1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Fixed gantry tomosynthesis system for radiation therapy image guidance based on a multiple source x-ray tube with carbon nanotube cathodes
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/36/5/10.1118/1.3110067
1.
1.A. H. Baydush, D. J. Godfrey, M. Oldham, and J. T. Dobbins III, “Initial application of digital tomosynthesis with on-board imaging in radiation oncology,” in Medical Imaging 2005: Physics of Medical Imaging, edited by M. J. Flynn (SPIE, Bellingham, WA, 2005), Vol. 5745, pp. 13001305.
2.
2.M. Svatos, G. Pang, B. Gangadharan, J. Maltz, A. Bani-Hashemi, P. O’Brien, and J. Rowlands, “4D cone beam digital tomosynthesis (CBDT) and digitally reconstructed tomograms (DRTs) for improved image guidance of lung radiotherapy,” Med. Phys. 32, 2161 (2005).
http://dx.doi.org/10.1118/1.1998654
3.
3.D. J. Godfrey, F.-F. Yin, M. Oldham, S. Yoo, and C. Willett, “Digital tomosynthesis with an on-board kilovoltage imaging device,” Int. J. Radiat. Oncol., Biol., Phys. 65, 815 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2006.01.025
4.
4.G. Pang, A. Bani-Hashemi, P. Au, P. F. O’Brien, J. A. Rowlands, G. Morton, T. Lim, P. Cheung, and A. Loblaw, “Megavoltage cone beam digital tomosynthesis (MV-CBDT) for image-guided radiotherapy: A clinical investigational system,” Phys. Med. Biol. 53, 9991013 (2008).
http://dx.doi.org/10.1088/0031-9155/53/4/012
5.
5.M. Descovich, O. Morin, J. F. Aubry, M. Aubin, J. Chen, A. Bani-Hashemi, and J. Pouliot, “Characteristics of megavoltage cone-beam digital tomosynthesis,” Med. Phys. 35, 13101316 (2008).
http://dx.doi.org/10.1118/1.2868763
6.
6.J. Maltz, B. Gangadharan, D. Hristov, and M. Svatos, “Volumetric cone beam reconstruction engines for 4D image guidance,” Med. Phys. 32, 20912092 (2005).
http://dx.doi.org/10.1118/1.1998381
7.
7.D. Lalush, E. Quan, R. Rajaram, J. Zhang, J. Lu, and O. Zhou, “Tomosynthesis reconstruction from multi-beam x-ray sources,” Proceedings of the Third IEEE International Symposium on Biomedical Imaging: Nano to Macro, April 2006 (unpublished), pp. 11801183.
8.
8.W. Dyke and W. Dolan, “Field emission,” Adv. Electron. Electron Phys. 8, 89185 (1956).
http://dx.doi.org/10.1016/S0065-2539(08)61226-3
9.
9.H. Ijiri, H. Ohgaki, Y. Uozumi, T. Sakae, and M. Matoba, “Development of soft x-ray sources with electron guns of field emission- and thermal cathode-types and their application to counter experiments,” J. Nucl. Sci. Technol. 33, 423428 (1996).
http://dx.doi.org/10.3327/jnst.33.423
10.
10.P. Rangsten, C. Ribbing, C. Strandman, B. Hk, and L. Smith, “Field-emitting structures intended for a miniature x-ray source,” Sens. Actuators, A 82, 2429 (2000).
http://dx.doi.org/10.1016/S0924-4247(00)00287-9
11.
11.H. Sugie, M. Tanemura, V. Filip, K. Iwata, K. Takahashi, and F. Okuyama, “Carbon nanotubes as electron source in an x-ray tube,” Appl. Phys. Lett. 78, 25782580 (2001).
http://dx.doi.org/10.1063/1.1367278
12.
12.G. Z. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, J. P. Lu, and O. Zhou, “Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode,” Appl. Phys. Lett. 81, 355357 (2002).
http://dx.doi.org/10.1063/1.1492305
13.
13.S. Iijima, “Helical microtubules of graphitic carbon,” Nature (London) 354, 5658 (1991).
http://dx.doi.org/10.1038/354056a0
14.
14.S. Kita, Y. Watanabe, A. Ogawa, K. Ogura, Y. Sakai, Y. Matsumoto, Y. Isokane, F. Okuyama, T. Nakazato, and T. Otsuka, “Field-emission-type x-ray source using carbon-nanofibers,” J. Appl. Phys. 103, 064505 (2008).
http://dx.doi.org/10.1063/1.2894730
15.
15.H. X. Wang, N. Jiang, H. Hiraki, Y. Harada, H. Zhang, J. Wang, M. Haba, and A. Hiraki, “Fabrication of field-emission cathode ray tube with a unique nanostructure carbon electron emitter,” J. Vac. Sci. Technol. B 26, 698701 (2008).
http://dx.doi.org/10.1116/1.2837853
16.
16.A. Haga, S. Senda, Y. Sakai, Y. Mizuta, S. Kita, and F. Okuyama, “A miniature x-ray tube,” Appl. Phys. Lett. 84, 22082210 (2004).
http://dx.doi.org/10.1063/1.1689757
17.
17.S. Senda, Y. Sakai, Y. Mizuta, S. Kita, and F. Okuyama, “Super-miniature x-ray tube,” Appl. Phys. Lett. 85, 56795681 (2004).
http://dx.doi.org/10.1063/1.1832733
18.
18.Z. Liu, G. Yang, Y. Z. Lee, D. Bordelon, J. Lu, and O. Zhou, “Carbon nanotube based microfocus field emission x-ray source for microcomputed tomography,” Appl. Phys. Lett. 89, 103111 (2006).
http://dx.doi.org/10.1063/1.2345829
19.
19.K. Kawakita, K. Hata, H. Sato, and Y. Saito, “Development of microfocused x-ray source by using carbon nanotube field emitter,” J. Vac. Sci. Technol. B 24, 950952 (2006).
http://dx.doi.org/10.1116/1.2183785
20.
20.J. Zhang, G. Yang, Y. Cheng, B. Gao, Q. Qiu, Y. Z. Lee, J. P. Lu, and O. Zhou, “Stationary scanning x-ray source based on carbon nanotube field emitters,” Appl. Phys. Lett. 86, 184104 (2005).
http://dx.doi.org/10.1063/1.1923750
21.
21.J. Zhang, G. Yang, Y. Z. Lee, S. Chang, J. P. Lu, and O. Zhou, “Multiplexing radiography using a carbon nanotube based x-ray source,” Appl. Phys. Lett. 89, 064106 (2006).
http://dx.doi.org/10.1063/1.2234744
22.
22.M. C. Kirby and A. G. Glendinning, “Developments in electronic portal imaging systems,” Br. J. Radiol. 79, S50S65 (2006).
http://dx.doi.org/10.1259/bjr/21517185
23.
23.B. Faddegon, I. Hsu, F. Ghelmansarai, A. Bani-Hashemi, and J. Pouliot, “Significant improvement in megavoltage cone-beam CT in a side-by-side comparison of a cadaver imaged with x-rays from low and high-Z targets,” Int. J. Radiat. Oncol., Biol., Phys. 66, S147S147 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2006.07.296
24.
24.B. A. Faddegon, V. Wu, J. Pouliot, B. Gangadharan, and A. Bani-Hashemi, “Low dose megavoltage cone beam computed tomography with an unflattened beam from a carbon target,” Med. Phys. 35, 57775786 (2008).
http://dx.doi.org/10.1118/1.3013571
25.
25.J. Hubbell and S. Seltzer, “Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients (version 1.4),” available at http://physics.nist.gov/xaamdi 2004.
26.
26.J. S. Maltz, B. Gangadharan, S. Bose, D. Hristov, B. Faddegon, A. Paidi, and A. Bani-Hashemi, “Algorithm for x-ray scatter, beam-hardening and beam profile correction in diagnostic (kilo-voltage) and treatment (megavoltage) cone beam CT,” IEEE Trans. Med. Imaging 27, 17911810 (2008).
http://dx.doi.org/10.1109/TMI.2008.928922
27.
27.E. Sundermann, F. Jacobs, M. Christiaens, B. D. Sutter, and I. Lemahieu, “A fast algorithm to calculate the exact radiological path through a pixel or voxel space,” Journal of Computing and Information Technology 6, 8994 (1998).
28.
28.A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm,” Ultrason. Imaging 6, 8194 (1984).
http://dx.doi.org/10.1016/0161-7346(84)90008-7
29.
29.F. Xu and K. Mueller, “Real-time 3D computed tomographic reconstruction using commodity graphics hardware,” 52, 34053419 (2007).
30.
30.P. J. Keall, G. S. Mageras, J. M. Balter, R. S. Emery, K. M. Forster, S. B. Jiang, J. M. Kapatoes, D. A. Low, M. J. Murphy, B. R. Murray, C. R. Ramsey, M. B. V. Herk, S. S. Vedam, J. W. Wong, and E. Yorke, “The management of respiratory motion in radiation oncology report of AAPM Task Group 76,” Med. Phys. 33, 38743900 (2006).
http://dx.doi.org/10.1118/1.2349696
31.
31.S. Sayeh, J. Wang, W. Main, W. Kilby, and C. Maurer, Respiratory Motion Tracking for Robotic Radiosurgery (Springer-Verlag, Berlin, 2007), pp. 1529.
32.
32.K. M. Langen, W. Lu, W. Ngwa, T. R. Willoughby, B. Chauhan, S. L. Meeks, P. A. Kupelian, and G. Olivera, “Correlation between dosimetric effect and intrafraction motion during prostate treatments delivered with helical tomotherapy,” Phys. Med. Biol. 53, 70737086 (2008).
http://dx.doi.org/10.1088/0031-9155/53/24/005
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/36/5/10.1118/1.3110067
Loading
/content/aapm/journal/medphys/36/5/10.1118/1.3110067
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/36/5/10.1118/1.3110067
2009-04-13
2014-09-21

Abstract

The authors present the design and simulation of an imaging system that employs a compact multiple source x-ray tube to produce a tomosynthesisimage from a set of projections obtained at a single tube position. The electron sources within the tube are realized using cold cathodecarbon nanotube technology. The primary intended application is tomosynthesis-based 3D image guidance during external beam radiation therapy. The tube, which is attached to the gantry of a medicallinear accelerator(linac) immediately below the multileaf collimator, operates within the voltage range of and contains a total of 52 sources that are arranged in a rectilinear array. This configuration allows for the acquisition of tomographic projections from multiple angles without any need to rotate the linac gantry. The x-ray images are captured by the same amorphous silicon flat panel detector employed for portal imaging on contemporary linacs. The field of view (FOV) of the system corresponds to that part of the volume that is sampled by rays from all sources. The present tube and detector configuration provides an FOV in the plane of the linac isocenter when the imaging detector is placed from the isocenter. Since this tomosynthesis application utilizes the extremities of the detector to record image detail relating to structures near the isocenter, simultaneous treatment and imaging is possible for most clinical cases, where the treated target is a small region close to the linac isocenter. The tomosynthesisimages are reconstructed using the simultaneous iterative reconstruction technique, which is accelerated using a graphic processing unit. The authors present details of the system design as well as simulated performance of the imaging system based on reprojections of patient CTimages.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/36/5/1.3110067.html;jsessionid=1bkrxefde3mwg.x-aip-live-02?itemId=/content/aapm/journal/medphys/36/5/10.1118/1.3110067&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys

Most read this month

Article
content/aapm/journal/medphys
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Fixed gantry tomosynthesis system for radiation therapy image guidance based on a multiple source x-ray tube with carbon nanotube cathodes
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/36/5/10.1118/1.3110067
10.1118/1.3110067
SEARCH_EXPAND_ITEM