1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/36/9/10.1118/1.3190392
1.
1.G. J. Kutcher, “Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40,” Med. Phys. 21, 581618 (1994).
http://dx.doi.org/10.1118/1.597316
2.
2.Determination of absorbed dose in a patient irradiated by beams of x- or gamma-rays in radiotherapy procedures,” International Commission on Radiation Units and Measurement Bethesda Report 24, 1976.
3.
3.R. Nath, P. J. Biggs, F. J. Bova, C. C. Ling, J. A. Purdy, J. van de Geijn, and M. S. Weinhous, “AAPM code of practice for radiotherapy accelerators: Report of AAPM Radiation Therapy Task Group No. 45,” Med. Phys. 21, 10931121 (1994).
http://dx.doi.org/10.1118/1.597398
4.
4.Medical electron accelerators-functional performance characteristics,” International Electrotechnical Commission Publication 976, 1989.
5.
5.Medical electron accelerators in the range 1 MeV-50 MeV—Guidelines for functional performance characteristics,” International Electrotechnical Commission Publication 977, 1989.
6.
6.Physical aspects of quality assurance in radiation therapy,” American Association of Physicists in Medicine Task Group Report 13 (American Institute of Physics, New York, 1984).
7.
7.I. Das, J. C. Cheng, R. J. Watts, A. Ahnesjo, J. P. Gibbons, X. A. Li, J. Lowenstein, R. K. Mitra, W. E. Simon, and T. C. Zhu, “Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM,” Med. Phys. 35, 41864215 (2008).
http://dx.doi.org/10.1118/1.2969070
8.
8.Radiation control and quality assurance in radiation oncology: A suggested protocol,” American College of Medical Physics Report Series No. 2 (American College of Medical Physics, Reston, VA, 1986).
9.
9.J. E. Bayouth, D. Wendt, and S. M. Morrill, “MLC quality assurance techniques for IMRT applications,” Med. Phys. 30, 743750 (2003).
http://dx.doi.org/10.1118/1.1564091
10.
10.L. Berger, P. Francois, G. Gaboriaud, and J. C. Rosenwald, “Performance optimization of the Varian aS500 EPID system,” J. Appl. Clin. Med. Phys. 7, 105114 (2006).
http://dx.doi.org/10.1120/jacmp.2027.25376
11.
11.H. Bouchard and J. Seuntjens, “Ionization chamber-based reference dosimetry of intensity modulated radiation beams,” Med. Phys. 31, 24542465 (2004).
http://dx.doi.org/10.1118/1.1781333
12.
12.M. G. Davis, C. E. Nyerick, J. L. Horton, and K. R. Hogstrom, “Use of routine quality assurance procedures to detect the loss of a linear accelerator primary scattering foil,” Med. Phys. 23, 521522 (1996).
http://dx.doi.org/10.1118/1.597683
13.
13.R. E. Drzymala, E. E. Klein, J. R. Simpson, K. M. Rich, T. H. Wasserman, and J. A. Purdy, “Assurance of high quality linac-based stereotactic radiosurgery,” Int. J. Radiat. Oncol., Biol., Phys. 30, 459472 (1994).
14.
14.A. Gonzalez, I. Castro, and J. A. Martinez, “A procedure to determine the radiation isocenter size in a linear accelerator,” Med. Phys. 31, 14891493 (2004).
http://dx.doi.org/10.1118/1.1755491
15.
15.E. E. Klein, D. A. Low, D. Maag, and J. A. Purdy, “A quality assurance program for ancillary high technology devices on a dual-energy accelerator,” Radiother. Oncol. 38, 5160 (1996).
http://dx.doi.org/10.1016/0167-8140(95)01634-1
16.
16.T. LoSasso, C. S. Chui, and C. C. Ling, “Comprehensive quality assurance for the delivery of intensity modulated radiotherapy with a multileaf collimator used in the dynamic mode,” Med. Phys. 28, 22092219 (2001).
http://dx.doi.org/10.1118/1.1410123
17.
17.D. A. Low, E. E. Klein, D. K. Maag, W. E. Umfleet, and J. A. Purdy, “Commissioning and periodic quality assurance of a clinical electronic portal imaging device,” Int. J. Radiat. Oncol., Biol., Phys. 34, 117123 (1996).
http://dx.doi.org/10.1016/0360-3016(95)02096-9
18.
18.W. R. Lutz and B. E. Bjarngard, “A test object for evaluation of portal films,” Int. J. Radiat. Oncol., Biol., Phys. 11, 631634 (1985).
19.
19.W. R. Lutz, R. D. Larsen, and B. E. Bjarngard, “Beam alignment tests for therapy accelerators,” Int. J. Radiat. Oncol., Biol., Phys. 7, 17271731 (1981).
20.
20.L. Ma, P. B. Geis, and A. L. Boyer, “Quality assurance for dynamic multileaf collimator modulated fields using a fast beam imaging system,” Med. Phys. 24, 12131220 (1997).
http://dx.doi.org/10.1118/1.598157
21.
21.C. D. Mubata, P. Childs, and A. M. Bidmead, “A quality assurance procedure for the Varian multi-leaf collimator,” Phys. Med. Biol. 42, 423431 (1997).
http://dx.doi.org/10.1088/0031-9155/42/2/014
22.
22.J. Rassow, “Quality control of radiation therapy equipment,” Radiother. Oncol. 12, 4555 (1988).
http://dx.doi.org/10.1016/0167-8140(88)90192-2
23.
23.J. Rassow and E. Klieber, “Quality assurance procedures in radiotherapy—IEC specifications for equipment,” Strahlenther. Onkol. 162, 496502 (1986).
24.
24.R. J. Watts, “Evaluation of a diode detector array for use as a linear accelerator QC device,” Med. Phys. 25, 247250 (1998).
http://dx.doi.org/10.1118/1.598188
25.
25.M. S. Al-Ghazi, B. Arjune, J. A. Fiedler, and P. D. Sharma, “Dosimetric aspects of the therapeutic photon beams from a dual-energy linear accelerator,” Med. Phys. 15, 250257 (1988).
http://dx.doi.org/10.1118/1.596266
26.
26.M. S. Al-Ghazi, D. Lingman, B. Arjune, L. D. Gilbert, and J. Thekkumthala, “Characteristic parameters of 6–21 MeV electron beams from a 21 MeV linear accelerator,” Med. Phys. 18, 821828 (1991).
http://dx.doi.org/10.1118/1.596637
27.
27.C. Constantinou and E. S. Sternick, “Reduction of the ‘horns’ observed on the beam profiles of a 6-MV linear accelerator,” Med. Phys. 11, 840842 (1984).
http://dx.doi.org/10.1118/1.595572
28.
28.P. B. Dunscombe and J. M. Nieminen, “On the field-size dependence of relative output from a linear accelerator,” Med. Phys. 19, 14411444 (1992).
http://dx.doi.org/10.1118/1.596799
29.
29.B. A. Faddegon, P. O'Brien, and D. L. Mason, “The flatness of Siemens linear accelerator x-ray fields,” Med. Phys. 26, 220228 (1999).
http://dx.doi.org/10.1118/1.598508
30.
30.M. N. Graves, A. V. Thompson, M. K. Martel, D. L. McShan, and B. A. Fraass, “Calibration and quality assurance for rounded leaf-end MLC systems,” Med. Phys. 28, 22272233 (2001).
http://dx.doi.org/10.1118/1.1413517
31.
31.S. W. Hadley and K. Lam, “Light field and crosshair quality assurance test using a simple lens system,” Med. Phys. 33, 930932 (2006).
http://dx.doi.org/10.1118/1.2174130
32.
32.Y. Mandelzweig and V. Feygelman, “Evaluation of electron-beam uniformity during commissioning of a linear accelerator,” Med. Phys. 20, 12331236 (1993).
http://dx.doi.org/10.1118/1.596974
33.
33.R. Rajapakshe and S. Shalev, “Output stability of a linear accelerator during the first three seconds,” Med. Phys. 23, 517519 (1996).
http://dx.doi.org/10.1118/1.597809
34.
34.A. S. Shiu, S. S. Tung, C. E. Nyerick, T. G. Ochran, V. A. Otte, A. L. Boyer, and K. R. Hogstrom, “Comprehensive analysis of electron beam central axis dose for a radiotherapy linear accelerator,” Med. Phys. 21, 559566 (1994).
http://dx.doi.org/10.1118/1.597313
35.
35.M. K. Woo, P. O'Brien, B. Gillies, and R. Etheridge, “Mechanical and radiation isocenter coincidence: An experience in linear accelerator alignment,” Med. Phys. 19, 357359 (1992).
http://dx.doi.org/10.1118/1.596866
36.
36.M. J. Murphy, J. Balter, S. Balter, J. A. BenComo, Jr., I. J. Das, S. B. Jiang, C. M. Ma, G. H. Olivera, R. F. Rodebaugh, K. J. Ruchala, H. Shirato, and F. F. Yin, “The management of imaging dose during image-guided radiotherapy: Report of the AAPM Task Group 75,” Med. Phys. 34, 40414063 (2007).
http://dx.doi.org/10.1118/1.2775667
37.
37.T. E. Schultheiss, A. L. Boyer, J. L. Horton, and R. J. Gastorf, “Calibration frequency as determined by analysis of machine stability,” Med. Phys. 16, 8487 (1989).
http://dx.doi.org/10.1118/1.596365
38.
38.M. Rozenfeld and D. Jette, “Quality assurance of radiation dosage: Usefulness of redundancy,” Radiology 150, 241244 (1984).
39.
39.T. Pawlicki, M. Whitaker, and A. L. Boyer, “Statistical process control for radiotherapy quality assurance,” Med. Phys. 32, 27772786 (2005).
http://dx.doi.org/10.1118/1.2001209
40.
40.Method for evaluating QA needs in radiation therapy,” American Association of Physicists in Medicine Task Group Report 100, 2009 (unpublished).
41.
41.A. Boyer, P. Biggs, J. Galvin, E. Klein, T. LoSasso, D. Low, K. Mah, and C. Yu, “Basic applications of multileaf collimators,” AAPM Radiation Therapy Committee Task Group No. 50 Report No. 72, 2001.
42.
42.E. D. Slessinger, R. L. Gerber, W. B. Harms, E. E. Klein, and J. A. Purdy, “Independent collimator dosimetry for a dual photon energy linear accelerator,” Int. J. Radiat. Oncol., Biol., Phys. 27, 681687 (1993).
43.
43.E. E. Klein, M. Taylor, M. Michaletz-Lorenz, D. Zoeller, and W. Umfleet, “A mono isocentric technique for breast and regional nodal therapy using dual asymmetric jaws,” Int. J. Radiat. Oncol., Biol., Phys. 28, 753760 (1994).
44.
44.P. K. Kijewski, L. M. Chin, and B. E. Bjarngard, “Wedge-shaped dose distributions by computer-controlled collimator motion,” Med. Phys. 5, 426429 (1978).
http://dx.doi.org/10.1118/1.594440
45.
45.E. E. Klein, R. Gerber, X. R. Zhu, F. Oehmke, and J. A. Purdy, “Multiple machine implementation of enhanced dynamic wedge,” Int. J. Radiat. Oncol., Biol., Phys. 40, 977985 (1998).
http://dx.doi.org/10.1016/S0360-3016(97)00916-4
46.
46.C. Liu, Z. Li, and J. R. Palta, “Characterizing output for the Varian enhanced dynamic wedge field,” Med. Phys. 25, 6470 (1998).
http://dx.doi.org/10.1118/1.598161
47.
47.C. Liu, T. C. Zhu, and J. R. Palta, “Characterizing output for dynamic wedges,” Med. Phys. 23, 12131218 (1996).
http://dx.doi.org/10.1118/1.597677
48.
48.A. W. Beavis, S. J. Weston, and V. J. Whitton, “Implementation of the Varian EDW into a commercial RTP system,” Phys. Med. Biol. 41, 16911704 (1996).
http://dx.doi.org/10.1088/0031-9155/41/9/009
49.
49.X. R. Zhu, M. T. Gillin, P. A. Jursinic, F. Lopez, D. F. Grimm, and J. J. Rownd, “Comparison of dosimetric characteristics of Siemens virtual and physical wedges,” Med. Phys. 27, 22672277 (2000).
http://dx.doi.org/10.1118/1.1312813
50.
50.M. H. Phillips, H. Parsaei, and P. S. Cho, “Dynamic and omni wedge implementation on an Elekta SL linac,” Med. Phys. 27, 16231634 (2000).
http://dx.doi.org/10.1118/1.599029
51.
51.E. E. Klein, W. B. Harms, D. A. Low, V. Willcut, and J. A. Purdy, “Clinical implementation of a commercial multileaf collimator: Dosimetry, networking, simulation, and quality assurance,” Int. J. Radiat. Oncol., Biol., Phys. 33, 11951208 (1995).
http://dx.doi.org/10.1016/0360-3016(95)00198-0
52.
52.J. M. Galvin et al., “Evaluation of multileaf collimator design for a photon beam,” Int. J. Radiat. Oncol., Biol., Phys. 23, 789801 (1992).
53.
53.J. M. Galvin, A. R. Smith, and B. Lally, “Characterization of a multi-leaf collimator system,” Int. J. Radiat. Oncol., Biol., Phys. 25, 181192 (1993).
54.
54.T. J. Jordan and P. C. Williams, “The design and performance characteristics of a multileaf collimator,” Phys. Med. Biol. 39, 231251 (1994).
http://dx.doi.org/10.1088/0031-9155/39/2/002
55.
55.I. J. Das, G. E. Desobry, S. W. McNeeley, E. C. Cheng, and T. E. Schultheiss, “Beam characteristics of a retrofitted double-focused multileaf collimator,” Med. Phys. 25, 16761684 (1998).
http://dx.doi.org/10.1118/1.598348
56.
56.A. L. Boyer and S. Li, “Geometric analysis of light-field position of a multileaf collimator with curved ends,” Med. Phys. 24, 757762 (1997).
http://dx.doi.org/10.1118/1.597996
57.
57.C. Burman, C. S. Chui, G. Kutcher, S. Leibel, M. Zelefsky, T. LoSasso, S. Spirou, Q. Wu, J. Yang, J. Stein, R. Mohan, Z. Fuks, and C. C. Ling, “Planning, delivery, and quality assurance of intensity-modulated radiotherapy using dynamic multileaf collimator: A strategy for large-scale implementation for the treatment of carcinoma of the prostate,” Int. J. Radiat. Oncol., Biol., Phys. 39, 863873 (1997).
http://dx.doi.org/10.1016/S0360-3016(97)00458-6
58.
58.S. C. Vieira, M. L. Dirkx, K. L. Pasma, and B. J. Heijmen, “Fast and accurate leaf verification for dynamic multileaf collimation using an electronic portal imaging device,” Med. Phys. 29, 20342040 (2002).
http://dx.doi.org/10.1118/1.1501141
59.
59.M. Sastre-Padro, U. A. van der Heide, and H. Welleweerd, “An accurate calibration method of the multileaf collimator valid for conformal and intensity modulated radiation treatments,” Phys. Med. Biol. 49, 26312643 (2004).
http://dx.doi.org/10.1088/0031-9155/49/12/011
60.
60.J. J. Sonke, L. S. Ploeger, B. Brand, M. H. Smitsmans, and M. van Herk, “Leaf trajectory verification during dynamic intensity modulated radiotherapy using an amorphous silicon flat panel imager,” Med. Phys. 31, 389395 (2004).
http://dx.doi.org/10.1118/1.1639125
61.
61.S. J. Baker, G. J. Budgell, and R. I. MacKay, “Use of an amorphous silicon electronic portal imaging device for multileaf collimator quality control and calibration,” Phys. Med. Biol. 50, 13771392 (2005).
http://dx.doi.org/10.1088/0031-9155/50/7/003
62.
62.V. P. Cosgrove, U. Jahn, M. Pfaender, S. Bauer, V. Budach, and R. E. Wurm, “Commissioning of a micro multi-leaf collimator and planning system for stereotactic radiosurgery,” Radiother. Oncol. 50, 325336 (1999).
http://dx.doi.org/10.1016/S0167-8140(99)00020-1
63.
63.J. Chang, C. H. Obcemea, J. Sillanpaa, J. Mechalakos, and C. Burman, “Use of EPID for leaf position accuracy QA of dynamic multi-leaf collimator (DMLC) treatment,” Med. Phys. 31, 20912096 (2004).
http://dx.doi.org/10.1118/1.1760187
64.
64.J. E. Bayouth and S. M. Morrill, “MLC dosimetric characteristics for small field and IMRT applications,” Med. Phys. 30, 25452552 (2003).
http://dx.doi.org/10.1118/1.1603743
65.
65.E. E. Klein and D. A. Low, “Interleaf leakage for 5 and 10 mm dynamic multileaf collimation systems incorporating patient motion,” Med. Phys. 28, 17031710 (2001).
http://dx.doi.org/10.1118/1.1388216
66.
66.T. Losasso, “IMRT delivery performance with a varian multileaf collimator,” Int. J. Radiat. Oncol., Biol., Phys. 71, S85S88 (2008).
http://dx.doi.org/10.1016/j.ijrobp.2007.06.082
67.
67.C. D. Venencia and P. Besa, “Commissioning and quality assurance for intensity modulated radiotherapy with dynamic multileaf collimator: Experience of the Pontificia Universidad Catolica de Chile,” J. Appl. Clin. Med. Phys. 5, 3754 (2004).
http://dx.doi.org/10.1120/jacmp.2021.25275
68.
68.A. M. Stell, J. G. Li, O. A. Zeidan, and J. F. Dempsey, “An extensive log-file analysis of step-and-shoot intensity modulated radiation therapy segment delivery errors,” Med. Phys. 31, 15931602 (2004).
http://dx.doi.org/10.1118/1.1751011
69.
69.S. S. Samant, W. Zheng, N. A. Parra, J. Chandler, A. Gopal, J. Wu, J. Jain, Y. Zhu, and M. Sontag, “Verification of multileaf collimator leaf positions using an electronic portal imaging device,” Med. Phys. 29, 29002912 (2002).
http://dx.doi.org/10.1118/1.1515760
70.
70.M. Mamalui-Hunter, H. Li, and D. A. Low, “MLC quality assurance using EPID: A fitting technique with subpixel precision,” Med. Phys. 35, 23472355 (2008).
http://dx.doi.org/10.1118/1.2919560
71.
71.J. Van Dyk, J. M. Galvin, G. P. Glasgow, and E. B. Podgorsak, “The physical aspects of total and half body photon irradiation,” AAPM Radiation Therapy Committee Task Group 29 Report No. 17, 1986.
72.
72.C. J. Karzmark, J. Anderson, A. Buffa, F. P, F. Khan, G. Svensson, K. Wright, P. Almond, F. B, K. Hogstrom, R. Loevinger, R. Morton, and B. Palos, “Total skin electron therapy: Technique and dosimetry,” AAPM Radiation Therapy Committee Task Group 30 Report No. 23, 1987.
73.
73.Kilo voltage localization in therapy,” American Association of Physicists in Medicine Task Group Report 104, 2009 (unpublished).
74.
74.M. G. Herman, J. M. Balter, D. A. Jaffray, K. P. McGee, P. Munro, S. Shalev, M. Van Herk, and J. W. Wong, “Clinical use of electronic portal imaging: Report of AAPM Radiation Therapy Committee Task Group 58,” Med. Phys. 28, 712737 (2001).
http://dx.doi.org/10.1118/1.1368128
75.
75.R. Rajapakshe, K. Luchka, and S. Shalev, “A quality control test for electronic portal imaging devices,” Med. Phys. 23, 12371244 (1996).
http://dx.doi.org/10.1118/1.597866
76.
76.A. L. Boyer, L. Antonuk, A. Fenster, M. Van Herk, H. Meertens, P. Munro, L. E. Reinstein, and J. Wong, “A review of electronic portal imaging devices (EPIDs),” Med. Phys. 19, 116 (1992).
http://dx.doi.org/10.1118/1.596878
77.
77.M. G. Herman, J. J. Kruse, and C. R. Hagness, “Guide to clinical use of electronic portal imaging,” J. Appl. Clin. Med. Phys. 1, 3857 (2000).
http://dx.doi.org/10.1120/1.308249
78.
78.D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-panel cone-beam computed tomography for image-guided radiation therapy,” Int. J. Radiat. Oncol,. Biol., Phys. 53, 13371349 (2002).
http://dx.doi.org/10.1016/S0360-3016(02)02884-5
79.
79.J. Pouliot, A. Bani-Hashemi, J. Chen, M. Svatos, F. Ghelmansarai, M. Mitschke, M. Aubin, P. Xia, O. Morin, K. Bucci, M. Roach, 3rd, P. Hernandez, Z. Zheng, D. Hristov, and L. Verhey, “Low-dose megavoltage cone-beam CT for radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 61, 552560 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2004.10.011
80.
80.P. J. Keall, G. S. Mageras, J. M. Balter, R. S. Emery, K. M. Forster, S. B. Jiang, J. M. Kapatoes, D. A. Low, M. J. Murphy, B. R. Murray, C. R. Ramsey, M. B. Van Herk, S. S. Vedam, J. W. Wong, and E. Yorke, “The management of respiratory motion in radiation oncology report of AAPM Task Group 76,” Med. Phys. 33, 38743900 (2006).
http://dx.doi.org/10.1118/1.2349696
81.
81.J. Bayouth, J. Sample, T. Waldron, and R. Siochi, “Evaluation of 4DRT: CT acquisition and gated delivery system,” Med. Phys. 33, 21882189 (2006).
http://dx.doi.org/10.1118/1.2241519
82.
82.P. R. Almond, P. J. Biggs, B. M. Coursey, W. F. Hanson, M. S. Huq, R. Nath, and D. W. Rogers, “AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams,” Med. Phys. 26, 18471870 (1999).
http://dx.doi.org/10.1118/1.598691
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/36/9/10.1118/1.3190392
Loading
/content/aapm/journal/medphys/36/9/10.1118/1.3190392
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/36/9/10.1118/1.3190392
2009-08-17
2015-07-30

Abstract

The task group (TG) for quality assurance of medical accelerators was constituted by the American Association of Physicists in Medicine’s Science Council under the direction of the Radiation Therapy Committee and the Quality Assurance and Outcome Improvement Subcommittee. The task group (TG-142) had two main charges. First to update, as needed, recommendations of Table II of the AAPM TG-40 report on quality assurance and second, to add recommendations for asymmetric jaws, multileaf collimation (MLC), and dynamic/virtual wedges. The TG accomplished the update to TG-40, specifying new test and tolerances, and has added recommendations for not only the new ancillary delivery technologies but also for imaging devices that are part of the linear accelerator. The imaging devices include x-ray imaging, photon portal imaging, and cone-beam CT. The TG report was designed to account for the types of treatments delivered with the particular machine. For example, machines that are used for radiosurgery treatments or intensity-modulated radiotherapy (IMRT) require different tests and/or tolerances. There are specific recommendations for MLC quality assurance for machines performing IMRT. The report also gives recommendations as to action levels for the physicists to implement particular actions, whether they are inspection, scheduled action, or immediate and corrective action. The report is geared to be flexible for the physicist to customize the QA program depending on clinical utility. There are specific tables according to daily, monthly, and annual reviews, along with unique tables for wedge systems, MLC, and imaging checks. The report also gives specific recommendations regarding setup of a QA program by the physicist in regards to building a QA team, establishing procedures, training of personnel, documentation, and end-to-end system checks. The tabulated items of this report have been considerably expanded as compared with the original TG-40 report and the recommended tolerances accommodate differences in the intended use of the machine functionality (non-IMRT, IMRT, and stereotactic delivery).

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/36/9/1.3190392.html;jsessionid=apapmji5oskmk.x-aip-live-03?itemId=/content/aapm/journal/medphys/36/9/10.1118/1.3190392&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Task Group 142 report: Quality assurance of medical acceleratorsa)
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/36/9/10.1118/1.3190392
10.1118/1.3190392
SEARCH_EXPAND_ITEM