Phys. 30, 29042911 (2003).
114.J. Y. Cheung, K. N. Yu, C. P. Yu, and R. T. Ho, “Monte Carlo calculation of single-beam dose profiles used in a gamma knife treatment planning system,” Med. Phys. 25, 16731675 (1998).
115.S. S. Kubsad, T. R. Mackie, M. A. Gehring, D. J. Misisco, B. R. Paliwal, M. P. Mehta, and T. J. Kinsella, “Monte Carlo and convolution dosimetry for stereotactic radiosurgery,” Int. J. Radiat. Oncol., Biol., Phys. 19, 10271035 (1990).
116.T. D. Solberg, J. J. DeMarco, F. E. Holly, J. B. Smathers, and A. A. DeSalles, “Monte Carlo treatment planning for stereotactic radiosurgery,” Radiother. Oncol. 49, 7384 (1998).
117.T. D. Solberg, F. E. Holly, A. A. De Salles, R. E. Wallace, and J. B. Smathers, “Implications of tissue heterogeneity for radiosurgery in head and neck tumors,” Int. J. Radiat. Oncol., Biol., Phys. 32, 235239 (1995).
118.F. Verhaegen, I. J. Das, and H. Palmans, “Monte Carlo dosimetry study of a stereotactic radiosurgery unit,” Phys. Med. Biol. 43, 27552768 (1998).
119.T. Yamamoto, T. Teshima, S. Miyajima, M. Matsumoto, H. Shiomi, T. Inoue, and H. Hirayama, “Monte Carlo calculation of depth doses for small field of CyberKnife,” Radiat. Med. 20, 305310 (2002).
120.H. Blomgren, I. Lax, I. Naslund, and R. Svanstrom, “Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirty-one patients,” Acta Oncol. 34, 861870 (1995).
121.I. Lax, H. Blomgren, I. Naslund, and R. Svanstrom, “Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects,” Acta Oncol. 33, 677683 (1994).
122.A. J. Hamilton and B. A. Lulu, “A prototype device for linear accelerator-based extracranial radiosurgery,” Acta Neurochir. Suppl. (Wien) 63, 4043 (1995).
123.A. J. Hamilton, B. A. Lulu, H. Fosmire, B. Stea, and J. R. Cassady, “Preliminary clinical experience with linear accelerator-based spinal stereotactic radiosurgery,” Neurosurgery 36, 311319 (1995).
124.I. Takacs and A. J. Hamilton, “Extracranial stereotactic radiosurgery: applications for the spine and beyond,” Neurosurg. Clin. N. Am. 10, 257270 (1999).
125.R. C. McGarry, L. Papiez, M. Williams, T. Whitford, and R. D. Timmerman, “Stereotactic body radiation therapy of early-stage non-small-cell lung carcinoma: Phase I study,” Int. J. Radiat. Oncol., Biol., Phys. 63, 10101015 (2005).
126.L. Papiez, R. Timmerman, C. DesRosiers, and M. Randall, “Extracranial stereotactic radioablation: Physical principles,” Acta Oncol. 42, 882894 (2003).
127.R. Timmerman, L. Papiez, R. McGarry, L. Likes, C. DesRosiers, S. Frost, and M. Williams, “Extracranial stereotactic radioablation: Results of a phase I study in medically inoperable stage I non-small cell lung cancer,” Chest 124, 19461955 (2003).
128.R. Timmerman, L. Papiez, and M. Suntharalingam, “Extracranial stereotactic radiation delivery: expansion of technology beyond the brain,” Technol. Cancer Res. Treat. 2, 153160 (2003).
129.U. Hadinger, W. Thiele and J. Wulf, “Extracranial stereotactic radiotherapy: Evaluation of PTV coverage and dose conformity,” Z. Med. Phys. 12, 221229 (2002).
130.K. K. Herfarth, J. Debus, F. Lohr, M. L. Bahner, P. Fritz, A. Hoss, W. Schlegel, and M. F. Wannenmacher, “Extracranial stereotactic radiation therapy: Set-up accuracy of patients treated for liver metastases,” Int. J. Radiat. Oncol., Biol., Phys. 46, 329335 (2000).
131.K. K. Herfarth, J. Debus, F. Lohr, M. L. Bahner, B. Rhein, P. Fritz, A. Hoss, W. Schlegel, and M. F. Wannenmacher, “Stereotactic single-dose radiation therapy of liver tumors: Results of a phase I/II trial,” J. Clin. Oncol. 19, 164170 (2001).
132.K. K. Herfarth, J. Debus, F. Lohr, M. L. Bahner, and M. Wannenmacher, “Stereotactic irradiation of liver metastases,” Radiologe 41, 6468 (2001).
133.H. Hof, K. K. Herfarth, M. Munter, A. Hoess, J. Motsch, M. Wannenmacher, and J. J. Debus, “Stereotactic single-dose radiotherapy of stage I non-small-cell lung cancer (NSCLC),” Int. J. Radiat. Oncol., Biol., Phys. 56, 335341 (2003).
134.J. Wulf, U. Hadinger, U. Oppitz, B. Olshausen, and M. Flentje, “Stereotactic radiotherapy of extracranial targets: CT-simulation and accuracy of treatment in the stereotactic body frame,” Radiother. Oncol. 57, 225236 (2000).
135.J. Wulf, U. Hadinger, U. Oppitz, W. Thiele, and M. Flentje, “Stereotactic boost irradiation for targets in the abdomen and pelvis,” Radiother. Oncol. 70, 3136 (2004).
136.J. Wulf, U. Hadinger, U. Oppitz, W. Thiele, R. Ness-Dourdoumas, and M. Flentje, “Stereotactic radiotherapy of targets in the lung and liver,” Strahlenther. Onkol. 177, 645655 (2001).
137.J. Wulf, U. Haedinger, U. Oppitz, W. Thiele, G. Mueller, and M. Flentje, “Stereotactic radiotherapy for primary lung cancer and pulmonary metastases: A noninvasive treatment approach in medically inoperable patients,” Int. J. Radiat. Oncol., Biol., Phys. 60, 186196 (2004).
138.Y. Nagata, Y. Negoro, T. Aoki, T. Mizowaki, K. Takayama, M. Kokubo, N. Araki, M. Mitsumori, K. Sasai, Y. Shibamoto, S. Koga, S. Yano, and M. Hiraoka, “Clinical outcomes of 3D conformal hypofractionated single high-dose radiotherapy for one or two lung tumors using a stereotactic body frame,” Int. J. Radiat. Oncol., Biol., Phys. 52, 10411046 (2002).
139.Y. Nagata, Y. Negoro, T. Aoki, T. Mizowaki, K. Takayama, M. Kokubo, N. Araki, M. Mitsumori, S. Yano, Y. Koga, and M. Hiraoka, “Three-dimensional conformal radiotherapy for extracranial tumors using a stereotactic body frame,” Igaku Butsuri 21, 2834 (2001).
140.H. Onishi, T. Araki, H. Shirato, Y. Nagata, M. Hiraoka, K. Gomi, T. Yamashita, Y. Niibe, K. Karasawa, K. Hayakawa, Y. Takai, T. Kimura, Y. Hirokawa, A. Takeda, A. Ouchi, M. Hareyama, M. Kokubo, R. Hara, J. Itami, and K. Yamada, “Stereotactic hypofractionated high-dose irradiation for stage I nonsmall cell lung carcinoma: Clinical outcomes in 245 subjects in a Japanese multiinstitutional study,” Cancer 101, 16231631 (2004).
141.M. Uematsu, A. Shioda, A. Suda, T. Fukui, Y. Ozeki, Y. Hama, J. R. Wong, and S. Kusano, “Computed tomography-guided frameless stereotactic radiotherapy for stage I non-small cell lung cancer: A experience,” Int. J. Radiat. Oncol., Biol., Phys. 51, 666670 (2001).
142.M. Uematsu, A. Shioda, K. Tahara, T. Fukui, F. Yamamoto, G. Tsumatori, Y. Ozeki, T. Aoki, M. Watanabe, and S. Kusano, “Focal, high dose, and fractionated modified stereotactic radiation therapy for lung carcinoma patients: A preliminary experience,” Cancer 82, 10621070 (1998).
143.R. J. Bale, M. Vogele, M. Rieger, W. Buchberger, P. Lukas, and W. Jaschke, “A new vacuum device for extremity immobilization,” AJR, Am. J. Roentgenol. 172, 10931094 (1999).
144.M. Fuss, B. J. Salter, P. Rassiah, D. Cheek, S. X. Cavanaugh, and T. S. Herman, “Repositioning accuracy of a commercially available double-vacuum whole body immobilization system for stereotactic body radiation therapy,” Technol. Cancer Res. Treat. 3, 5967 (2004).
145.L. Wang, R. Jacob, L. Chen, C. Ma, B. Movsas, S. Feigenberg, and A. Konski, “Stereotactic IMRT for prostate cancer: Setup accuracy of a new stereotactic body localization system,” J. Appl. Clin. Med. Phys. 5, 1828 (2004).
146.J. Rock, M. Kole, F. F. Yin, S. Ryu, J. Guttierez, and M. Rosenblum, “Radiosurgical, treatment for Ewing’s sarcoma of the lumbar spine: Case report,” Spine 27, E471E475 (2002).
147.J. P. Rock, S. Ryu, and F. F. Yin, “Novalis radiosurgery for metastatic spine tumors,” Neurosurg. Clin. N. Am. 15, 503509 (2004).
148.J. P. Rock, S. Ryu, F. F. Yin, F. Schreiber, and M. Abdulhak, “The evolving role of stereotactic radiosurgery and stereotactic radiation therapy for patients with spine tumors,” J. Neuro-Oncol. 69, 319334 (2004).
149.S. Ryu, F. Fang Yin, J. Rock, J. Zhu, A. Chu, E. Kagan, L. Rogers, M. Ajlouni, M. Rosenblum, and J. H. Kim, “Image-guided and intensity-modulated radiosurgery for patients with spinal metastasis,” Cancer 97, 20132018 (2003).
150.S. Ryu, M. Khan, F. F. Yin, A. Concus, M. Ajlouni, M. S. Benninger, and J. H. Kim, “Image-guided radiosurgery of head and neck cancers,” Otolaryngol.-Head Neck Surg. 130, 690697 (2004).
151.F. F. Yin, S. Ryu, M. Ajlouni, H. Yan, J. Y. Jin, S. W. Lee, J. Kim, J. Rock, M. Rosenblum, and J. H. Kim, “Image-guided procedures for intensity-modulated spinal radiosurgery. Technical note,” J. Neurosurg. 101, 419424 (2004).
152.F. F. Yin, S. Ryu, M. Ajlouni, J. Zhu, H. Yan, H. Guan, K. Faber, J. Rock, M. Abdalhak, L. Rogers, M. Rosenblum, and J. H. Kim, “A technique of intensity-modulated radiosurgery (IMRS) for spinal tumors,” Med. Phys. 29, 28152822 (2002).
153.P. J. Keall, G. S. Mageras, J. M. Balter, R. S. Emery, K. M. Forster, S. B. Jiang, J. M. Kapatoes, D. A. Low, M. J. Murphy, B. R. Murray, C. R. Ramsey, M. B. Van Herk, S. S. Vedam, J. W. Wong, and E. Yorke, “The management of respiratory motion in radiation oncology report of AAPM Task Group 76,” Med. Phys. 33, 38743900 (2006).
154.C. Lindquist and I. Paddick, “The Leksell Gamma Knife Perfexion and comparisons with its predecessors,” Neurosurgery 61, 130141 (2007).
155.S. J. Goetsch, B. D. Murphy, R. Schmidt, J. Micka, L. De Werd, Y. Chen, and S. Shockley, “Physics of rotating gamma systems for stereotactic radiosurgery,” Int. J. Radiat. Oncol., Biol., Phys. 43, 689696 (1999).
156.H. D. Kubo and F. Araki, “Dosimetry and mechanical accuracy of the first rotating gamma system installed in North America,” Med. Phys. 29, 24972505 (2002).
157.C. C. M. D. P. Chen, J. S. M. D. Loeffler, and P. H. M. D. Chapman, “Proton beam radiosurgery and radiotherapy,” Techniques in Neurosurgery Radiosurgery 9, 218225 (2003).
158.B. Larsson, “Biomedical program for the converted synchrocyclotron at the Gustaf Werner Institute,” Radiat. Res. Suppl. 8, S310S318 (1985).
159.A. Montelius et al., “The narrow proton beam therapy unit at the Svedberg Laboratory in Uppsala,” Acta Oncol. 30, 739745 (1991).
160.P. Chapman, C. Ogilvy, and W. Butler, “A new stereotactic alignment system for charged-particle radiosurgery at the Harvard Cyclotron Laboratory, Boston,” in Stereotactic Radiosurgery, edited by E. Alexander III, J. Loeffler, and L. Lunsford (McGraw-Hill, New York, 1993), pp. 105108.
161.J. R. Adler, Jr., S. D. Chang, M. J. Murphy, J. Doty, P. Geis, and S. L. Hancock, “The Cyberknife: A frameless robotic system for radiosurgery,” Stereotact. Funct. Neurosurg. 69, 124128 (1997).
162.M. J. Murphy, “An automatic six-degree-of-freedom image registration algorithm for image-guided frameless stereotaxic radiosurgery,” Med. Phys. 24, 857866 (1997).
163.M. J. Murphy and R. S. Cox, “The accuracy of dose localization for an image-guided frameless radiosurgery system,” Med. Phys. 23, 20432049 (1996).
164.M. J. Murphy and R. S. Cox, “Frameless radiosurgery using real-time image correlation for beam targeting,” Med. Phys. 23, 10521053 (1996).
165.J. R. Adler, Jr., M. J. Murphy, S. D. Chang and S. L. Hancock, “Image-guided robotic radiosurgery,” Neurosurgery 44, 12991307 (1999).
166.S. D. Chang, M. Murphy, P. Geis, D. P. Martin, S. L. Hancock, J. R. Doty and J. R. Adler, Jr., “Clinical experience with image-guided robotic radiosurgery (the Cyberknife) in the treatment of brain and spinal cord tumors,” Neurol. Med. Chir. (Tokyo) 38, 780783 (1998).
167.M. J. Murphy, “The importance of computed tomography slice thickness in radiographic patient positioning for radiosurgery,” Med. Phys. 26, 171175 (1999).
168.M. J. Murphy, J. R. Adler, Jr., M. Bodduluri, J. Dooley, K. Forster, J. Hai, Q. Le, G. Luxton, D. Martin, and J. Poen, “Image-guided radiosurgery for the spine and pancreas,” Comput. Aided Surg. 5, 278288 (2000).
169.M. J. Murphy, J. Doty, and J. R. Adler, “Stereotactic radiosurgery: new innovations,” Perspect Neurolog Surg. 10, 145153 (1999).
170.A. Schweikard, G. Glosser, M. Bodduluri, M. J. Murphy, and J. R. Adler, “Robotic motion compensation for respiratory movement during radiosurgery,” Comput. Aided Surg. 5, 263277 (2000).
171.M. Fuss, B. J. Salter, T. S. Herman, and C. R. Thomas, Jr., “External beam radiation therapy for hepatocellular carcinoma: Potential of intensity-modulated and image-guided radiation therapy,” Gastroenterology 127, S206S217 (2004).
172.M. Fuss, C. Shi and N. Papanikolaou, “Tomotherapeutic stereotactic body radiation therapy: Techniques and comparison between modalities,” Acta Oncol. 45, 953960 (2006).
173.M. Fuss and C. R. Thomas, Jr., “Stereotactic body radiation therapy: An ablative treatment option for primary and secondary liver tumors,” Ann. Surg. Oncol. 11, 130138 (2004).
