1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Anniversary Paper: Evolution of ultrasound physics and the role of medical physicists and the AAPM and its journal in that evolution
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/36/2/10.1118/1.2992048
1.
1.L. V. Hefner and A. Goldstein, “Resonance by rod-shaped reflectors in ultrasound test objects,” Radiology 139, 189193 (1981).
2.
2.W. T. Shi, F. Forsberg, J. S. Raichlen, L. Needleman, and B. B. Goldberg, “Pressure dependence of subharmonic signals from contrast microbubbles,” Ultrasound Med. Biol. 25(2), 275283 (1999).
http://dx.doi.org/10.1016/S0301-5629(98)00163-X
3.
3.M. C. Ziskin, A. Bonakdapour, D. P. Wienstein, and P. R. Lynch, “Contrast agents for diagnostic ultrasound,” Invest. Radiol. 6, 500505 (1972).
4.
4.M. P. Andre, J. D. Craven, M. A. Greenfield, and R. Stern, “Measurement of the velocity of ultrasound in the human femur in vivo,” Med. Phys. 7(4), 324330 (1980).
http://dx.doi.org/10.1118/1.594713
5.
5.F. J. Fry and L. K. Johnson, “Tumor irradiation with intense ultrasound,” Ultrasound Med. Biol. 4(4), 337341 (1978).
http://dx.doi.org/10.1016/0301-5629(78)90022-4
6.
6.P. P. Lele, “Application of ultrasound in medicine,” N. Engl. J. Med. 286(24), 13171318 (1972).
7.
7.J. Tobias, K. Hynynen, and R. Roemer, “An ultrasound window to perform scanned, focused ultrasound hyperthermia treatments of brain tumors,” Med. Phys. 14(2), 228234 (1987).
http://dx.doi.org/10.1118/1.596074
8.
8.M. Kinoshita, N. McDannold, F. A. Jolesz, and K. Hynynen, “Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 1171911723 (2006).
http://dx.doi.org/10.1073/pnas.0604318103
9.
9.N. McDannold and K. Hynynen, “Quality assurance and system stability of a clinical MRI-guided focused ultrasound system: Four-year experience,” Med. Phys. 33(11), 43074313 (2006).
http://dx.doi.org/10.1118/1.2352853
10.
10.R. M. Arthur, W. L. Straube, J. D. Starman, and E. G. Moros, “Noninvasive temperature estimation based on the energy of backscattered ultrasound,” Med. Phys. 30(6), 10211029 (2003).
http://dx.doi.org/10.1118/1.1570373
11.
11.A. B. Ross, C. J. Diederich, W. H. Nau, V. Rieke, R. K. Butts, G. Sommer, H. Gill, and D. M. Bouley, “Curvilinear transurethral ultrasound applicator for selective prostate thermal therapy,” Med. Phys. 32(6), 15551565 (2005).
http://dx.doi.org/10.1118/1.1924314
12.
12.L. A. Crum and J. B. Fowlkes, “Acoustic Cavitation Generated by Microsecond Pulses of Ultrasound,” Nature (London) 319(6048), 5254 (1986).
http://dx.doi.org/10.1038/319052a0
13.
13.D. L. Miller, W. L. Nyborg, and C. C. Whitcomb, “Platelet aggregation induced by ultrasound under specialized conditions in vitro,” Science 205(4405), 505507 (1979).
http://dx.doi.org/10.1126/science.451616
14.
14.Medical CT and Ultrasound: Current Technology and Applications, AAPM Summer School Lectures (AAPM, College Park, MD, 1995).
15.
15.Physics of Nonionizing Radiation (Summer School Course Book). (AAPM, Boulder, CO, 1974).
16.
16.P. L. Carson and J. A. Zagzebski, “Pulse echo ultrasound imaging systems: Performance tests and criteria,” AAPM Report #8 (1981), p. 73.
17.
17.M. M. Goodsitt, P. L. Carson, S. Witt, D. L. Hykes, and J. M. J. Kofler, “Real-time B-mode ultrasound quality control test procedures: Report of AAPM Ultrasound Task Group No. 1,” Med. Phys. 25(8), 13851406 (1998).
http://dx.doi.org/10.1118/1.598404
18.
18.T. S. Curry, J. E. Dowdey, and R. C. Murry, Christensen’s Physics of Diagnostic Radiology, 4th ed. (Lea & Febiger, Philadelphia, 1992).
19.
19.W. R. Hedrick, D. L. Hykes, and D. E. Starchman, Ultrasound Physics and Instrumentation (Elsevier Mosby, St. Louis, 2004).
20.
20.W. R. Hendee and E. R. Ritenour, Medical Imaging Physics (Wiley-Liss, New York, 2002).
21.
21.D. H. Evans and W. N. McDicken, Doppler Ultrasound: Physics, Instrumentation (J. Wiley, New York, 2000).
22.
22.B. A. J. Angelsen, Ultrasound Imaging: Waves, Signals, and Signal Processing (Trondheim, Norway: Emantec AS, 2000).
23.
23.T. L. Szabo, Diagnostic Ultrasound Imaging: Inside Out. Academic Press Series in Biomedical Engineering, edited by J. Bronzino (Elsevier Academic Press, Burlington, 2004), p. 549.
24.
24.H. J. Smith and J. A. Zagzebski, Basic Doppler Physics (Medical Physics Publishing, Madison, WI, 1991).
25.
25.K. A. Griffiths, “An historical look at ultrasound as an Australian innovation on the occasion of the ultrasound stamp issued by Australia Post—18 May 2004,” ASUM Ultrasound Bulletin 2004(3), 2226 (2004).
26.
26.D. Robinson, “Invent your own radiation,” Presentation to sonographers in Australia, 1980’s.
27.
27.D. Nicholas, “Evaluation of backscattering coefficients for excised human tissues: results, interpretation and associated measurements,” Ultrasound Med. Biol. 8, 1728 (1982).
http://dx.doi.org/10.1016/0301-5629(82)90065-5
28.
28.K. K. Shung and G. A. Thieme, Ultrasonic Scattering in Biological Tissues (CRC Press, Boca Raton, FL, 1992).
29.
29.J. F. Greenleaf, Tissue Characterization with Ultrasound (CRC Press, Boca Raton, FL, 1986).
30.
30.F. Forsberg, B. B. Goldberg, Y. Wu, J. B. Liu, D. A. Merton, and N. M. Rawool, “Harmonic imaging with gas-filled microspheres: Initial experiences,” Int. J. Imaging Syst. Technol. 8(1), 6981 (1997).
http://dx.doi.org/10.1002/(SICI)1098-1098(1997)8:1<69::AID-IMA9>3.3.CO;2-Z
31.
31.K. Drukker, M. L. Giger, and E. B. Mendelson, “Computerized analysis of shadowing on breast ultrasound for improved lesion detection,” Med. Phys. 30(7), 18331842 (2003).
http://dx.doi.org/10.1118/1.1584042
32.
32.J. M. Rubin, R. S. Adler, R. O. Bude, J. B. Fowlkes, and P. L. Carson, “Clean and dirty shadowing at US: A reappraisal,” Radiology 181(1), 231236 (1991).
33.
33.X. Fan and K. Hynynen, “The effects of curved tissue layers on the power deposition patterns of therapeutic ultrasound beams,” Med. Phys. 21(1), 2534 (1994).
http://dx.doi.org/10.1118/1.597250
34.
34.A. Moskalik, P. L. Carson, C. R. Meyer, J. B. Fowlkes, J. M. Rubin, and M. A. Roubidoux, “Registration of three-dimensional compound ultrasound scans of the breast for refraction and motion correction,” Ultrasound Med. Biol. 21(6), 769778 (1995).
35.
35.A. Goldstein and B. L. Madrazo, “Slice-thickness artifacts in gray-scale ultrasound,” J. Clin. Ultrasound 9(7), 365375 (1981).
36.
36.J. M. Rubin, R. S. Adler, J. B. Fowlkes, and P. L. Carson, “Phase cancellation: A cause of acoustical shadowing at the edges of curved surfaces in B-mode ultrasound images,” Ultrasound Med. Biol. 17(1), 8595 (1991).
37.
37.T. R. Nelson, D. H. Pretorius, A. Hull, M. Riccabona, M. S. Sklansky, and G. James, “Sources and impact of artifacts on clinical three-dimensional ultrasound imaging,” Ultrasound Obstet. Gynecol.16(4), 374383 (2000).
38.
38.F. Forsberg, J. Liu, P. Burns, D. Merton, and B. Goldberg, “Artifacts ultrasound contrast agent studies,” J. Ultrasound Med. 13, 357365 (1994).
39.
39.P. L. Carson and T. V. Oughton, “A modeled study for diagnosis of small anechoic masses with ultrasound,” Radiology 122, 765771 (1977).
40.
40.D. Cathignol, O. A. Sapozhnikov, and J. Zhang, “Lamb waves in piezoelectric focused radiator as a reason for discrepancy between O’Neil’s formula and experiment,” J. Acoust. Soc. Am. 101(3), 12861297 (1997).
http://dx.doi.org/10.1121/1.418102
41.
41.H. T. O’Neil, “Theory of focusing radiators,” J. Acoust. Soc. Am. 21(5), 516526 (1949).
http://dx.doi.org/10.1121/1.1906542
42.
42.P. Webb and C. Wykes, “Analysis of fast accurate low ambiguity beam forming for non lambda/2 ultrasonic arrays,” Ultrasonics 39(1), 6978 (2001).
43.
43.T. A. Whittingham, “Transducers and beam forming in medical ultrasonic imaging,” Insight 41(1), 812 (1999).
44.
44.J. Y. Lu and J. Q. Cheng, “Field computation for two-dimensional array transducers with limited diffraction array beams,” Ultrason. Imaging 27(4), 237255 (2005).
45.
45.P. D. Fox, J. Q. Chen, and J. Y. Lu, “Theory and experiment of Fourier-Bessel field calculation and tuning of a pulsed wave annular array,” J. Acoust. Soc. Am. 113(5), 24122423 (2003).
http://dx.doi.org/10.1121/1.1560211
46.
46.G. McLaughlin, T.-L. Ji, and D. Napolitano, “Broad-beam imaging methods,” Zonare Medical Systems, Inc., Mountain View, CA, 2007.
47.
47.G. McLaughlin and T.-L. Ji, “Broad-beam imaging,” Zonare Medical Systems, Inc., 2004.
48.
48.L. Y. L. Mo, D. DeBusschere, D. Napolitano, A. Irish, S. Marschall, G. W. McLaughlin, Z. Yang, P. L. Carson, and J. B. Fowlkes, “Compact ultrasound scanner with built-in raw data acquisition capabilities,” in IEEE International Ultrasonic Symposium Preceedings (IEEE, New York, 2007).
49.
49.R. Fisher, K. Thomenius, R. Wodnicki, R. Thomas, B. Khuri-Yakub, A. Ergun, and G. Yaralioglu, “Reconfigurable arrays for portable ultrasound,” Proc.-IEEE Ultrason. Symp. 1–4, 495499 (2005).
50.
50.C. R. Hazard, R. A. Fisher, D. M. Mills, L. S. Smith, K. E. Thomenius, and R. G. Wodnicki, “Annular array beamforming for 2D arrays with reduced system channels,” Proc.-IEEE Ultrason. Symp. 2–2, 18591862 (2003).
51.
51.M. G. Maginness, J. D. Plummer, W. L. Beaver, and J. D. Meindl, “State of the art in two dimensional ultrasonic transducer array technology,” Med. Phys. 3(5), 312318 (1976).
http://dx.doi.org/10.1118/1.594247
52.
52.J.-H. Mo, A. L. Robinson, D. W. Fitting, F. L. Terry, and P. L. Carson, “Micromachining for improvement of integrated ultrasonic transducer sensitivity,” IEEE Trans. Electron Devices 37(1), 134140 (1990).
http://dx.doi.org/10.1109/16.43810
53.
53.C. Daft, P. Wagner, B. Bymaster, S. Panda, K. Patel, and I. Ladabaum. “CMUTs and electronics for 2D and 3D imaging: Monolithic integration, in-handle chip sets and system implications,” Proc.-IEEE Ultrason. Symp. 1, 463474 (2005).
54.
54.R. Fisher, K. Thomenius, R. Wodnicki, R. Thomas, S. Cogan, C. Hazard, W. Lee, D. Mills, B. Khuri-Yakub, A. Ergun, and G. Yaralioglu, “Reconfigurable arrays for portable ultrasound,” Proc.-IEEE Ultrason. Symp. 1, 495499 (2005).
55.
55.S. A. Goss, R. L. Johnston, and F. Dunn, “Comprehensive compilation of empirical ultrasonic properties of mammalian tissues,” J. Acoust. Soc. Am. 64(2), 423457 (1978).
http://dx.doi.org/10.1121/1.382016
56.
56.S. A. Goss, R. L. Johnston, and F. Dunn, “Compilation of empirical ultrasonic properties of mammalian tissues. II,” J. Acoust. Soc. Am. 68(1), 93108 (1980).
http://dx.doi.org/10.1121/1.384509
57.
57.F. Duck, Physical Properties of Tissues (Academic Press, London, 1990), p. 346.
58.
58.J. H. Holmes (Private communication, 1975).
59.
59.D. P. Shattuck, J. Ophir, G. W. Johnson, Y. Yazdi, and D. Mehta, “Correction of refraction and other angle errors in beam tracking speed of sound estimations using multiple tracking transducers,” Ultrasound Med. Biol. 15(7), 673681 (1989).
60.
60.J. W. Mimbs, M. O’Donnell, and D. Bauwens, “The dependence of ultrasonic attenuation and backscatter on collagen content in dog and rabbit hearts,” Circ. Res. 47(1), 4958 (1980).
61.
61.E. L. Madsen, G. R. Frank, P. L. Carson, P. D. Edmonds, L. A. Frizzell, B. A. Herman, F. W. Kremkau, W. D. O’Brien, K. J. Parker, and R. A. Robinson, “Interlaboratory comparison of ultrasonic attenuation and speed measurements,” J. Ultrasound Med. 5, 569576 (1986).
62.
62.Z. F. Lu, J. A. Zagzebski, R. T. O’Brien, and H. Steinberg, “Ultrasound attenuation and backscatter in the liver during prednisone administration,” Ultrasound Med. Biol. 23(1), 18 (1997).
http://dx.doi.org/10.1016/S0301-5629(96)00181-0
63.
63.R. Kuc and K. J. W. Taylor, “Variation of acoustic attenuation coefficient slope estimates for in vivo liver,” Ultrasound Med. Biol. 8(4), 403412 (1982).
64.
64.M. F. Insana, “Modeling acoustic backscatter from kidney microstructure using an anisotropic correlation function,” J. Acoust. Soc. Am. 97, 649655 (1995).
http://dx.doi.org/10.1121/1.412287
65.
65.C. R. Meyer, D. S. Herron, P. L. Carson, R. A. Banjavic, G. A. Thieme, F. L. Bookstein, and M. L. Johnson, “Estimation of ultrasonic attenuation and mean backscatterer size via digital signal processing,” Ultrason. Imaging 6(1), 1323 (1984).
http://dx.doi.org/10.1016/0161-7346(84)90003-8
66.
66.D. Nicholas, “Evaluation of backscattering coefficients for excised human tissues: results, interpretation and associated measurements,” Ultrasound Med. Biol. 8, 1728 (1982).
http://dx.doi.org/10.1016/0301-5629(82)90065-5
67.
67.J. P. Jones, “Current Problems in Ultrasonic Impediography,” Natl. Bur. Stand. Spec. Publ. 453, 253258 (1975).
68.
68.M. Fatemi and J. F. Greenleaf, “Real-time assessment of the parameter of nonlinearity in tissue using ‘nonlinear shadowing’,” Ultrasound Med. Biol. 22(9), 12151228 (1996).
http://dx.doi.org/10.1016/S0301-5629(96)00140-8
69.
69.T. Sato, “Generalized ultrasonic percussion: imaging of ultrasonic nonlinear parameters and its medical and industrial applications,” Jpn. J. Appl. Phys., Part 1 33(5 B), 28332836 (1994).
70.
70.W. K. Law, L. A. Frizzell, and F. Dunn, “Determination of the nonlinearity parameter of biological media,” Ultrasound Med. Biol. 11(2), 307318 (1985).
http://dx.doi.org/10.1016/0301-5629(85)90130-9
71.
71.Y. Zheng, S. Chen, W. Tan, R. Kinnick, and J. F. Greenleaf, “Detection of tissue harmonic motion induced by ultrasonic radiation force using pulse-echo ultrasound and Kalman filter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(2), 290299 (2007).
72.
72.M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K. R. Nightingale, “Quantifying hepatic shear modulus in vivo using acoustic radiation force,” Ultrasound Med. Biol. 34(4), 546558 (2008).
73.
73.J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: A new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(4), 396409 (2004).
http://dx.doi.org/10.1109/TUFFC.2004.1295425
74.
74.E. H. Chiang, R. S. Adler, C. H. Meyer, J. M. Rubin, D. K. Dedrick, and T. J. Laing, “Quantitative assessment of surface roughness using backscattered ultrasound: The effects of finite surface curvature,” Ultrasound Med. Biol. 20, 123135 (1994).
75.
75.W. Liu, J. A. Zagzebski, T. Varghese, A. L. Gerig, and T. J. Hall, “Spectral and scatterer-size correlation during angular compounding: Simulations and experimental studies,” Ultrason. Imaging 28(4), 230244 (2006).
76.
76.F. L. Lizzi, M. Ostromogilsky, E. J. Feleppa, M. C. Rorke, and M. M. Yaremko, “Relationship of ultrasonic spectral parameters to features of tissue microstructure,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-34(3), 319329 (1987).
77.
77.R. F. Wagner, S. W. Smith, J. M. Sandrik, and H. Lopez, “Statistics of speckle in ultrasound B-scans,” IEEE Trans. Sonics Ultrason. SU-30(3), 156163 (1983).
78.
78.T. Wilson, Q. Chen, J. A. Zagzebski, T. Varghese, and L. VanMiddlesworth, “Initial clinical experience imaging scatterer size and strain in thyroid nodules,” J. Ultrasound Med. 25(8), 10211029 (2006).
79.
79.K. K. Shung, G. Cloutier, and C. C. Lim, “The effects of hematocrit, shear rate, and turbulence on ultrasonic Doppler spectrum from blood,” IEEE Trans. Biomed. Eng. 39(5), 462469 (1992).
http://dx.doi.org/10.1109/10.135540
80.
80.E. Bossy, M. Talmant, and P. Laugier, “Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models,” J. Acoust. Soc. Am. 115(5 I), 23142324 (2004).
http://dx.doi.org/10.1121/1.1689960
81.
81.M. L. Oelze, W. D. O’Brien, Jr., J. P. Blue, and J. F. Zachary, “Differentiation and characterization of rat mammary fibroadenomas and 4T1 mouse carcinomas using quantitative ultrasound imaging,” IEEE Trans. Med. Imaging 23(6), 764771 (2004).
http://dx.doi.org/10.1109/TMI.2004.826953
82.
82.R. L. Nasoni, T. Bowen, M. W. Dewhirst, H. B. Roth, and R. Premovich, “Speed of sound as a thermal image CT scan parameter,” in Acoustical Imaging: Proceedings of the International Symposium, Vol. 11, pp. 563582 (Plenum Press, Monterey, CA, 1982).
83.
83.R. L. Nasoni, T. Bowen, W. G. Connor, and R. R. Sholes, “In vivo temperature dependence of ultrasound speed in tissue and its application to noninvasive temperature monitoring,” Ultrason. Imaging 1(1), 3443 (1979).
http://dx.doi.org/10.1016/0161-7346(79)90004-X
84.
84.F. W. Kremkau, Diagnostic Ultrasound: Principles and Instruments. 7th ed. (W. B. Saunders Company, Philadelphia, 2006), p. 544.
85.
85.O. T. von Ramm, S. W. Smith, and H. E. Pavy, Jr., “High-speed ultrasound volumetric imaging system, Parallel processing and image display,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(2), 109115 (1991).
http://dx.doi.org/10.1109/58.68467
86.
86.N. A. Baily, “A review of the processes by which ultrasound is generated through the interaction of ionizing radiation and irradiated materials: Some possible applications,” Med. Phys. 19(3), 525532 (1992).
http://dx.doi.org/10.1118/1.596842
87.
87.T. Bowen, R. L. Nasoni, and A. E. Pifer, “Thermoacoustic Imaging Induced by deeply penetrating radiation,” in Acoustical Imaging: Proceedings of the International Symposium, Vol. 13, pp. 409427 (Plenum Press, Minneapolis, MN, 1984).
88.
88.A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 615 (2001).
http://dx.doi.org/10.1117/12.429300
89.
89.X. Wang, D. L. Chamberland, P. L. Carson, J. B. Fowlkes, R. O. Bude, D. A. Jamadar, and B. J. Roessler, “Imaging of joints with laser-based photoacoustic tomography: An animal study,” Med. Phys. 33(8), 26912697 (2006).
http://dx.doi.org/10.1118/1.2214166
90.
90.Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Bill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett.4, 16891692 (2004).
http://dx.doi.org/10.1021/nl049126a
91.
91.Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: Optical differentiation with US-guided optical imaging reconstruction,” Radiology 237(1), 5766 (2005).
http://dx.doi.org/10.1148/radiol.2371041236
92.
92.H. Jiang, C. Li, D. Pearlstone, and L. L. Fajardo, “Ultrasound-guided microwave imaging of breast cancer: Tissue phantom and pilot clinical experiments,” Med. Phys. 32(8), 25282535 (2005).
http://dx.doi.org/10.1118/1.1984349
93.
93.H. F. Routh, “Doppler ultrasound,” IEEE Eng. Med. Biol. Mag. 15, 3140 (1996).
94.
94.K. Ferrara and G. DeAngelis, “Color flow mapping,” Ultrasound Med. Biol. 23(3), 321345 (1997).
http://dx.doi.org/10.1016/S0301-5629(96)00216-5
95.
95.P. L. Carson, X. Li, J. Pallister, A. Moskalik, J. M. Rubin, and J. B. Fowlkes, “Approximate quantification of detected fractional blood volume and perfusion from 3D color flow and Doppler signal amplitude imaging.,” IEEE Ultrason. Symp. Proceeding, pp. 10231026 (IEEE, Baltimore, 1993).
96.
96.J. M. Rubin, R. O. Bude, P. L. Carson, R. L. Bree, and R. S. Adler, “Power Doppler US: A potentially useful alternative to mean frequency-based color Doppler US,” Radiology 190(3), 853856 (1994).
97.
97.P. A. Picot, D. W. Rickey, R. Mitchell, R. N. Rankin, and A. Fenster, “Three-dimensional colour doppler imaging,” Ultrasound Med. Biol. 19, 95104 (1993).
http://dx.doi.org/10.1016/0301-5629(93)90001-5
98.
98.D. H. Pretorius, T. R. Nelson, and J. S. Jaffe, “3-dimensional sonographic analysis based on color flow Doppler and gray scale image data: A preliminary report,” J. Ultrasound Med. 11, 225232 (1992).
99.
99.D. H. Pretorius, N. N. Borok, M. S. Coffler, and T. R. Nelson, “Three-dimensional ultrasound in obstetrics and gynecology,” Radiol. Clin. North Am. 39(3), 499521 (2001).
100.
100.I. A. Hein, J. T. Chen, W. K. Jenkins, and W. D. O’Brien, Jr., “A real-time ultrasound time domain correlation blood flowmeter. I. Theory and design,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40, 768775 (1993a).
101.
101.F. W. Ferrara and V. R. Algazi, “A new wideband spread target maximum likelihood estimator for blood velocity estimation. Theory,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 116 (1991a).
http://dx.doi.org/10.1109/58.67829
102.
102.P. Tortoli, G. Bambi, and S. Ricci, “Accurate Doppler angle estimation for vector flow measurements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(8), 14251431 (2006).
103.
103.P. L. Carson, P. R. Fischella, and T. V. Oughton, “Ultrasonic power and intensities produced by diagnostic ultrasound equipment,” Ultrasound Med. Biol. 3, 341350 (1978).
http://dx.doi.org/10.1016/0301-5629(78)90076-5
104.
104.E. L. Carstensen, W. K. Law, N. D. McKay, and T. G. Muir, “Demonstration of nonlinear acoustical effects at biomedical frequencies and intensities,” Ultrasound Med. Biol. 6(4), 359368 (1980).
http://dx.doi.org/10.1016/0301-5629(80)90005-8
105.
105.F. A. Duck and H. C. Starritt, “Acoustic shock generation by ultrasonic imaging equipment,” Br. J. Radiol. 57(675), 231240 (1984).
106.
106.B. Ward, A. C. Baker, and V. F. Humphrey, “Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound,” J. Acoust. Soc. Am. 101(1), 143154 (1997).
http://dx.doi.org/10.1121/1.417977
107.
107.M. A. Averkiou, D. N. Roundhill, and J. E. Powers, “A new imaging technique based on the nonlinear properties of tissues,” in Proc.-IEEE Ultrason. Symp. 1&2, 15611566 (1997).
108.
108.D. R. Bacon and E. L. Carstensen, “Increased heating by diagnostic ultrasound due to nonlinear propagation,” J. Acoust. Soc. Am. 88(1), 2634 (1990).
http://dx.doi.org/10.1121/1.399950
109.
109.P. L. Carson, editor, Special “Issue: Effects of nonlinear ultrasound propagation on output display indices,” J. Ultrasound Med. 18, 2786 (1999).
110.
110.Y. Li and J. A. Zagnebski, “Computer model for harmonic ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(5), 12591272 (2000).
111.
111.P. N. Burns, D. Hope Simpson, and M. A. Averkiou, “Nonlinear imaging,” Ultrasound Med. Biol. 26 Suppl 1, S1922 (2000).
112.
112.T. A. Krouskop, D. R. Dougherty, and F. S. Vinson, “A pulsed Doppler ultrasonic system for making non-invasive measurements of the mechanical properties of soft tissue,” J. Rehabil. Res. Dev. 24, 18 (1987).
http://dx.doi.org/10.1682/JRRD.1987.07.0001
113.
113.A. P. Sarvazyan, A. R. Skovoroda, S. Y. Emelianov, J. B. Fowlkes, J. G. Pipe, R. S. Adler, R. B. Buxton, and P. L. Carson, “Biophysical bases of elasticity imaging,” in Acoustical Imaging (Plenum Press, New York, 1995), pp. 223240.
114.
114.M. O’Donnell, A. R. Skovoroda, B. M. Shapo, and S. Y. Emelianov, “Internal displacement and strain imaging using ultrasound speckle tracking,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 41, 314325 (1994).
http://dx.doi.org/10.1109/58.285465
115.
115.J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13, 111134 (1991).
http://dx.doi.org/10.1016/0161-7346(91)90079-W
116.
116.J. B. Fowlkes, S. Y. Emelianov, J. G. Pipe, A. R. Skovoroda, P. L. Carson, R. S. Adler, and A. P. Sarvazyan, “Magnetic-resonance-imaging techniques for detection of elasticity variation,” Med. Phys. 22(11 Pt 1), 17711778 (1995).
http://dx.doi.org/10.1118/1.597633
117.
117.J. Ophir, I. Cespedes, B. Garra, H. Ponekanti, Y. Huang, and N. Maklad, “Elastography: Ultrasonic imaging of tissue strain and elastic modulus in vivo,” Eur. J. Ultrasound 3, 4970 (1996).
118.
118.A. R. Skovoroda, S. Y. Emelianov, and M. O’Donnell, “Reconstruction of tissue elasticity based on ultrasound displacement and strain images,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 747765 (1995).
http://dx.doi.org/10.1109/58.393117
119.
119.A. Sarvazyan, O. Rudenko, S. Swanson, J. Fowlkes, and S. Emelianov, “Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 14191435 (1998).
http://dx.doi.org/10.1016/S0301-5629(98)00110-0
120.
120.D. L. Miller, G. J. R. Spooner, and A. R. Williams, “Photodisruptive laser nucleation of ultrasonic cavitation for biomedical applications,” J. Biomed. Opt. 6(3), 351358 (2001).
http://dx.doi.org/10.1117/1.1380669
121.
121.T. N. Erpelding, K. W. Hollman, and M. O’Donnell, “Bubble-based acoustic radiation force elasticity imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(6), 971979 (2005).
122.
122.S. Bharat, T. Varghese, E. L. Madsen, and J. A. Zagzebski, “Radio-frequency ablation electrode displacement elastography: A phantom study,” Med. Phys. 35(6), 24322442 (2008).
http://dx.doi.org/10.1118/1.2919763
123.
123.M. Rao, Q. Chen, H. Shi, and T. Varghese, “Spatial-angular compounding for elastography using beam steering on linear array transducers,” Med. Phys. 33(3), 618626 (2006).
http://dx.doi.org/10.1118/1.2168429
124.
124.Lantheus Medical Imaging Updates Definity® Label To Modify Benefit/Risk Assessment Of The Product: FDA Approves Class Labeling Changes For Echo Contrast Agents 2008 [cited May 13]; Available from: http://www.lantheus.com/News.html
125.
125.K. Ferrara, R. Pollard, and M. Borden, “Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery,” Annu. Rev. Biomed. Eng. 9, 415447 (2007).
http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095852
126.
126.M. Postema and G. Schmitz, “Bubble dynamics involved in ultrasonic imaging,” Expert Rev. Mol. Diagn. 6(3), 493502 (2006).
127.
127.M. Andre, T. Nelson, and R. Mattrey, “Physical and acoustical properties of perfluorooctylbromide, an ultrasound contrast agent,” Invest. Radiol. 25(9), 983987 (1990).
128.
128.R. M. Schmitt, H. J. Schmidt, and A. Irion, “Ultrasonic characterization of ultrasound contrast agents,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Proceedings, Vol. 11, pt 2, pp. 429430 (Alliance for Engineering in Medicine and Biology, Seattle, 1989).
129.
129.D. L. Miller, “Ultrasonic detection of resonant cavitation bubbles in a flow tube by their second harmonic emissions,” Ultrasonics 19, 217224 (1981).
http://dx.doi.org/10.1016/0041-624X(81)90006-8
130.
130.N. de Jong, “Acoustic properties of ultrasound contrast agents,” Ph.D. thesis, Erasmus University (Rotterdam, 1993).
131.
131.P. N. Burns, J. E. Powers, and T. Fritzsch, “Harmonic imaging: New imaging and doppler method for contrast enhanced US,” Radiology 185, 142 (1992).
132.
132.P. N. Burns, J. E. Powers, D. Hope Simpson, V. Uhlendorf, and T. Fritzsch, “Harmonic imaging: Princples and preliminary results,” Angiology 47, S63S74 (1996).
133.
133.T. R. Porter, F. Xie, D. Kricsfeld, and R. W. Armbruster, “Improved myocardial contrast with second harmonic transient ultrasound response imaging in humans using intravenous perfluorocarbon-exposed sonicated dextrose albumin,” J. Am. Coll. Cardiol. 27(6), 14971501 (1996).
http://dx.doi.org/10.1016/0735-1097(96)00017-4
134.
134.D. H. Simpson, C. T. Chin, and P. N. Burns, “Pulse inversion Doppler: A new method for detecting nonlinear echose from microbubble contrast agents,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(2), 372382 (1999).
http://dx.doi.org/10.1109/58.753026
135.
135.T. Potdevin, J. Fowlkes, A. Moskalik, and P. Carson, “Analysis of refill curve shape in ultrasound contrast agent studies,” Med. Phys. 31(3), 623632 (2004).
http://dx.doi.org/10.1118/1.1649534
136.
136.N. G. Chen, J. B. Fowlkes, P. Carson, and G. L. LeCarpentier, “Rapid 3D imaging of contrast flow: Demonstration of a dual-beam technique,” Ultrasound Med. Biol. 33(6), 915923 (2007).
137.
137.M. P. Andre, H. S. Janee, P. J. Martin, G. P. Otto, B. A. Spivey, and D. Palmer, “High-speed data acquisition in a diffraction tomography system employing large-scale toroidal arrays,” Int. J. Imaging Syst. Technol. 8, 137147 (1997).
http://dx.doi.org/10.1002/(SICI)1098-1098(1997)8:1<137::AID-IMA15>3.3.CO;2-1
138.
138.P. L. Carson, C. R. Meyer, A. L. Scherzinger, and T. V. Oughton, “Breast imaging in coronal planes with simultaneous pulse echo and transmission ultrasound,” Science 214(4525), 11411143 (1981).
http://dx.doi.org/10.1126/science.7302585
139.
139.T. R. Nelson, J. Nebeker, S. Denton, L. I. Cervino, D. H. Pretorius, and J. M. Boone, “Performance characterization of a volumetric breast ultrasound scanner,” Progress in Biomedical Optics and Imaging, Proc. SPIE 6510, P65101G (2007).
140.
140.J. A. Shipley, F. A. Duck, D. A. Goddard, M. R. Hillman, M. Halliwell, M. G. Jones, and B. T. Thomas, “Automated quantitative volumetric breast ultrasound data-acquisition system,” Ultrasound Med. Biol. 31(7), 905917 (2005).
141.
141.S. L. Christensen and P. L. Carson, “Performance survey of ultrasound instrumentation and feasibility of routine monitoring,” Radiology 122, 449454 (1977).
142.
142.M. L. Giger, H. Al-Hallaq, Z. Huo, C. Moran, D. E. Wolverton, C. W. Chan, and W. Zhong, “Computerized analysis of lesions in US images of the breast,” Radiology 6(11, Supp. 7), 665674 (1999).
143.
143.B. Sahiner, H. P. Chan, M. A. Roubidoux, L. M. Hadjiiski, M. Helvie, C. Paramagul, J. Bailey, A. Nees, and C. Blane, “Malignant and benign breast masses on 3D US volumetric images: Effect of computer-aided diagnosis on radiologist accuracy,” Radiology 242, 716724 (2007).
144.
144.P. T. Bhatti, G. L. LeCarpentier, M. A. Roubidoux, J. B. Fowlkes, M. A. Helvie, and P. L. Carson, “Discrimination of sonographically detected breast masses using frequency shift color Doppler imaging in combination with age and gray scale criteria,” J. Ultrasound Med. 20(4), 343350 (2001).
145.
145.C. Sehgal, P. Arger, S. Rowling, E. Conant, C. Reynolds, and J. Patton, “Quantitative vascularity of breast masses by Doppler imaging: Regional variations and diagnostic implications,” J. Ultrasound Med. 19(7), 427442 (2000).
146.
146.K. A. Dines, E. Kelly-Fry, and P. Romilly-Harper, “Automated three-dimensional ultrasound breast scanning in the craniocaudal mammography position,” Ninth International Congress on the Ultrasonic Examination of the Breast, abstract booklet, pp. 4344 (Indianapolis, IN, 1995).
147.
147.K. Richter, S. H. Heywang-Köbrunner, K. J. Winzer, K. J. Schmitt, H. Prihoda, H. D. Frohberg, H. Guski, P. Gregor, J. U. Blohmer, F. Fobbe, K. Döinghaus, G. Löhr, and B. Hamm, “Detection of malignant and benign breast lesions with an automated US system: Results in 120 cases,” Radiology 205(3), 823830 (1997).
148.
148.S. P. Sinha, M. A. Roubidoux, M. A. Helvie, A. V. Nees, and M. M. Goodsitt, G. L. LeCarpentier, J. B. Fowlkes, C. L. Chaleck, and P. L. Carson, “Multi-modality 3D breast imaging with X-Ray tomosynthesis and automated ultrasound,” 29th Annual International Conference IEEE Eng. Med. Biol. Soc., pp. 13351338 (Lyon, France, 2007).
149.
149.J. F. Greenleaf and R. C. Bahn, “Clinical imaging with transmissive ultrasonic computerized tomography,” IEEE Trans. Biomed. Eng. 28, 177185 (1981).
150.
150.N. Duric, P. Littrup, A. Babkin, D. Chambers, S. Azevedo, A. Kalinin, R. Pevzner, M. Tokarev, E. Holsapple, O. Rama, and R. Duncan, “Development of ultrasound tomography for breast imaging: Technical assessment,” Med. Phys. 32(5), 13751386 (2005).
http://dx.doi.org/10.1118/1.1897463
151.
151.R. M. Schmitt, C. R. Meyer, P. L. Carson, T. L. Chenevert, and P. H. Bland, “Error reduction in through transmission tomography using large receiving arrays with phase-insensitive signal processing,” IEEE Trans. Sonics Ultrason. 31(4), 251258 (1984).
152.
152.P. L. Carson, T. V. Oughton, W. R. Hendee, and A. S. Ahuja, “Imaging soft tissue through bone with ultrasound transmission tomography by reconstruction,” Med. Phys. 4, 302309 (1977).
http://dx.doi.org/10.1118/1.594318
153.
153.R. Koch, J. F. Whiting, D. C. Price, and J. F. McCaffrey, “Ultrasonic transmission tomography and pulse-echo imaging of the breast,” Ultrason. Imaging 4(2), 188189 (1982).
154.
154.T. L. Chenevert, D. I. Bylski, P. L. Carson, C. R. Meyer, R. M. Schmitt, P. H. Bland, and D. Adler, “Ultrasonic computed tomography of the breast,” Radiology 152, 155159 (1984).
155.
155.T. L. Chenevert, C. R. Meyer, P. H. Bland, and P. L. Carson, “Aperture diffraction theory applied to ultrasonic attenuation imaging,” J. Acoust. Soc. Am. 74(4), 12321238 (1983).
http://dx.doi.org/10.1121/1.390028
156.
156.C. R. Meyer, T. L. Chenevert, and P. L. Carson, “A method for reducing multipath artifacts in ultrasonic computed tomography,” J. Acoust. Soc. Am. 72(3), 820823 (1982).
http://dx.doi.org/10.1121/1.388261
157.
157.P. L. Carson, A. L. Scherzinger, C. R. Meyer, W. Jobe, B. Samuels, and D. D. Adler, “Lesion detectability in ultrasonic computed tomography of symptomatic breast patients,” Invest. Radiol. 3, 421427 (1988).
158.
158.A. L. Scherzinger, R. A. Belgam, P. L. Carson, C. R. Meyer, J. V. Sutherland, F. L. Bookstein, and T. M. Silver, “Assessment of ultrasonic computed tomography in symptomatic breast patients by discriminant analysis,” Ultrasound Med. Biol. 15, 2128 (1989).
159.
159.N. Duric, P. Littrup, A. Babkin, D. Chambers, S. Azevedo, A. Kalinin, R. Pevzner, M. Tokarev, E. Holsapple, O. Rama, and R. Duncan, “Development of ultrasound tomography for breast imaging: Technical assessment,” Med. Phys. 32(5), 13751386 (2005).
http://dx.doi.org/10.1118/1.1897463
160.
160.F. Denis, O. Basset, and G. Gimenez, “Ultrasonic transmission tomography in refracting media-reduction of refraction artifacts by curved-ray techniques,” IEEE Trans. Med. Imaging 14(1), 173188 (1995).
http://dx.doi.org/10.1109/42.370414
161.
161.A. Yamada and S. Yano, “Ultrasound inverse scattering computed tomography under the angular illumination limitation,” Jpn. J. Appl. Phys., Part 1 43(8A), 55825588 (2004).
162.
162.N. Duric, A. Babkin, O. Rama, R. Pevzner, P. Littrup, L. Poulo, E. Holsapple, and C. Glide, “Detection of breast cancer with ultrasound tomography: First results with the Computed Ultrasound Risk Evaluation (CURE) prototype,” Med. Phys. 34(2), 773785 (2007).
http://dx.doi.org/10.1118/1.2432161
163.
163.K. S. Callahan, D. T. Borup, S. A. Johnson, J. Wiskin, and Y. Parisky, “Transmission breast ultrasound imaging: Representative case studies of speed of sound and attenuation of sound computed tomographic images,” Am. J. Clin. Oncol. 30(4), 458459 (2007).
164.
164.E. Kelly-Fry and V. P. Jackson, “Adaptation development and expansion of x-ray mammography techniques for ultrasound mammography,” J. Ultrasound Med. 10, S16 (1991).
165.
165.K. Richter, “Technique for detecting and evaluating breast lesions,” J. Ultrasound Med. 13, 797802 (1994).
166.
166.P. L. Carson, A. P. Moskalik, A. Govil, M. A. Roubidoux, J. B. Fowlkes, D. Normolle, D. D. Adler, J. M. Rubin, and M. Helvie, “The 3D and 2D color flow display of breast masses,” Ultrasound Med. Biol. 23(6), 837849 (1997).
http://dx.doi.org/10.1016/S0301-5629(97)00073-2
167.
167.J. Suri, Y. Guo, C. Coad, T. Danielson, I. Elbakri, and R. Janer, “Image quality assessment via segmentation of breast lesion in x-ray and Ultrasound phantom images from Fischer’s full field digital mammography and ultrasound (FFDMUS) system,” Technol. Cancer Res. Treat. 4(1), 8392 (2005).
168.
168.R. Schmidt et al., Preliminary experience with WhoBUS, an automated whole breast ultrasound scanner: Comparison with conventional hand-held ultrasound, in Annual Meeting, Radiol. Soc. North America (Chicago, 2006).
169.
169.K. M. Kelly and L. K. Lourie, “SonoCine (R), a new method for ultrasound breast screening: Results in 500 high-risk patients,” Radiology 221(S Nov), 606 (2001).
http://dx.doi.org/10.1148/radiol.2213010473
170.
170.S. P. Sinha, M. M. Goodsitt, M. A. Roubidoux, R. C. Booi, G. L. LeCarpentier, C. R. Lashbrook, K. Thomenius, C. L. Chalek, and P. L. Carson, “Automated ultrasound scanning on a dual modality breast imaging system: Coverage and motion issues and solutions,” J. Ultrasound Med. 26(5), 645655 (2007).
171.
171.K. A. e. a. Dines, “Computerized ultrasound tomography of the human head: Experimental results,” Ultrason. Imaging 3, 342351 (1981).
http://dx.doi.org/10.1016/0161-7346(81)90175-9
172.
172.J. Ylitalo, J. Koivukangas, and J. Oksman, “Ultrasonic reflection mode computed tomography through a skull bone,” IEEE Trans. Biomed. Eng. 37(11), 10591066 (1990).
http://dx.doi.org/10.1109/10.61031
173.
173.K. Hynynen, “Focused ultrasound for blood-brain disruption and delivery of therapeutic molecules into the brain,” Expert Opinion on Drug Delivery 4(1), 2735 (2007).
174.
174.F. J. e. a. Kirkham, “Transcranial measurement of blood velocities in the basal cerebral arteries using pulsed Doppler ultrasound: Velocity as an index of flow,” Ultrasound Med. Biol. 12(1), 1521 (1986).
http://dx.doi.org/10.1016/0301-5629(86)90139-0
175.
175.F. J. Fry, “Transkull transmission of an intense focused ultrasonic beam,” Ultrasound Med. Biol. 3, 179184 (1977).
http://dx.doi.org/10.1016/0301-5629(77)90069-2
176.
176.S. Behrens, K. Spengos, M. Daffertshofer, H. Schroeck, C. E. Dempfle, and M. Hennerici, “Transcranial ultrasound-improved thrombolysis: Diagnostic vs. therapeutic ultrasound,” Ultrasound Med. Biol. 27(12), 16831689 (2001).
http://dx.doi.org/10.1016/S0301-5629(01)00481-1
177.
177.M. Pernot, J. F. Aubry, M. Tanter, J. L. Thomas, and M. Fink, “High power transcranial beam steering for ultrasonic brain therapy,” Phys. Med. Biol. 48(16), 25772589 (2003).
http://dx.doi.org/10.1088/0031-9155/48/16/301
178.
178.J. Sun and K. Hynynen, “The potential of transskull ultrasound therapy and surgery using the maximum available skull surface area,” J. Acoust. Soc. Am. 105(4), 25192527 (1999).
http://dx.doi.org/10.1121/1.426863
179.
179.J. White, G. T. Clement, and K. Hynynen, “Transcranial ultrasound focus reconstruction with phase and amplitude correction,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 15181522 (2005).
180.
180.S. W. Flax and M. O’Donnell, “Phase-aberration correction in medical ultrasound: Basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35(6), 758767 (1988).
http://dx.doi.org/10.1109/58.9333
181.
181.K. J. Haworth, J. B. Fowlkes, P. L. Carson, and O. D. Kripfgans, “Towards aberration correction of transcranial ultrasound using acoustic droplet vaporization,” Ultrasound Med. Biol. 34(3), 435445 (2008).
182.
182.N. Quieffin, S. Catheline, R. K. Ing, and M. Fink, “Real-time focusing using an ultrasonic one channel time-reversal mirror coupled to a solid cavity,” J. Acoust. Soc. Am. 115(5 I), 19551960 (2004).
http://dx.doi.org/10.1121/1.1699396
183.
183.S. C. Tang, G. T. Clement, and K. Hynynen, “A computer-controlled ultrasound pulser-receiver system for transskull fluid detection using a shear wave transmission technique,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(9), 17721783 (2007).
184.
184.K. Hynynen and F. A. Jolesz, “Demonstration of potential noninvasive ultrasound brain therapy through an intact skull,” Ultrasound Med. Biol. 24(2), 275283 (1998).
http://dx.doi.org/10.1016/S0301-5629(97)00269-X
185.
185.N. McDannold, N. Vykhodtseva, S. Raymond, F. A. Jolesz, and K. Hynynen, “MRI-guided targeted blood-brain barrier disruption with focused ultrasound: Histological findings in rabbits,” Ultrasound Med. Biol. 31(11), 15271537 (2005).
186.
186.K. Hynynen and G. Clement, “Clinical applications of focused ultrasound-the brain,” Int. J. Hyperthermia 23(2), 193202 (2007).
http://dx.doi.org/10.1080/02656730701200094
187.
187.N. Vykhodtseva, N. McDannold, and K. Hynynen, “Induction of apoptosis in vivo in the rabbit brain with focused ultrasound and Optison,” Ultrasound Med. Biol. 32(12), 19231929 (2006).
188.
188.R. S. Balaban and V. A. Hampshire, “Challenges in small animal noninvasive imaging,” ILAR J. 42(3), 248262 (2001).
189.
189.M. D. Sherar, M. B. Noss, and F. S. Foster, “Ultrasound backscatter microscopy images the internal structure of living tumour spheroids,” Nature (London) 330(6147), 493495 (1987).
http://dx.doi.org/10.1038/330493a0
190.
190.D. E. Goertz, J. L. Yu, R. S. Kerbel, P. N. Burns, and F. S. Foster, “High-frequency Doppler ultrasound monitors the effects of antivascular therapy on tumor blood flow,” Cancer Res. 62(22), 63716375 (2002).
191.
191.D. E. Kruse, R. H. Silverman, R. J. Fornaris, D. J. Coleman, and K. W. Ferrara, “A swept-scanning mode for estimation of blood velocity in the microvasculature,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(6), 14371440 (1998).
192.
192.G. J. Czarnota, M. C. Kolios, J. Abraham, M. Portnoy, F. P. Ottensmeyer, J. W. Hunt, and M. D. Sherar, “Ultrasound imaging of apoptosis: high-resolution non-invasive monitoring of programmed cell death in vitro, in situ and in vivo,Br. J. Cancer 81(3), 520527 (1999).
http://dx.doi.org/10.1038/sj.bjc.6690724
193.
193.M. L. Oelze, W. D. O’Brien, Jr., J. P. Blue, and J. F. Zachary, “Differentiation and characterization of rat mammary fibroadenomas and 4T1 mouse carcinomas using quantitative ultrasound imaging,” IEEE Trans. Med. Imaging 23(6), 764771 (2004).
http://dx.doi.org/10.1109/TMI.2004.826953
194.
194.D. H. Turnbull, J. A. Ramsay, G. S. Shivji, T. S. Bloomfield, L. From, D. N. Sauder, and F. S. Foster, “Ultrasound backscatter microscope analysis of mouse melanoma progression,” Ultrasound Med. Biol. 22(7), 845853 (1996).
http://dx.doi.org/10.1016/0301-5629(96)00107-X
195.
195.A. M. Cheung, A. S. Brown, L. A. Hastie, V. Cucevic, M. Roy, J. C. Lacefield, A. Fenster, and F. S. Foster, “Three-dimensional ultrasound biomicroscopy for xenograft growth analysis,” Ultrasound Med. Biol. 31(6), 865870 (2005).
196.
196.K. C. Graham, L. A. Wirtzfeld, L. T. MacKenzie, C. O. Postenka, A. C. Groom, I. C. MacDonald, A. Fenster, J. C. Lacefield, and A. F. Chambers, “Three-dimensional high-frequency ultrasound imaging for longitudinal evaluation of liver metastases in preclinical models,” Cancer Res. 65(12), 52315237 (2005).
197.
197.L. A. Wirtzfeld, G. Wu, M. Bygrave, Y. Yamasaki, H. Sakai, M. Moussa, J. I. Izawa, D. B. Downey, N. M. Greenberg, A. Fenster, J. W. Xuan, and J. C. Lacefield, “A new three-dimensional ultrasound microimaging technology for preclinical studies using a transgenic prostate cancer mouse model,” Cancer Res. 65(14), 63376345 (2005).
198.
198.I. V. Huizen, G. Wu, M. Moussa, J. L. Chin, A. Fenster, J. C. Lacefield, H. Sakai, N. M. Greenberg, and J. W. Xuan, “Establishment of a serum tumor marker for preclinical trials of mouse prostate cancer models,” Clin. Cancer Res. 11(21), 79117919 (2005).
199.
199.A. Goldberg, P. Pakkiri, E. Dai, A. Lucas, and A. Fenster, “Measurements of aneurysm morphology determined by 3-d micro-ultrasound imaging as potential quantitative biomarkers in a mouse aneurysm model,” Ultrasound Med. Biol. 33(10), 15521560 (2007).
200.
200.L. M. Gan, J. Gronros, U. Hagg, J. Wikstrom, C. Theodoropoulos, P. Friberg, and R. Fritsche-Danielson, “Non-invasive real-time imaging of atherosclerosis in mice using ultrasound biomicroscopy,” Atherosclerosis 190(2), 313320 (2007).
201.
201.J. W. Xuan, M. Bygrave, H. Jiang, F. Valiyeva, J. Dunmore-Buyze, D. W. Holdsworth, J. I. Izawa, G. Bauman, M. Moussa, S. F. Winter, N. M. Greenberg, J. L. Chin, M. Drangova, A. Fenster, and J. C. Lacefield, “Functional neoangiogenesis imaging of genetically engineered mouse prostate cancer using three-dimensional power Doppler ultrasound,” Cancer Res. 67(6), 28302839 (2007).
http://dx.doi.org/10.1158/0008-5472.CAN-06-3944
202.
202.R. L. Maurice, M. Daronat, J. Ohayon, E. Stoyanova, F. S. Foster, and G. Cloutier, “Non-invasive high-frequency vascular ultrasound elastography,” Phys. Med. Biol. 50(7), 16111628 (2005).
http://dx.doi.org/10.1088/0031-9155/50/7/020
203.
203.D. H. Turnbull, T. S. Bloomfield, H. S. Baldwin, F. S. Foster, and A. L. Joyner, “Ultrasound backscatter microscope analysis of early mouse embryonic brain development,” Proc. Natl. Acad. Sci. U.S.A. 92(6), 22392243 (1995).
204.
204.O. Aristizabal, D. A. Christopher, F. S. Foster, and D. H. Turnbull, “ echocardiography scanner for cardiovascular assessment of mouse embryos,” Ultrasound Med. Biol. 24(9), 14071417 (1998).
205.
205.S. Srinivasan, H. S. Baldwin, O. Aristizabal, L. Kwee, M. Labow, M. Artman, and D. H. Turnbull, “Noninvasive, in utero imaging of mouse embryonic heart development with echocardiography,” Circulation 98(9), 912918 (1998).
206.
206.B. K. McConnell, K. A. Jones, D. Fatkin, L. H. Arroyo, R. T. Lee, O. Aristizabal, D. H. Turnbull, D. Georgakopoulos, D. Kass, M. Bond, H. Niimura, F. J. Schoen, D. Conner, D. A. Fischman, C. E. Seidman, and J. G. Seidman, “Dilated cardiomyopathy in homozygous myosin-binding protein-C mutant mice,” J. Clin. Invest. 104(9), 12351244 (1999).
207.
207.C. Z. Behm and J. R. Lindner, “Cellular and molecular imaging with targeted contrast ultrasound,” Ultrasound Q. 22(1), 6772 (2006).
208.
208.J. J. Rychak, J. Graba, A. M. Cheung, B. S. Mystry, J. R. Lindner, R. S. Kerbel, and F. S. Foster, “Microultrasound molecular imaging of vascular endothelial growth factor receptor 2 in a mouse model of tumor angiogenesis,” Mol. Imaging 6(5), 289296 (2007).
209.
209.K. R. Erikson and P. L. Carson, “The AIUM standard test object and recommended procedures for its use,” Reflections 1–2, 7491 (1975).
210.
210.E. L. Madsen, J. A. Zagzebski, R. A. Banjavic, and R. E. Jutila, “Tissue mimicking materials for ultrasound phantoms,” Med. Phys. 5, 391394 (1978).
http://dx.doi.org/10.1118/1.594483
211.
211.J. Ophir, “Ultrasound phantom material,” Br. J. Radiol. 57(684), 1161 (1984).
212.
212.J. Satrapa, G. Doblhoff, and H. J. Schultz, “Automated quality control of diagnostic ultrasound appliances,” Ultraschall Med. 81, 123128 (2002).
213.
213.IEC, 60854 Methods of measuring the performance of ultrasonic pulse echo diagnostic equipment. 1986, Geneva: International Electrotechnical Commission.
214.
214.J. B. Fowlkes and C. K. Holland, “Mechanical bioeffects from diagnostic ultrasound: AIUM consensus statements,” J. Ultrasound Med. 19(2), 6972 (2000).
215.
215.D. L. Miller, “A review of the ultrasonic bioeffects of microsonation, gas-body activation, and related cavitation-like phenomena,” Ultrasound Med. Biol. 13, 443470 (1987).
http://dx.doi.org/10.1016/0301-5629(87)90110-4
216.
216.D. L. Miller, “WFUMB safety symposium on echo-contrast agents: In vitro bioeffects,” Ultrasound Med. Biol. 33, 197204 (2007).
217.
217.J. B. Fowlkes, J. S. Abramowicz, C. C. Church, C. K. Holland, D. L. Miller, W. D. O’Brien Jr., N. T. Sanghvi, M. E. Stratmeyer, J. F. Zachary, C. X. Deng, G. R. Harris, B. A. Herman, K. H. Hynynen, C. R. B. Merritt, K. E. Thomenius, M. R. Bailey, P. L. Carson, E. L. Carstensen, L. A. Frizzell, W. L. Nyborg, S. B. Barnett, F. A. Duck, P. D. Edmonds, M. C. Ziskin, J. G. Abbott, D. Dalecki, F. Dunn, J. F. Greenleaf, K. A. Salvesen, T. A. Siddiqi, M. A. Averkiou, A. A. Brayman, E. C. Everbach, J. H. Wible, Jr., J. Wu, and D. G. Simpson, “AIUM consensus report on potential bioeffects of diagnostic ultrasound,” J. Ultrasound Med. 27(4), 515 (2008).
218.
218.AIUM/NEMA, Standard for Real-Time Display of Thermal and Mechanical Acoustic Output Indices on Diagnostic Ultrasound Equipment. Revision 2. AIUM/NEMA Standards Publication (NEMA UD3): Amer. Inst. Ultras. Med., Laurel, MD and Nat. Elect. Manuf. Assoc., Rosslyn, VA, 2004.
219.
219.NCRP-Comm-66, NCRP Report No. 140. Exposure criteria for medical diagnostic ultrasound: II. Criteria based on all known mechanisms: National Council on Radiation Protection and Measurements, Bethesda, 2002.
220.
220.T. A. Siddiqi, W. D. O’Brien, Jr., R. A. Meyer, J. M. Sullivan, and M. Miodovnik, “In situ human obstetrical ultrasound exposimetry: Estimates of derating factors for each of three different tissue models,” Ultrasound Med. Biol. 21(3), 379391 (1995).
221.
221.C. C. Church and W. D. O’Brien, Jr., “Evaluation of the threshold for lung hemorrhage by diagnostic ultrasound and a proposed new safety index,” Ultrasound Med. Biol. 33(5), 810818 (2007).
222.
222.D. L. Miller and J. Quddus, “Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice,” Proc. Natl. Acad. Sci. U.S.A. 97(18), 1017910184 (2000).
http://dx.doi.org/10.1073/pnas.180294397
223.
223.A. R. Williams, R. C. Wiggins, B. L. Wharram, M. Goyal, C. Dou, K. J. Johnson, and D. L. Miller, “Nephron injury induced by diagnostic ultrasound imaging at high mechanical index with gas body contrast agent,” Ultrasound Med. Biol. 33(8), 13361344 (2007).
224.
224.IEEE Guide for Medical Ultrasound Field Parameter Measurements (Institute of Electrical and Electronics Engineers, Inc., New York, 1990).
225.
225.C. Ziskin and P. A. Lewin, Ultrasonic Exposimetry (CRC Press, Boca Raton, FL, 1993).
226.
226.F. A. Duck and K. Martin, “Trends in diagnostic ultrasound exposure,” Phys. Med. Biol. 36, 14231432 (1991).
227.
227.FDA, 510(k) Guide for measuring and reporting output of diagnostic ultrasound medical devices, Center for Devices and Radiological Health, U.S. FDA, Rockville, MD (1995).
228.
228.IEC, 1157 Requirements for the declaration of the acoustic output of medical diagnostic ultrasound equipment (International Electrotechnical Commission Geneva, 1992).
229.
229.IEC, IEC 60601-2-37—Particular requirements for the safety of ultrasonic medical diagnostic and monitoring equipment, ed. 2 (I.E. Commission, Geneva, 2007).
230.
230.N. Grenier, H. Trillaud, J. Palussiere, C. Mougenot, B. Quesson, B. Denis De Senneville, and C. Moonen, “Therapies by focused ultrasound,” Therapies par Ultrasons Focalises 88(11 C2), 17871800 (2007).
231.
231.H. Wang, “Adaptive ultrasound phased array systems for deep hyperthermia,” Ph.D. thesis, University of Michigan, 1994.
232.
232.NCRP, Exposure criteria for medical ultrasound. Part 1: Exposure based on thermal mechanisms. National Council on Radiation Protection and Measurements, Report 113 (National Council on Radiation Protection and Measurements, Bethesda, MD 1992).
233.
233.J. G. Lynn, R. L. Zwemer, A. J. Chick, and A. G. Miller, “A new method for the generation and use of focused ultrasound in experimental biology,” J. Gen. Physiol. 26, 179193 (1942).
http://dx.doi.org/10.1085/jgp.26.2.179
234.
234.A. K. Burov, “High-intensity ultrasonic vibrations for action on animal and human malignant tumours,” Dokl. Akad. Nauk SSSR 106, 239241 (1956).
235.
235.R. C. Miller, W. G. Connor, R. S. Heusinkveld, and M. L. M. Boone, “Prospects for hyperthermia in human cancer therapy. I. Hyperthermic effects in man and spontaneous animal tumors,” Radiology 123(2), 489495 (1977).
236.
236.A. Okada, T. Murakami, K. Mikami, H. Onishi, N. Tanigawa, T. Marukawa, and H. Nakamura, “A case of hepatocellular carcinoma treated by MR-guided focused ultrasound ablation with respiratory gating,” Magn. Reson. Med. Sci. 5(3), 167171 (2006).
237.
237.S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey, and L. A. Crum, “Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound Med. Biol. 27(1), 3342 (2001).
http://dx.doi.org/10.1016/S0301-5629(00)00279-9
238.
238.F. Wu, Z. B. Wang, W. Z. Chen, W. Wang, Y. Gui, M. Zhang, G. Zheng, Y. Zhou, G. Xu, M. Li, C. Zhang, H. Ye, and R. Feng, “Extracorporeal high intensity focused ultrasound ablation in the treatment of 1038 patients with solid carcinomas in China: An overview,” Ultrason. Sonochem. 11(3–4), 149154 (2004).
http://dx.doi.org/10.1016/j.ultsonch.2004.01.011
239.
239.Z. Xu, T. L. Hall, J. B. Fowlkes, and C. A. Cain, “Effects of acoustic parameters on bubble cloud dynamics in ultrasound tissue erosion (histotripsy),” J. Acoust. Soc. Am. 122(1), 229236 (2007).
http://dx.doi.org/10.1121/1.2735110
240.
240.J. E. Parsons, C. Cain, and G. D. Abrams, “Spatial variability in acoustic backscatter as an indicator of tissue homogenate production in pulsed cavitational ultrasound therapy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 576590 (2007).
241.
241.M. D. Torno, M. D. Kaminski, Y. Xie, R. E. Meyers, C. J. Mertz, X. Liu, W. D. O’Brien, Jr., and A. J. Rosengart, “Improvement of in vitro thrombolysis employing magnetically-guided microspheres,” Thromb. Res. 121(6), 799811 (2008).
242.
242.R. D. Zura, B. Sasser, V. Sabesan, R. Pietrobon, M. C. Tucker, and S. A. Olson, “A survey of orthopaedic traumatologists concerning the use of bone growth stimulators,” J. Surg. Orthop. Advances 16(1), 14 (2007).
243.
243.S. Vaezy and V. Zderic, “Hemorrhage control using high intensity focused ultrasound,” Int. J. Hyperthermia 23(2), 203211 (2007).
http://dx.doi.org/10.1080/02656730601169779
244.
244.R. J. Siegal, S. Vaezy, R. Martin, and L. Crum, “High intensity focused ultrasound: A method of hemostasis,” Echocardiogr. 18(4), 309315 (2001).
245.
245.P. L. Carson, W. W. Wenzel, P. Avery, and W. R. Hendee, “Ultrasound imaging as an aid to cancer therapy, Part II,” Int. J. Radiat. Oncol., Biol., Phys. 1, 335343 (1976).
246.
246.M. A. Roubidoux, G. L. LeCarpentier, J. B. Fowlkes, B. Bartz, D. Pai, S. P. Gordon, A. F. Schott, T. D. Johnson, and P. L. Carson, “Sonographic evaluation of early-stage breast cancers that undergo neoadjuvant chemotherapy,” J. Ultrasound Med. 24, 885895 (2005).
247.
247.D. J. Brewer, R. D. Dick, D. K. Grover, V. LeClaire, M. Tseng, M. Wicha, K. Pienta, B. G. Redman, T. Jahan, V. K. Sondak, M. Strawderman, G. L. LeCarpentier, and S. D. Merajver, “Treatment of metastatic cancer with tetrathiomolybdate, an anti-copper, antiangiogenic agent. I. Phase I. study,” Clin. Cancer Res. 6, 110 (2000).
248.
248.D. A. Kuban, L. Dong, R. Cheung, E. Strom, and R. De Crevoisier, “Ultrasound-based localization,” Semin. Radiat. Oncol. 15(3), 180191 (2005).
249.
249.N. P. Orton, H. A. Jaradat, and W. A. Tome, “Clinical assessment of three-dimensional ultrasound prostate localization for external beam radiotherapy,” Med. Phys. 33(12), 47104717 (2006).
http://dx.doi.org/10.1118/1.2388153
250.
250.K. Peignaux, G. Crehange, G. Truc, I. Barillot, S. Naudy, and P. Maingon, “High precision radiotherapy with ultrasonic imaging guidance,” Cancer Radiother 10(5), 231234 (2006).
251.
251.F. Trichter and R. D. Ennis, “Prostate localization using transabdominal ultrasound imaging,” Int. J. Radiat. Oncol., Biol., Phys. 56(5), 12251233 (2003).
http://dx.doi.org/10.1016/S0360-3016(03)00269-4
252.
252.W. A. Tome, S. L. Meeks, N. P. Orton, L. G. Bouchet, and F. J. Bova, “Commissioning and quality assurance of an optically guided three-dimensional ultrasound target localization system for radiotherapy,” Med. Phys. 29(8), 17811788 (2002).
http://dx.doi.org/10.1118/1.1494835
253.
253.A. Hsu, N. R. Miller, P. M. Evans, J. C. Bamber, and S. Webb, “Feasibility of using ultrasound for real-time tracking during radiotherapy,” Med. Phys. 32(6), 15001512 (2005).
http://dx.doi.org/10.1118/1.1915934
254.
254.J. Sylvester, J. C. Blasko, P. Grimm, and H. Ragde, “Interstitial implantation techniques in prostate cancer,” J. Surg. Oncol. 66(1), 6575 (1997).
http://dx.doi.org/10.1002/(SICI)1096-9098(199709)66:1<65::AID-JSO13>3.0.CO;2-N
255.
255.D. Ash, D. M. Bottomley, and B. M. Carey, “Prostate brachytherapy,” Prostate Cancer Prostatic Dis. 1(4), 185188 (1998).
256.
256.G. K. Edmundson, D. Yan, and A. A. Martinez, “Intraoperative optimization of needle placement and dwell times for conformal prostate brachytherapy,” Int. J. Radiat. Oncol., Biol., Phys. 33(5), 12571263 (1995).
257.
257.J. Pouliot, D. Tremblay, J. Roy, and S. Filice, “Optimization of permanent 125I prostate implants using fast simulated annealing,” Int. J. Radiat. Oncol., Biol., Phys. 36(3), 711720 (1996).
http://dx.doi.org/10.1016/S0360-3016(96)00365-3
258.
258.H. H. Holm and J. Gammelgaard, “Ultrasonically guided precise needle placement in the prostate and the seminal vesicles,” J. Urol. 125, 385387 (1981).
259.
259.J. C. Blasko, K. Wallner, P. D. Grimm, and H. Ragde, “Prostate specific antigen based disease control following ultrasound guided 125iodine implantation for stage T1/T2 prostatic carcinoma,” J. Urol. (Baltimore) 154(3), 10961099 (1995).
http://dx.doi.org/10.1016/S0022-5347(01)66985-4
260.
260.R. Nath, L. L. Anderson, G. Luxton, K. A. Weaver, J. F. Williamson, and A. S. Meigooni, “Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. American Association of Physicists in Medicine,” Med. Phys. 22(2), 209234 (1995).
http://dx.doi.org/10.1118/1.597458
261.
261.M. Steggerda, C. Schneider, M. van Herk, L. Zijp, L. Moonen, and H. van der Poel, “The applicability of simultaneous TRUS-CT imaging for the evaluation of prostate seed implants,” Med. Phys. 32(7), 22622270 (2005).
http://dx.doi.org/10.1118/1.1940147
262.
262.S. Tong, H. N. Cardinal, D. B. Downey, and A. Fenster, “Analysis of linear, area and volume distortion in 3D ultrasound imaging,” Ultrasound Med. Biol. 24(3), 355373 (1998).
http://dx.doi.org/10.1016/S0301-5629(97)00268-8
263.
263.Z. Wei, G. Wan, L. Gardi, G. Mills, D. Downey, and A. Fenster, “Robot-assisted 3D-TRUS guided prostate brachytherapy: System integration and validation,” Med. Phys. 31(3), 539548 (2004).
http://dx.doi.org/10.1118/1.1645680
264.
264.G. Fichtinger, E. C. Burdette, A. Tanacs, A. Patriciu, D. Mazilu, L. L. Whitcomb, and D. Stoianovici, “Robotically assisted prostate brachytherapy with transrectal ultrasound guidance—Phantom experiments,” Brachytherapy 5(1), 1426 (2006).
http://dx.doi.org/10.1016/j.brachy.2005.10.003
265.
265.Z. Wei, L. Gardi, D. B. Downey, and A. Fenster, “Oblique needle segmentation and tracking for 3D TRUS guided prostate brachytherapy,” Med. Phys. 32(9), 29282941 (2005).
http://dx.doi.org/10.1118/1.2011108
266.
266.G. Wan, Z. Wei, L. Gardi, D. B. Downey, and A. Fenster, “Brachytherapy needle deflection evaluation and correction,” Med. Phys. 32(4), 902909 (2005).
http://dx.doi.org/10.1118/1.1871372
267.
267.M. Ding, H. N. Cardinal, and A. Fenster, “Automatic needle segmentation in three-dimensional ultrasound images using two orthogonal two-dimensional image projections,” Med. Phys. 30(2), 222234 (2003).
http://dx.doi.org/10.1118/1.1538231
268.
268.M. Ding and A. Fenster, “A real-time biopsy needle segmentation technique using Hough transform,” Med. Phys. 30(8), 22222233 (2003).
http://dx.doi.org/10.1118/1.1591192
269.
269.Z. Wei, L. Gardi, D. B. Downey, and A. Fenster, “Automated localization of implanted seeds in 3D TRUS images used for prostate brachytherapy,” Med. Phys. 33(7), 24042417 (2006).
http://dx.doi.org/10.1118/1.2207132
270.
270.L. Phee, J. Yuen, D. Xiao, C. F. Chan, H. Ho, C. H. Thing, P. H. Tan, C. Cheng, and W. S. Ng, “Ultrasound guided robotic biopsy of the prostate,” Int. J. Humanoid Robot. 3(4), 463483 (2006).
271.
271.A. Fenster, D. B. Downey, and H. N. Cardinal, “Three-dimensional ultrasound imaging,” Phys. Med. Biol. 46(5), R6799 (2001).
http://dx.doi.org/10.1088/0031-9155/46/5/201
272.
272.A. Fenster and D. B. Downey, “Three-dimensional ultrasound imaging and its use in quantifying organ and pathology volumes,” Anal. Bioanal. Chem. 377(6), 982989 (2003).
273.
273.H. Bassan, T. Hayes, R. V. Patel, and M. Moallem, “A novel manipulator for 3D ultrasound guided percutaneous needle insertion,” IEEE International Conference on Robotics and Automation Proceedings, pp. 617622 (Rome, 2007).
274.
274.S. Tong, D. B. Downey, H. N. Cardinal, and A. Fenster, “A three-dimensional ultrasound prostate imaging system,” Ultrasound Med. Biol. 22(6), 735746 (1996).
http://dx.doi.org/10.1016/0301-5629(96)00079-8
275.
275.F. Shao, “Efficient 3D prostate surface detection for ultrasound guided robotic biopsy,” Int. J. Radiat. Oncol., Biol., Phys. 3(4), 439461 (2006).
276.
276.H. M. Ladak, Y. Wang, D. B. Downey, and A. Fenster, “Testing and optimization of a semiautomatic prostate boundary segmentation algorithm using virtual operators,” Med. Phys. 30(7), 16371647 (2003).
http://dx.doi.org/10.1118/1.1584043
277.
277.Y. Wang, H. N. Cardinal, D. B. Downey, and A. Fenster, “Semiautomatic three-dimensional segmentation of the prostate using two-dimensional ultrasound images,” Med. Phys. 30(5), 887897 (2003).
http://dx.doi.org/10.1118/1.1568975
278.
278.M. Ding, B. Chiu, I. Gyacskov, X. Yuan, M. Drangova, D. B. Downey, and A. Fenster, “Fast prostate segmentation in 3D TRUS images based on continuity constraint using an autoregressive model,” Med. Phys. 34(11), 41094125 (2007).
http://dx.doi.org/10.1118/1.2777005
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/36/2/10.1118/1.2992048
Loading
/content/aapm/journal/medphys/36/2/10.1118/1.2992048
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/36/2/10.1118/1.2992048
2009-01-13
2015-07-07

Abstract

Ultrasound has been the greatest imaging modality worldwide for many years by equipment purchase value and by number of machines and examinations. It is becoming increasingly the front end imaging modality; serving often as an extension of the physician’s fingers. We believe that at the other extreme, high-end systems will continue to compete with all other imaging modalities in imaging departments to be the method of choice for various applications, particularly where safety and cost are paramount. Therapeutic ultrasound, in addition to the physiotherapy practiced for many decades, is just coming into its own as a major tool in the long progression to less invasive interventional treatment. The physics of medical ultrasound has evolved over many fronts throughout its history. For this reason, a topical review, rather than a primarily chronological one is presented. A brief review of medical ultrasound imaging and therapy is presented, with an emphasis on the contributions of medical physicists, the American Association of Physicists in Medicine (AAPM) and its publications, particularly its journal . The AAPM and Medical Physics have contributed substantially to training of physicists and engineers, medical practitioners, technologists, and the public.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/36/2/1.2992048.html;jsessionid=8nhci7hnmommf.x-aip-live-06?itemId=/content/aapm/journal/medphys/36/2/10.1118/1.2992048&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Anniversary Paper: Evolution of ultrasound physics and the role of medical physicists and the AAPM and its journal in that evolution
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/36/2/10.1118/1.2992048
10.1118/1.2992048
SEARCH_EXPAND_ITEM