Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/36/6/10.1118/1.3120285
1.
1.B. G. Ziedses des Plantes, “Eine neue methode zur differenzierung in der roentgenographie (planigraphie),” Acta Radiol. 13, 182192 (1932).
http://dx.doi.org/10.3109/00016923209135135
2.
2.D. G. Grant, “Tomosynthesis: A three-dimensional radiographic imaging technique,” IEEE Trans. Biomed. Eng. BME-19, 2028 (1972).
http://dx.doi.org/10.1109/TBME.1972.324154
3.
3.P. Edholm, G. Granlund, H. Knutsson, and C. Petersson, “Ectomography: A new radiographic method for reproducing a selected slice of varying thickness,” Acta Radiol. 21, 433442 (1980).
4.
4.H. Becher, M. Schluter, D. G. Mathey, W. Bleifeld, E. Klotz, P. Haaker, R. Linde, and H. Weiss, “Coronary angiography with flashing tomosynthesis,” Eur. Heart J. 6, 399408 (1985).
5.
5.D. N. Ghosh Roy, R. A. Kruger, B. Yih, and P. Del Rio, “Selective plane removal in limited angle tomographic imaging,” Med. Phys. 12, 6570 (1985).
http://dx.doi.org/10.1118/1.595791
6.
6.D. P. Chakraborty, M. V. Yester, G. T. Barnes, and A. V. Lakshminarayanan, “Self-masking subtraction tomosynthesis,” Radiology 150, 225229 (1984).
7.
7.U. E. Ruttimann, R. A. J. Groenhuis, and R. L. Webber, “Restoration of digital multiplane tomosynthesis by a constrained iteration method,” IEEE Trans. Med. Imaging 3, 141148 (1984).
http://dx.doi.org/10.1109/TMI.1984.4307670
8.
8.J. T. Dobbins III, A. O. Powell, and Y. K. Weaver, “Matrix inversion tomosynthesis: Initial image reconstruction,” in RSNA 73rd Scientific Assembly, Chicago, IL, 1987 (unpublished).
9.
9.S. Sone, T. Kasuga, F. Sakai, K. Oguchi, A. Itoh, F. Li, Y. Maruyama, K. Kubo, T. Honda, M. Haniuda, and K. Takemura, “Digital tomosynthesis imaging of the lung,” Radiat. Med. 14, 5363 (1996).
10.
10.J. T. Dobbins III, R. L. Webber, and S. M. Hames, “Tomosynthesis for improved pulmonary nodule detection,” in RSNA 84th Scientific Assembly, Chicago, IL, 1998 (unpublished).
11.
11.R. J. Warp, D. J. Godfrey, and J. T. Dobbins III, “Applications of matrix inverse tomosynthesis,” Proc. SPIE 3977, 376383 (2000).
http://dx.doi.org/10.1117/12.384512
12.
12.D. J. Godfrey, R. J. Warp, and J. T. Dobbins III, “Optimization of matrix inverse tomosynthesis,” Proc. SPIE 4320, 696704 (2001).
http://dx.doi.org/10.1117/12.430908
13.
13.D. J. Godfrey, A. Rader, and J. T. Dobbins III, “Practical strategies for the clinical implementation of matrix inversion tomosynthesis (MITS),” Proc. SPIE 5030, 379390 (2003).
http://dx.doi.org/10.1117/12.480352
14.
14.J. T. Dobbins III, D. J. Godfrey, and H. P. McAdams, in Advances in Digital Radiography: RSNA Categorical Course in Digital Radiography, edited by E. Samei and M. J. Flynn (Radiological Society of North America, Oak Brook, 2003).
15.
15.D. J. Godfrey, H. P. McAdams, and J. T. Dobbins III, “Optimization of the matrix inversion tomosynthesis (MITS) impulse response and modulation transfer function characteristics for chest imaging,” Med. Phys. 33, 655667 (2006).
http://dx.doi.org/10.1118/1.2170398
16.
16.J. T. Dobbins III, H. P. McAdams, J. -W. Song, C. M. Li, D. J. Godfrey, D. M. DeLong, S. -H. Paik, and S. Martinez-Jimenez, “Digital tomosynthesis of the chest for lung nodule detection: Interim sensitivity results from an ongoing NIH-sponsored trial,” Med. Phys. 35, 25542557 (2008).
http://dx.doi.org/10.1118/1.2937277
17.
17.L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. -Y. Wei, and R. F. Wirth,, “Digital tomosynthesis in breast imaging,” Radiology 205, 399406 (1997).
18.
18.S. Suryanarayanan, A. Karellas, S. Vedantham, S. J. Glick, C. J. D’Orsi, S. P. Baker, and R. L. Webber, “Comparison of tomosynthesis methods used with digital mammography,” Acad. Radiol. 7, 10851097 (2000).
http://dx.doi.org/10.1016/S1076-6332(00)80061-6
19.
19.T. Wu, A. Stewart, M. Stanton, T. McCauley, W. Phillips, D. B. Kopans, R. H. Moore, J. W. Eberhard, B. Opsahl-Ong, L. Niklason, and M. B. Williams, “Tomographic mammography using a limited number of low-dose cone-beam projection images,” Med. Phys. 30, 365380 (2003).
http://dx.doi.org/10.1118/1.1543934
20.
20.J. T. Dobbins III and D. J. Godfrey, “Digital x-ray tomosynthesis: Current state of the art and clinical potential,” Phys. Med. Biol. 48, R65R106 (2003).
http://dx.doi.org/10.1088/0031-9155/48/19/R01
21.
21.D. J. Godfrey, F. -F. Yin, M. Oldham, S. Yoo, and C. Willett, “Digital tomosynthesis with an on-board kilovoltage imaging device,” Int. J. Radiat. Oncol., Biol., Phys. 65, 815 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2006.01.025
22.
22.Z. Kolitsi, V. Anastassopoulos, A. Scodras, and N. Pallikarakis, “A multiple projection method for digital tomosynthesis,” Med. Phys. 19, 10451050 (1992).
http://dx.doi.org/10.1118/1.596822
23.
23.Y. Chen, J. Y. Lo, and J. T. Dobbins III, “Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: Relevance to morphology of structures such as microcalcifications,” Med. Phys. 34, 38853892 (2007).
http://dx.doi.org/10.1118/1.2776256
24.
24.R. L. Webber, R. A. Horton, D. A. Tyndall, and J. B. Ludlow, “Tuned-aperture computed tomography (TACT-TM): Theory and application for three-dimensional dento-alveolar imaging,” Dentomaxillofac Radiol. 26, 5362 (1997).
http://dx.doi.org/10.1038/sj.dmfr.4600201
25.
25.G. Lauritsch and W. H. Harer, “A theoretical framework for filtered backprojection in tomosynthesis,” Proc. SPIE 3338, 11271137 (1998).
http://dx.doi.org/10.1117/12.310839
26.
26.T. Wu, R. H. Moore, E. A. Rafferty, and D. B. Kopans, “A comparison of reconstruction algorithms for breast tomosynthesis,” Med. Phys. 31, 26362647 (2004).
http://dx.doi.org/10.1118/1.1786692
27.
27.Y. Zhang, H. P. Chan, B. Sahiner, J. Wei, M. M. Goodsitt, L. M. Hadjiiski, J. Ge, and C. Zhou, “A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis,” Med. Phys. 33, 37813795 (2006).
http://dx.doi.org/10.1118/1.2237543
28.
28.Y. Zhang, H. P. Chan, B. Sahiner, Y. -T. Wu, C. Zhou, J. Ge, J. Wei, and L. M. Hadjiiski, “Application of boundary detection information in breast tomosynthesis reconstruction,” Med. Phys. 34, 36033613 (2007).
http://dx.doi.org/10.1118/1.2761968
29.
29.R. Fahrig, A. R. Pineda, E. G. Solomon, A. N. Leung, and N. J. Pelc, “Fast tomosynthesis for lung cancer detection using the SBDX geometry,” Proc. SPIE 5030, 371378 (2003).
http://dx.doi.org/10.1117/12.480149
30.
30.A. R. Pineda, S. Yoon, D. S. Paik, and R. Fahrig, “Optimization of a tomosynthesis system for the detection of lung nodules,” Med. Phys. 33, 13721379 (2006).
http://dx.doi.org/10.1118/1.2190329
31.
31.E. G. Solomon, M. S. Van Lysel, R. E. Melen, J. W. Moorman, and B. Skillicorn, “Low-exposure scanning-beam x-ray fluoroscopy system,” Proc. SPIE 2708, 140149 (1996).
http://dx.doi.org/10.1117/12.237777
32.
32.B. Li, G. B. Avinash, J. W. Eberhard, and B. E. H. Claus, “Optimization of slice sensitivity profile for radiographic tomosynthesis,” Med. Phys. 34, 29072916 (2007).
http://dx.doi.org/10.1118/1.2742499
33.
33.S. P. Poplack, T. D. Tosteson, C. A. Kogel, and H. M. Nagy, “Digital breast tomosynthesis: Initial experience in 98 women with abnormal digital screening mammography,” AJR Am. J. Roentgenol. 189, 616623 (2007).
http://dx.doi.org/10.2214/AJR.07.2231
34.
34.W. Zhao, B. Zhao, P. R. Fisher, P. Warmoes, T. Mertelmeier, and J. Orman, “Optimization of detector operation and imaging geometry for breast tomosynthesis,” Proc. SPIE 6510, M1M12 (2007).
35.
35.T. Wu, R. H. Moore, and D. B. Kopans, “Voting strategy for artifact reduction in digital breast tomosynthesis,” Med. Phys. 33, 24612471 (2006).
http://dx.doi.org/10.1118/1.2207127
36.
36.J. M. Park, E. A. J. Franken, M. Garg, L. L. Fajardo, and L. T. Niklason, “Breast tomosynthesis: Present considerations and future applications,” Radiographics 27, S231S240 (2007).
http://dx.doi.org/10.1148/rg.27si075511
37.
37.T. Wallack, “New dimension in detection,” Boston Globe, June 6, 2008.
38.
38.Y. Chen, J. Y. Lo, J. A. Baker, and J. T. Dobbins III, “Gaussian frequency blending algorithm with matrix inversion tomosynthesis (MITS) and filtered back projection (FBP) for better digital breast tomosynthesis reconstruction,” Proc. SPIE 6142, 0E10E9 (2006).
39.
39.Y. Chen, J. Y. Lo, and J. T. Dobbins III, “Impulse response analysis for several digital tomosynthesis mammography reconstruction algorithms,” Proc. SPIE 5745, 541549 (2005).
http://dx.doi.org/10.1117/12.595684
40.
40.J. T. Rakowski and M. J. Dennis, “A comparison of reconstruction algorithms for C-arm mammography tomosynthesis,” Med. Phys. 33, 30183032 (2006).
http://dx.doi.org/10.1118/1.2219090
41.
41.J. Zhou, B. Zhao, and W. Zhao, “A computer simulation platform for the optimization of a breast tomosynthesis system,” Med. Phys. 34, 10981109 (2007).
http://dx.doi.org/10.1118/1.2558160
42.
42.H. C. Gifford, C. S. Didier, M. Das, and S. J. Glick, “Optimizing breast-tomosynthesis acquisition parameters with scanning model observers,” Proc. SPIE 6917, 0S10S9 (2008).
43.
43.T. Deller, K. N. Jabri, J. M. Sabol, X. Ni, G. Avinash, R. Saunders, and R. UppaluriEffect of acquisition parameters on image quality in digital tomosynthesis,” Proc. SPIE 6510, 1L11L11 (2007).
44.
44.I. Reiser, B. A. Lau, and R. M. Nishikawa, “Effect of scan angle and reconstruction algorithm on model observer performance in tomosynthesis,” in IWDM 2008, edited by E. A. Krupinski (Springer-Verlag, Berlin, 2008), Vol. LNCS 5116, pp. 606611.
45.
45.H. P. Chan, J. Wei, Y. Zhang, B. Sahiner, L. M. Hadjiiski, and M. A. Helvie, “Detection of massses in digital breast tomosynthesis mammography: Effects of the number of projection views and dose,” in IWDM 2008, edited by E. A. Krupinski (Springer-Verlag, Berlin, 2008), Vol. LNSC 5116, pp. 279285.
46.
46.X. Gong, S. J. Glick, B. Liu, A. A. Vedula, and S. Thacker, “A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging,” Med. Phys. 33, 10411052 (2006).
http://dx.doi.org/10.1118/1.2174127
47.
47.W. F. Good, G. S. Abrams, V. J. Catullo, D. M. Chough, M. A. Ganott, C. M. Hakim, and D. Gur, “Digital breast tomosynthesis: A pilot observer study,” AJR Am. J. Roentgenol. 190, 865869 (2008).
http://dx.doi.org/10.2214/AJR.07.2841
48.
48.J. Vikgren, S. Zachrisson, A. Svalkvist, Å. A. Johnsson, M. Boijsen, A. Flinck, S. Kheddache, and M. Båth, “Comparison of chest tomosynthesis and chest radiography for detection of pulmonary nodules: Human observer study of clinical cases,” Radiology 249, 10341041 (2008).
http://dx.doi.org/10.1148/radiol.2492080304
49.
49.C. M. Li and J. T. Dobbins III, “Methodology for determining dose reduction for chest tomosynthesis,” Proc. SPIE 6510, 2D12D10 (2007).
50.
50.P. Timberg, M. Båth, I. Andersson, T. Svahn, M. Ruschin, B. Hemdal, S. Mattsson, and A. Tingberg, “Impact of dose on observer performance in breast tomosynthesis using breast specimens,” Proc. SPIE 6913, 4J14J10 (2008).
51.
51.D. Gur, “Tomosynthesis: Potential clinical role in breast imaging,” AJR Am. J. Roentgenol. 189, 614615 (2007).
http://dx.doi.org/10.2214/AJR.07.2588
52.
52.E. A. Rafferty, L. T. Niklason, and L. A. Jameson-Meehan, “Breast tomosynthesis: One view or two?,” in RSNA 92nd Scientific Assembly, Chicago, IL, 2006 (unpublished).
53.
53.R. M. Nishikawa, I. Reiser, and P. Seifi, “A new approach to digital breast tomosynthesis for breast cancer screening,” Proc. SPIE 6510, 3C13C8 (2007).
54.
54.G. Yang, R. Rajaram, G. Cao, S. Sultana, Z. Liu, D. Lalush, J. Lu, and O. Zhou, “Stationary digital breast tomosynthesis system with a multi-beam field emission x-ray source array,” Proc. SPIE 6913, 1A11A10 (2008).
55.
55.S. C. Chen, A. -K. Carton, M. Albert, E. F. Conant, M. D. Schnall, and A. D. A. Maidment, “Initial clinical experience with contrast-enhanced digital breast tomosynthesis,” Acad. Radiol. 14, 229238 (2007).
http://dx.doi.org/10.1016/j.acra.2006.10.022
56.
56.A. Karellas, J. Y. Lo, and C. G. Orton, “Cone beam x-ray CT will be superior to digital x-ray tomosynthesis in imaging the breast and delineating cancer,” Med. Phys. 35, 409411 (2008).
http://dx.doi.org/10.1118/1.2825612
57.
57.The International Early Lung Cancer Action Program Investigators, “Survival of patients with stage I lung cancer detected on CT screening,” N. Engl. J. Med. 355, 17631771 (2006).
http://dx.doi.org/10.1056/NEJMoa060476
58.
58.P. B. Bach, J. R. Jett, U. Pastorino, M. S. Tockman, S. J. Swensen, and C. B. Begg, “Computed tomography screening and lung cancer outcomes,” JAMA, J. Am. Med. Assoc. 297, 953961 (2007).
http://dx.doi.org/10.1001/jama.297.9.953
59.
59.D. R. Aberle, C. Chiles, C. Gatsonis, B. J. Hillman, C. D. Johnson, B. L. McClennan, D. G. Mitchell, E. D. Pisano, M. D. Schnall, and A. G. Sorensen, “Imaging and cancer: Research strategy of the American College of Radiology Imaging Network,” Radiology 235, 741751 (2005).
http://dx.doi.org/10.1148/radiol.2353041760
60.
60.D. J. Godfrey, L. Ren, H. Yan, Q. J. Wu, S. Yoo, M. Oldham, and F. -F. Yin, “Evaluation of three types of reference image data for external beam radiotherapy target localization using digital tomosynthesis (DTS),” Med. Phys. 34, 33743384 (2007).
http://dx.doi.org/10.1118/1.2756941
61.
61.Q. J. Wu, D. J. Godfrey, Z. Wang, J. Zhang, S. Zhou, S. Yoo, D. M. Brizel, and F. -F. Yin, “On-board patient positioning for head-and-neck IMRT: Comparing digital tomosynthesis to kilovoltage radiography and cone-beam computed tomography,” Int. J. Radiat. Oncol., Biol., Phys. 69, 598606 (2007).
http://dx.doi.org/10.1016/j.ijrobp.2007.05.045
62.
62.H. Yan, L. Ren, D. J. Godfrey, and F. -F. Yin, “Accelerating reconstruction of reference digital tomosynthesis using graphics hardware,” Med. Phys. 34, 37683776 (2007).
http://dx.doi.org/10.1118/1.2779945
63.
63.L. Ren, D. J. Godfrey, H. Yan, Q. J. Wu, and F. -F. Yin, “Automatic registration between reference and on-board digital tomosynthesis images for positioning verification,” Med. Phys. 35, 664672 (2008).
http://dx.doi.org/10.1118/1.2831903
64.
64.H. Yan, D. J. Godfrey, and F. -F. Yin, “Fast reconstruction of digital tomosynthesis using on-board images,” Med. Phys. 35, 21622169 (2008).
http://dx.doi.org/10.1118/1.2896077
65.
65.G. Pang, A. Bani-Hashemi, P. Au, P. F. O’Brien, J. A. Rowlands, G. Morton, T. Lim, P. Cheung, and A. Loblaw, “Megavoltage cone beam digital tomosynthesis (MV-CBDT) for image-guided radiotherapy: A clinical investigational system,” Phys. Med. Biol. 53, 9991013 (2008).
http://dx.doi.org/10.1088/0031-9155/53/4/012
66.
66.M. Descovich, O. Morin, J. F. Aubry, M. Aubin, J. Chen, A. Bani-Hashemi, and J. Pouliot, “Characteristics of megavoltage cone-beam digital tomosynthesis,” Med. Phys. 35, 13101316 (2008).
http://dx.doi.org/10.1118/1.2868763
67.
67.I. B. Tutar, R. Managuli, V. Shamdasani, P. S. Cho, S. D. Pathak, and Y. Kim, “Tomosynthesis-based localization of radioactive seeds in prostate brachytherapy,” Med. Phys. 30, 31353142 (2003).
http://dx.doi.org/10.1118/1.1624755
68.
68.M. J. Flynn, R. McGee, and J. Blechinger, “Spatial resolution of x-ray tomosynthesis in relation to computed tomography for coronal/sagittal images of the knee,” Proc. SPIE 6510, 0D10D9 (2007).
69.
69.F. H. Fahey, R. L. Webber, F. S.-K. Chew, and B. A. Dickerson, “Application of TACT® to the evaluation of total joint arthroplasty,” Med. Phys. 30, 454460 (2003).
http://dx.doi.org/10.1118/1.1544676
70.
70.J. Duryea, J. T. Dobbins III, and J. A. Lynch, “Digital tomosynthesis of hand joints for arthritis assessment,” Med. Phys. 30, 325333 (2003).
http://dx.doi.org/10.1118/1.1543573
71.
71.S. Li and H. Jiang, “A practical method for three-dimensional reconstruction of joints using a C-arm system and shift-and-add algorithm,” Med. Phys. 32, 14911499 (2005).
http://dx.doi.org/10.1118/1.1915289
72.
72.G. Bachar, J. H. Siewerdsen, M. J. Daly, D. A. Jaffray, and J. C. Irish, “Image quality and localization accuracy in C-arm tomosynthesis-guided head and neck surgery,” Med. Phys. 34, 46644677 (2007).
http://dx.doi.org/10.1118/1.2799492
73.
73.H. P. Chan, J. Wei, B. Sahiner, E. A. Rafferty, T. Wu, M. A. Roubidoux, R. H. Moore, D. B. Kopans, L. M. Hadjiiski, and M. A. Helvie, “Computer-aided detection system for breast masses on digital tomosynthesis mammograms: Preliminary experience,” Radiology 237, 10751080 (2005).
http://dx.doi.org/10.1148/radiol.2373041657
74.
74.H. MacMahon, J. H. M. Austin, G. Gamsu, C. J. Herold, J. R. Jett, D. P. Naidich, E. F. Patz, Jr., and S. J. Swensen, “Guidelines for management of small pulmonary nodules detected on CT scans: A statement from the Fleischner Society,” Radiology 237, 395400 (2005).
http://dx.doi.org/10.1148/radiol.2372041887
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/36/6/10.1118/1.3120285
Loading
/content/aapm/journal/medphys/36/6/10.1118/1.3120285
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/36/6/10.1118/1.3120285
2009-05-05
2016-08-30

Abstract

Tomosynthesis is a decades-old technique for section imaging that has seen a recent upsurge in interest due to its promise to provide three-dimensional information at lower dose and potentially lower cost than CT in certain clinical imaging situations. This renewed interest in tomosynthesis began in the late 1990s as a new generation of flat-panel detectors became available; these detectors were the one missing piece of the picture that had kept tomosynthesis from enjoying significant utilization earlier. In the past decade, tomosynthesisimaging has been investigated in a variety of clinical imaging situations, but the two most prominent have been in breast and chest imaging.Tomosynthesis has the potential to substantially change the way in which breast cancer and pulmonary nodules are detected and managed. Commercial tomosynthesis devices are now available or on the horizon. Many of the remaining research activities with tomosynthesis will be translational in nature and will involve physicist and clinician alike. This overview article provides a forward-looking assessment of the translational questions facing tomosynthesisimaging and anticipates some of the likely research and clinical activities in the next five years.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/36/6/1.3120285.html;jsessionid=EKzcyl3sWaEUVewNhFvJUHwT.x-aip-live-02?itemId=/content/aapm/journal/medphys/36/6/10.1118/1.3120285&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/36/6/10.1118/1.3120285&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/36/6/10.1118/1.3120285'
Right1,Right2,Right3,