174.T. R. Mackie, “History of tomotherapy,” Phys. Med. Biol. 51, R427R453 (2006).
175.T. R. Mackie, J. Balog, K. Ruchala, D. Shepard, S. Aldridge, E. Fitchard, P. Reckwerdt, G. Olivera, T. McNutt, and M. Mehta, “Tomotherapy,” Semin. Radiat. Oncol. 9, 108117 (1999).
176.T. R. Mackie, T. Holmes, S. Swerdloff, P. Reckwerdt, J. O. Deasy, J. Yang, B. Paliwal, and T. Kinsella, “Tomotherapy: A new concept for the delivery of dynamic conformal radiotherapy,” Med. Phys. 20, 17091719 (1993).
177.J. N. Yang, T. R. Mackie, P. Reckwerdt, J. O. Deasy, and B. R. Thomadsen, “An investigation of tomotherapy beam delivery,” Med. Phys. 24, 425436 (1997).
178.H. A. Jaradat, W. A. Tome, and T. Zhang, “Image-guided extracranial stereotactic radiotherapy of nonsmall cell lung cancer with tomotherapy,” Int. J. Radiat. Oncol., Biol., Phys. (in press).
179.T. Zhang, N. P. Orton, and W. A. Tome, “On the automated definition of mobile target volumes from 4D-CT images for stereotactic body radiotherapy,” Med. Phys. 32, 34933502 (2005).
180.I. J. Das, G. X. Ding, and A. Ahnesjo, “Small fields: nonequilibrium radiation dosimetry,” Med. Phys. 35, 206215 (2008).
181.B. D. Kavanagh, R. D. Timmerman, S. H. Benedict, Q. Wu, T. E. Schefter, K. Stuhr, S. McCourt, F. Newman, R. M. Cardinale, and L. F. Gaspar, “How should we describe the radioblologic effect of extracranial stereotactic radlosurgery: Equivalent uniform dose or tumor control probability?,” Med. Phys. 30, 321324 (2003).
182.W. A. Tome, J. D. Fenwick, and M. P. Mehta, presented at the Radiosurgery: 7th International Stereotactic Radiosurgery Society Meeting, Brussels, 2005 (unpublished).
183.S. H. Benedict, P. S. Lin, R. D. Zwicker, D. T. Huang, and R. K. Schmidt-Ullrich, “The biological effectiveness of intermittent irradiation as a function of overall treatment time: Development of correction factors for linac-based stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 37, 765769 (1997).
184.F. A. Jolesz, K. Hynynen, N. McDannold, and C. Tempany, “MR imaging-controlled focused ultrasound ablation: A noninvasive image-guided surgery,” Magn. Reson Imaging Clin. N. Am. 13, 545560 (2005).

Data & Media loading...


Article metrics loading...



This article is a tribute to the pioneering medical physicists over the last who have participated in the research, development, and commercialization of stereotactic radiosurgery (SRS) and stereotactic radiotherapy utilizing a wide range of technology. The authors have described the evolution of SRS through the eyes of physicists from its beginnings with the Gamma Knife™ in 1951 to proton and charged particle therapy; modification of commercial linacs to accommodate high precision SRS setups; the multitude of accessories that have enabled fine tuning patients for relocalization, immobilization, and repositioning with submillimeter accuracy; and finally the emerging technology of SBRT. A major theme of the article is the expanding role of the medical physicist from that of advisor to the neurosurgeon to the current role as a primary driver of new technology that has already led to an adaptation of cranial SRS to other sites in the body, including, spine, liver, and lung. SRS continues to be at the forefront of the impetus to provide technological precision for radiation therapy and has demonstrated a host of downstream benefits in improving delivery strategies for conventional therapy as well. While this is not intended to be a comprehensive history, and the authors could not delineate every contribution by all of those working in the pursuit of SRS development, including physicians, engineers, radiobiologists, and the rest of the therapy and dosimetry staff in this important and dynamic radiation therapy modality, it is clear that physicists have had a substantial role in the development of SRS and theyincreasingly play a leading role in furthering SRS technology.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd