Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.G. J. Kutcher, “Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40,” Med. Phys. 21, 581618 (1994).
2.Determination of absorbed dose in a patient irradiated by beams of x- or gamma-rays in radiotherapy procedures,” International Commission on Radiation Units and Measurement Bethesda Report 24, 1976.
3.R. Nath, P. J. Biggs, F. J. Bova, C. C. Ling, J. A. Purdy, J. van de Geijn, and M. S. Weinhous, “AAPM code of practice for radiotherapy accelerators: Report of AAPM Radiation Therapy Task Group No. 45,” Med. Phys. 21, 10931121 (1994).
4.Medical electron accelerators-functional performance characteristics,” International Electrotechnical Commission Publication 976, 1989.
5.Medical electron accelerators in the range 1 MeV-50 MeV—Guidelines for functional performance characteristics,” International Electrotechnical Commission Publication 977, 1989.
6.Physical aspects of quality assurance in radiation therapy,” American Association of Physicists in Medicine Task Group Report 13 (American Institute of Physics, New York, 1984).
7.I. Das, J. C. Cheng, R. J. Watts, A. Ahnesjo, J. P. Gibbons, X. A. Li, J. Lowenstein, R. K. Mitra, W. E. Simon, and T. C. Zhu, “Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM,” Med. Phys. 35, 41864215 (2008).
8.Radiation control and quality assurance in radiation oncology: A suggested protocol,” American College of Medical Physics Report Series No. 2 (American College of Medical Physics, Reston, VA, 1986).
9.J. E. Bayouth, D. Wendt, and S. M. Morrill, “MLC quality assurance techniques for IMRT applications,” Med. Phys. 30, 743750 (2003).
10.L. Berger, P. Francois, G. Gaboriaud, and J. C. Rosenwald, “Performance optimization of the Varian aS500 EPID system,” J. Appl. Clin. Med. Phys. 7, 105114 (2006).
11.H. Bouchard and J. Seuntjens, “Ionization chamber-based reference dosimetry of intensity modulated radiation beams,” Med. Phys. 31, 24542465 (2004).
12.M. G. Davis, C. E. Nyerick, J. L. Horton, and K. R. Hogstrom, “Use of routine quality assurance procedures to detect the loss of a linear accelerator primary scattering foil,” Med. Phys. 23, 521522 (1996).
13.R. E. Drzymala, E. E. Klein, J. R. Simpson, K. M. Rich, T. H. Wasserman, and J. A. Purdy, “Assurance of high quality linac-based stereotactic radiosurgery,” Int. J. Radiat. Oncol., Biol., Phys. 30, 459472 (1994).
14.A. Gonzalez, I. Castro, and J. A. Martinez, “A procedure to determine the radiation isocenter size in a linear accelerator,” Med. Phys. 31, 14891493 (2004).
15.E. E. Klein, D. A. Low, D. Maag, and J. A. Purdy, “A quality assurance program for ancillary high technology devices on a dual-energy accelerator,” Radiother. Oncol. 38, 5160 (1996).
16.T. LoSasso, C. S. Chui, and C. C. Ling, “Comprehensive quality assurance for the delivery of intensity modulated radiotherapy with a multileaf collimator used in the dynamic mode,” Med. Phys. 28, 22092219 (2001).
17.D. A. Low, E. E. Klein, D. K. Maag, W. E. Umfleet, and J. A. Purdy, “Commissioning and periodic quality assurance of a clinical electronic portal imaging device,” Int. J. Radiat. Oncol., Biol., Phys. 34, 117123 (1996).
18.W. R. Lutz and B. E. Bjarngard, “A test object for evaluation of portal films,” Int. J. Radiat. Oncol., Biol., Phys. 11, 631634 (1985).
19.W. R. Lutz, R. D. Larsen, and B. E. Bjarngard, “Beam alignment tests for therapy accelerators,” Int. J. Radiat. Oncol., Biol., Phys. 7, 17271731 (1981).
20.L. Ma, P. B. Geis, and A. L. Boyer, “Quality assurance for dynamic multileaf collimator modulated fields using a fast beam imaging system,” Med. Phys. 24, 12131220 (1997).
21.C. D. Mubata, P. Childs, and A. M. Bidmead, “A quality assurance procedure for the Varian multi-leaf collimator,” Phys. Med. Biol. 42, 423431 (1997).
22.J. Rassow, “Quality control of radiation therapy equipment,” Radiother. Oncol. 12, 4555 (1988).
23.J. Rassow and E. Klieber, “Quality assurance procedures in radiotherapy—IEC specifications for equipment,” Strahlenther. Onkol. 162, 496502 (1986).
24.R. J. Watts, “Evaluation of a diode detector array for use as a linear accelerator QC device,” Med. Phys. 25, 247250 (1998).
25.M. S. Al-Ghazi, B. Arjune, J. A. Fiedler, and P. D. Sharma, “Dosimetric aspects of the therapeutic photon beams from a dual-energy linear accelerator,” Med. Phys. 15, 250257 (1988).
26.M. S. Al-Ghazi, D. Lingman, B. Arjune, L. D. Gilbert, and J. Thekkumthala, “Characteristic parameters of 6–21 MeV electron beams from a 21 MeV linear accelerator,” Med. Phys. 18, 821828 (1991).
27.C. Constantinou and E. S. Sternick, “Reduction of the ‘horns’ observed on the beam profiles of a 6-MV linear accelerator,” Med. Phys. 11, 840842 (1984).
28.P. B. Dunscombe and J. M. Nieminen, “On the field-size dependence of relative output from a linear accelerator,” Med. Phys. 19, 14411444 (1992).
29.B. A. Faddegon, P. O'Brien, and D. L. Mason, “The flatness of Siemens linear accelerator x-ray fields,” Med. Phys. 26, 220228 (1999).
30.M. N. Graves, A. V. Thompson, M. K. Martel, D. L. McShan, and B. A. Fraass, “Calibration and quality assurance for rounded leaf-end MLC systems,” Med. Phys. 28, 22272233 (2001).
31.S. W. Hadley and K. Lam, “Light field and crosshair quality assurance test using a simple lens system,” Med. Phys. 33, 930932 (2006).
32.Y. Mandelzweig and V. Feygelman, “Evaluation of electron-beam uniformity during commissioning of a linear accelerator,” Med. Phys. 20, 12331236 (1993).
33.R. Rajapakshe and S. Shalev, “Output stability of a linear accelerator during the first three seconds,” Med. Phys. 23, 517519 (1996).
34.A. S. Shiu, S. S. Tung, C. E. Nyerick, T. G. Ochran, V. A. Otte, A. L. Boyer, and K. R. Hogstrom, “Comprehensive analysis of electron beam central axis dose for a radiotherapy linear accelerator,” Med. Phys. 21, 559566 (1994).
35.M. K. Woo, P. O'Brien, B. Gillies, and R. Etheridge, “Mechanical and radiation isocenter coincidence: An experience in linear accelerator alignment,” Med. Phys. 19, 357359 (1992).
36.M. J. Murphy, J. Balter, S. Balter, J. A. BenComo, Jr., I. J. Das, S. B. Jiang, C. M. Ma, G. H. Olivera, R. F. Rodebaugh, K. J. Ruchala, H. Shirato, and F. F. Yin, “The management of imaging dose during image-guided radiotherapy: Report of the AAPM Task Group 75,” Med. Phys. 34, 40414063 (2007).
37.T. E. Schultheiss, A. L. Boyer, J. L. Horton, and R. J. Gastorf, “Calibration frequency as determined by analysis of machine stability,” Med. Phys. 16, 8487 (1989).
38.M. Rozenfeld and D. Jette, “Quality assurance of radiation dosage: Usefulness of redundancy,” Radiology 150, 241244 (1984).
39.T. Pawlicki, M. Whitaker, and A. L. Boyer, “Statistical process control for radiotherapy quality assurance,” Med. Phys. 32, 27772786 (2005).
40.Method for evaluating QA needs in radiation therapy,” American Association of Physicists in Medicine Task Group Report 100, 2009 (unpublished).
41.A. Boyer, P. Biggs, J. Galvin, E. Klein, T. LoSasso, D. Low, K. Mah, and C. Yu, “Basic applications of multileaf collimators,” AAPM Radiation Therapy Committee Task Group No. 50 Report No. 72, 2001.
42.E. D. Slessinger, R. L. Gerber, W. B. Harms, E. E. Klein, and J. A. Purdy, “Independent collimator dosimetry for a dual photon energy linear accelerator,” Int. J. Radiat. Oncol., Biol., Phys. 27, 681687 (1993).
43.E. E. Klein, M. Taylor, M. Michaletz-Lorenz, D. Zoeller, and W. Umfleet, “A mono isocentric technique for breast and regional nodal therapy using dual asymmetric jaws,” Int. J. Radiat. Oncol., Biol., Phys. 28, 753760 (1994).
44.P. K. Kijewski, L. M. Chin, and B. E. Bjarngard, “Wedge-shaped dose distributions by computer-controlled collimator motion,” Med. Phys. 5, 426429 (1978).
45.E. E. Klein, R. Gerber, X. R. Zhu, F. Oehmke, and J. A. Purdy, “Multiple machine implementation of enhanced dynamic wedge,” Int. J. Radiat. Oncol., Biol., Phys. 40, 977985 (1998).
46.C. Liu, Z. Li, and J. R. Palta, “Characterizing output for the Varian enhanced dynamic wedge field,” Med. Phys. 25, 6470 (1998).
47.C. Liu, T. C. Zhu, and J. R. Palta, “Characterizing output for dynamic wedges,” Med. Phys. 23, 12131218 (1996).
48.A. W. Beavis, S. J. Weston, and V. J. Whitton, “Implementation of the Varian EDW into a commercial RTP system,” Phys. Med. Biol. 41, 16911704 (1996).
49.X. R. Zhu, M. T. Gillin, P. A. Jursinic, F. Lopez, D. F. Grimm, and J. J. Rownd, “Comparison of dosimetric characteristics of Siemens virtual and physical wedges,” Med. Phys. 27, 22672277 (2000).
50.M. H. Phillips, H. Parsaei, and P. S. Cho, “Dynamic and omni wedge implementation on an Elekta SL linac,” Med. Phys. 27, 16231634 (2000).
51.E. E. Klein, W. B. Harms, D. A. Low, V. Willcut, and J. A. Purdy, “Clinical implementation of a commercial multileaf collimator: Dosimetry, networking, simulation, and quality assurance,” Int. J. Radiat. Oncol., Biol., Phys. 33, 11951208 (1995).
52.J. M. Galvin et al., “Evaluation of multileaf collimator design for a photon beam,” Int. J. Radiat. Oncol., Biol., Phys. 23, 789801 (1992).
53.J. M. Galvin, A. R. Smith, and B. Lally, “Characterization of a multi-leaf collimator system,” Int. J. Radiat. Oncol., Biol., Phys. 25, 181192 (1993).
54.T. J. Jordan and P. C. Williams, “The design and performance characteristics of a multileaf collimator,” Phys. Med. Biol. 39, 231251 (1994).
55.I. J. Das, G. E. Desobry, S. W. McNeeley, E. C. Cheng, and T. E. Schultheiss, “Beam characteristics of a retrofitted double-focused multileaf collimator,” Med. Phys. 25, 16761684 (1998).
56.A. L. Boyer and S. Li, “Geometric analysis of light-field position of a multileaf collimator with curved ends,” Med. Phys. 24, 757762 (1997).
57.C. Burman, C. S. Chui, G. Kutcher, S. Leibel, M. Zelefsky, T. LoSasso, S. Spirou, Q. Wu, J. Yang, J. Stein, R. Mohan, Z. Fuks, and C. C. Ling, “Planning, delivery, and quality assurance of intensity-modulated radiotherapy using dynamic multileaf collimator: A strategy for large-scale implementation for the treatment of carcinoma of the prostate,” Int. J. Radiat. Oncol., Biol., Phys. 39, 863873 (1997).
58.S. C. Vieira, M. L. Dirkx, K. L. Pasma, and B. J. Heijmen, “Fast and accurate leaf verification for dynamic multileaf collimation using an electronic portal imaging device,” Med. Phys. 29, 20342040 (2002).
59.M. Sastre-Padro, U. A. van der Heide, and H. Welleweerd, “An accurate calibration method of the multileaf collimator valid for conformal and intensity modulated radiation treatments,” Phys. Med. Biol. 49, 26312643 (2004).
60.J. J. Sonke, L. S. Ploeger, B. Brand, M. H. Smitsmans, and M. van Herk, “Leaf trajectory verification during dynamic intensity modulated radiotherapy using an amorphous silicon flat panel imager,” Med. Phys. 31, 389395 (2004).
61.S. J. Baker, G. J. Budgell, and R. I. MacKay, “Use of an amorphous silicon electronic portal imaging device for multileaf collimator quality control and calibration,” Phys. Med. Biol. 50, 13771392 (2005).
62.V. P. Cosgrove, U. Jahn, M. Pfaender, S. Bauer, V. Budach, and R. E. Wurm, “Commissioning of a micro multi-leaf collimator and planning system for stereotactic radiosurgery,” Radiother. Oncol. 50, 325336 (1999).
63.J. Chang, C. H. Obcemea, J. Sillanpaa, J. Mechalakos, and C. Burman, “Use of EPID for leaf position accuracy QA of dynamic multi-leaf collimator (DMLC) treatment,” Med. Phys. 31, 20912096 (2004).
64.J. E. Bayouth and S. M. Morrill, “MLC dosimetric characteristics for small field and IMRT applications,” Med. Phys. 30, 25452552 (2003).
65.E. E. Klein and D. A. Low, “Interleaf leakage for 5 and 10 mm dynamic multileaf collimation systems incorporating patient motion,” Med. Phys. 28, 17031710 (2001).
66.T. Losasso, “IMRT delivery performance with a varian multileaf collimator,” Int. J. Radiat. Oncol., Biol., Phys. 71, S85S88 (2008).
67.C. D. Venencia and P. Besa, “Commissioning and quality assurance for intensity modulated radiotherapy with dynamic multileaf collimator: Experience of the Pontificia Universidad Catolica de Chile,” J. Appl. Clin. Med. Phys. 5, 3754 (2004).
68.A. M. Stell, J. G. Li, O. A. Zeidan, and J. F. Dempsey, “An extensive log-file analysis of step-and-shoot intensity modulated radiation therapy segment delivery errors,” Med. Phys. 31, 15931602 (2004).
69.S. S. Samant, W. Zheng, N. A. Parra, J. Chandler, A. Gopal, J. Wu, J. Jain, Y. Zhu, and M. Sontag, “Verification of multileaf collimator leaf positions using an electronic portal imaging device,” Med. Phys. 29, 29002912 (2002).
70.M. Mamalui-Hunter, H. Li, and D. A. Low, “MLC quality assurance using EPID: A fitting technique with subpixel precision,” Med. Phys. 35, 23472355 (2008).
71.J. Van Dyk, J. M. Galvin, G. P. Glasgow, and E. B. Podgorsak, “The physical aspects of total and half body photon irradiation,” AAPM Radiation Therapy Committee Task Group 29 Report No. 17, 1986.
72.C. J. Karzmark, J. Anderson, A. Buffa, F. P, F. Khan, G. Svensson, K. Wright, P. Almond, F. B, K. Hogstrom, R. Loevinger, R. Morton, and B. Palos, “Total skin electron therapy: Technique and dosimetry,” AAPM Radiation Therapy Committee Task Group 30 Report No. 23, 1987.
73.Kilo voltage localization in therapy,” American Association of Physicists in Medicine Task Group Report 104, 2009 (unpublished).
74.M. G. Herman, J. M. Balter, D. A. Jaffray, K. P. McGee, P. Munro, S. Shalev, M. Van Herk, and J. W. Wong, “Clinical use of electronic portal imaging: Report of AAPM Radiation Therapy Committee Task Group 58,” Med. Phys. 28, 712737 (2001).
75.R. Rajapakshe, K. Luchka, and S. Shalev, “A quality control test for electronic portal imaging devices,” Med. Phys. 23, 12371244 (1996).
76.A. L. Boyer, L. Antonuk, A. Fenster, M. Van Herk, H. Meertens, P. Munro, L. E. Reinstein, and J. Wong, “A review of electronic portal imaging devices (EPIDs),” Med. Phys. 19, 116 (1992).
77.M. G. Herman, J. J. Kruse, and C. R. Hagness, “Guide to clinical use of electronic portal imaging,” J. Appl. Clin. Med. Phys. 1, 3857 (2000).
78.D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-panel cone-beam computed tomography for image-guided radiation therapy,” Int. J. Radiat. Oncol,. Biol., Phys. 53, 13371349 (2002).
79.J. Pouliot, A. Bani-Hashemi, J. Chen, M. Svatos, F. Ghelmansarai, M. Mitschke, M. Aubin, P. Xia, O. Morin, K. Bucci, M. Roach, 3rd, P. Hernandez, Z. Zheng, D. Hristov, and L. Verhey, “Low-dose megavoltage cone-beam CT for radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 61, 552560 (2005).
80.P. J. Keall, G. S. Mageras, J. M. Balter, R. S. Emery, K. M. Forster, S. B. Jiang, J. M. Kapatoes, D. A. Low, M. J. Murphy, B. R. Murray, C. R. Ramsey, M. B. Van Herk, S. S. Vedam, J. W. Wong, and E. Yorke, “The management of respiratory motion in radiation oncology report of AAPM Task Group 76,” Med. Phys. 33, 38743900 (2006).
81.J. Bayouth, J. Sample, T. Waldron, and R. Siochi, “Evaluation of 4DRT: CT acquisition and gated delivery system,” Med. Phys. 33, 21882189 (2006).
82.P. R. Almond, P. J. Biggs, B. M. Coursey, W. F. Hanson, M. S. Huq, R. Nath, and D. W. Rogers, “AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams,” Med. Phys. 26, 18471870 (1999).

Data & Media loading...


Article metrics loading...



The task group (TG) for quality assurance of medical accelerators was constituted by the American Association of Physicists in Medicine’s Science Council under the direction of the Radiation Therapy Committee and the Quality Assurance and Outcome Improvement Subcommittee. The task group (TG-142) had two main charges. First to update, as needed, recommendations of Table II of the AAPM TG-40 report on quality assurance and second, to add recommendations for asymmetric jaws, multileaf collimation (MLC), and dynamic/virtual wedges. The TG accomplished the update to TG-40, specifying new test and tolerances, and has added recommendations for not only the new ancillary delivery technologies but also for imaging devices that are part of the linear accelerator. The imaging devices include x-ray imaging, photon portal imaging, and cone-beam CT. The TG report was designed to account for the types of treatments delivered with the particular machine. For example, machines that are used for radiosurgery treatments or intensity-modulated radiotherapy(IMRT) require different tests and/or tolerances. There are specific recommendations for MLC quality assurance for machines performing IMRT. The report also gives recommendations as to action levels for the physicists to implement particular actions, whether they are inspection, scheduled action, or immediate and corrective action. The report is geared to be flexible for the physicist to customize the QA program depending on clinical utility. There are specific tables according to daily, monthly, and annual reviews, along with unique tables for wedge systems, MLC, and imaging checks. The report also gives specific recommendations regarding setup of a QA program by the physicist in regards to building a QA team, establishing procedures, training of personnel, documentation, and end-to-end system checks. The tabulated items of this report have been considerably expanded as compared with the original TG-40 report and the recommended tolerances accommodate differences in the intended use of the machine functionality (non-IMRT, IMRT, and stereotactic delivery).


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd