Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/37/12/10.1118/1.3515456
1.
1.J. S. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, “Small animal imaging. Current technology and perspectives for oncological imaging,” Eur. J. Cancer 38, 21732188 (2002).
http://dx.doi.org/10.1016/S0959-8049(02)00394-5
2.
2.R. Grassi, C. Cavaliere, S. Cozzolino, L. Mansi, S. Cirillo, G. Tedeschi, R. Franchi, P. Russo, S. Cornacchia, and A. Rotondo, “Small animal imaging facility: New perspectives for the radiologist,” Radiol. Med. (Torino) 114, 152167 (2009).
http://dx.doi.org/10.1007/s11547-008-0352-8
3.
3.R. Weissleder, “Scaling down imaging: Molecular mapping of cancer in mice,” Nat. Rev. Cancer 2, 1118 (2002).
http://dx.doi.org/10.1038/nrc701
4.
4.B. M. Tsui and D. L. Kraitchman, “Recent advances in small-animal cardiovascular imaging,” J. Nucl. Med. 50, 667670 (2009).
http://dx.doi.org/10.2967/jnumed.108.058479
5.
5.J. A. DiMasi, R. W. Hansen, and H. G. Grabowski, “The price of innovation: New estimates of drug development costs,” Journal of Health Economics 22, 151185 (2003).
http://dx.doi.org/10.1016/S0167-6296(02)00126-1
6.
6.M. D. Rawlins, “Cutting the cost of drug development?,” Nat. Rev. Drug Discovery 3, 360364 (2004).
http://dx.doi.org/10.1038/nrd1347
7.
7.N. Beckmann, R. Kneuer, H. U. Gremlich, H. Karmouty-Quintana, F. X. Ble, and M. Muller, “In vivo mouse imaging and spectroscopy in drug discovery,” NMR Biomed. 20, 154185 (2007).
http://dx.doi.org/10.1002/nbm.1153
8.
8.S. J. Schambach, S. Bag, L. Schilling, C. Groden, and M. A. Brockmann, “Application of micro-CT in small animal imaging,” Methods 50, 213 (2010).
http://dx.doi.org/10.1016/j.ymeth.2009.08.007
9.
9.C. T. Badea, M. Drangova, D. W. Holdsworth, and G. A. Johnson, “In vivo small-animal imaging using micro-CT and digital subtraction angiography,” Phys. Med. Biol. 53, R319R350 (2008).
http://dx.doi.org/10.1088/0031-9155/53/19/R01
10.
10.A. J. Beer and M. Schwaiger, “Imaging of integrin expression,” Cancer Metastasis Rev. 27, 631644 (2008).
http://dx.doi.org/10.1007/s10555-008-9158-3
11.
11.W. A. Weber, J. Czernin, M. E. Phelps, and H. R. Herschman, “Technology insight: Novel imaging of molecular targets is an emerging area crucial to the development of targeted drugs,” Nature Clinical Practice Oncology 5, 4454 (2008).
http://dx.doi.org/10.1038/ncponc0982
12.
12.T. Bach-Gansmo, R. Danielsson, A. Saracco, B. Wilczek, T. V. Bogsrud, A. Fangberget, A. Tangerud, and D. Tobin, “Integrin receptor imaging of breast cancer: A proof-of-concept study to evaluate 99mTc-NC100692,” J. Nucl. Med. 47, 14341439 (2006).
13.
13.R. Pasqualini, E. Koivunen, and E. Ruoslahti, “Alpha v integrins as receptors for tumor targeting by circulating ligands,” Nat. Biotechnol. 15, 542546 (1997).
http://dx.doi.org/10.1038/nbt0697-542
14.
14.R. Haubner, H. J. Wester, U. Reuning, R. Senekowitsch-Schmidtke, B. Diefenbach, H. Kessler, G. Stocklin, and M. Schwaiger, “Radiolabeled alpha(v)beta3 integrin antagonists: A new class of tracers for tumor targeting,” J. Nucl. Med. 40, 10611071 (1999).
15.
15.K. Hynynen, W. R. Freund, H. E. Cline, A. H. Chung, R. D. Watkins, J. P. Vetro, and F. A. Jolesz, “A clinical, noninvasive, MR imaging-monitored ultrasound surgery method,” Radiographics 16, 185195 (1996).
16.
16.H. E. Cline, J. F. Schenck, K. Hynynen, R. D. Watkins, S. P. Souza, and F. A. Jolesz, “MR-guided focused ultrasound surgery,” J. Comput. Assist. Tomogr. 16, 956965 (1992).
http://dx.doi.org/10.1097/00004728-199211000-00024
17.
17.J. U. Voigt, “Ultrasound molecular imaging,” Methods 48, 9297 (2009).
http://dx.doi.org/10.1016/j.ymeth.2009.03.011
18.
18.K. A. Collins, C. E. Korcarz, and R. M. Lang, “Use of echocardiography for the phenotypic assessment of genetically altered mice,” Physiol. Genomics 13, 227239 (2003).
19.
19.R. S. Jaiswal, J. Singh, and G. P. Adams, “High-resolution ultrasound biomicroscopy for monitoring ovarian structures in mice,” Reproductive Biology and Endocrinology 7, 69 (2009).
http://dx.doi.org/10.1186/1477-7827-7-69
20.
20.C. K. Phoon, R. P. Ji, O. Aristizabal, D. M. Worrad, B. Zhou, H. S. Baldwin, and D. H. Turnbull, “Embryonic heart failure in NFATc1-/-mice: Novel mechanistic insights from in utero ultrasound biomicroscopy,” Circ. Res. 95, 9299 (2004).
http://dx.doi.org/10.1161/01.RES.0000133681.99617.28
21.
21.V. H. Ho, T. C. Prager, H. Diwan, V. Prieto, and B. Esmaeli, “Ultrasound biomicroscopy for estimation of tumor thickness for conjunctival melanoma,” J. Clin. Ultrasound 35, 533537 (2007).
http://dx.doi.org/10.1002/jcu.20343
22.
22.A. M. Cheung, A. S. Brown, L. A. Hastie, V. Cucevic, M. Roy, J. C. Lacefield, A. Fenster, and F. S. Foster, “Three-dimensional ultrasound biomicroscopy for xenograft growth analysis,” Ultrasound Med. Biol. 31, 865870 (2005).
http://dx.doi.org/10.1016/j.ultrasmedbio.2005.03.003
23.
23.F. Kiessling, D. Razansky, and F. Alves, “Anatomical and microstructural imaging of angiogenesis,” Eur. J. Nucl. Med. Mol. Imaging 37, S4S19 (2010).
http://dx.doi.org/10.1007/s00259-010-1450-0
24.
24.T. T. Rissanen, P. Korpisalo, H. Karvinen, T. Liimatainen, S. Laidinen, O. H. Grohn, and S. Yla-Herttuala, “High-resolution ultrasound perfusion imaging of therapeutic angiogenesis,” Journal of the American College of Cardiology: Cardiovascular Imaging 1, 8391 (2008).
http://dx.doi.org/10.1016/j.jcmg.2007.10.009
25.
25.Y. Jiang, J. Zhao, D. L. White, and H. K. Genant, “Micro CT and micro MR imaging of 3D architecture of animal skeleton,” J. Musculoskeletal and Neuronal Interact. 1, 4551 (2000).
26.
26.J. C. Elliott and S. D. Dover, “X-ray microtomography,” J. Microsc. 126, 211213 (1982).
27.
27.F. H. Seguin, P. Burstein, P. J. Bjorkholm, F. Homburger, and R. A. Adams, “X-ray computed tomography with 50-Mum resolution,” Appl. Opt. 24, 41174123 (1985).
http://dx.doi.org/10.1364/AO.24.004117
28.
28.B. P. Flannery, H. W. Deckman, W. G. Roberge, and K. L. D’Amico, “Three-dimensional x-ray microtomography,” Science 237, 14391444 (1987).
http://dx.doi.org/10.1126/science.237.4821.1439
29.
29.S. H. Bartling, W. Stiller, M. Grasruck, B. Schmidt, P. Peschke, W. Semmler, and F. Kiessling, “Retrospective motion gating in small animal CT of mice and rats,” Investigative Radiology 42, 704714 (2007).
http://dx.doi.org/10.1097/RLI.0b013e318070dcad
30.
30.E. L. Ritman, “Molecular imaging in small animals—Roles for micro-CT,” J. Cell Biochem. Suppl. 30, 116124 (2002).
http://dx.doi.org/10.1002/jcb.10415
31.
31.S. Zhu, J. Tian, G. Yan, C. Qin, and J. Feng, “Cone beam micro-CT system for small animal imaging and performance evaluation,” Int. J. Biomed. Imaging 2009, 960573 (2009).
http://dx.doi.org/10.1155/2009/960573
32.
32.C. T. Badea, S. M. Johnston, E. Subashi, Y. Qi, L. W. Hedlund, and G. A. Johnson, “Lung perfusion imaging in small animals using 4D micro-CT at heartbeat temporal resolution,” Med. Phys. 37, 5462 (2010).
http://dx.doi.org/10.1118/1.3264619
33.
33.M. J. Paulus, S. S. Gleason, M. E. Easterly, and C. J. Foltz, “A review of high-resolution x-ray computed tomography and other imaging modalities for small animal research,” Lab Anim. 30, 3645 (2001).
34.
34.M. J. Paulus, S. S. Gleason, S. J. Kennel, P. R. Hunsicker, and D. K. Johnson, “High resolution x-ray computed tomography: An emerging tool for small animal cancer research,” Neoplasia 2, 6270 (2000).
http://dx.doi.org/10.1038/sj.neo.7900069
35.
35.S. Greschus, F. Kiessling, M. P. Lichy, J. Moll, M. M. Mueller, R. Savai, F. Rose, C. Ruppert, A. Gunther, M. Luecke, N. E. Fusenig, W. Semmler, and H. Traupe, “Potential applications of flat-panel volumetric CT in morphologic and functional small animal imaging,” Neoplasia 7, 730740 (2005).
http://dx.doi.org/10.1593/neo.05160
36.
36.W. A. Kalender and Y. Kyriakou, “Flat-detector computed tomography (FD-CT),” Eur. Radiol. 17, 27672779 (2007).
http://dx.doi.org/10.1007/s00330-007-0651-9
37.
37.F. Kiessling, S. Greschus, M. P. Lichy, M. Bock, C. Fink, S. Vosseler, J. Moll, M. M. Mueller, N. E. Fusenig, H. Traupe, and W. Semmler, “Volumetric computed tomography (VCT): A new technology for noninvasive, high-resolution monitoring of tumor angiogenesis,” Nat. Med. (N.Y.) 10, 11331138 (2004).
http://dx.doi.org/10.1038/nm1101
38.
38.X. Pan, E. Y. Sidky, and M. Vannier, “Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?,” Inverse Probl. 25(12), 123009 (2009).
http://dx.doi.org/10.1088/0266-5611/25/12/123009
39.
39.A. Dumas, M. Brigitte, M. F. Moreau, F. Chretien, M. F. Basle, and D. Chappard, “Bone mass and microarchitecture of irradiated and bone marrow-transplanted mice: Influences of the donor strain,” Osteoporosis Int. 20, 435443 (2009).
http://dx.doi.org/10.1007/s00198-008-0658-3
40.
40.M. Li, D. R. Healy, Y. Li, H. A. Simmons, D. T. Crawford, H. Z. Ke, L. C. Pan, T. A. Brown, and D. D. Thompson, “Osteopenia and impaired fracture healing in aged EP4 receptor knockout mice,” Bone (N.Y.) 37, 4654 (2005).
http://dx.doi.org/10.1016/j.bone.2005.03.016
41.
41.S. J. Schambach, S. Bag, C. Groden, L. Schilling, and M. A. Brockmann, “Vascular imaging in small rodents using micro-CT,” Methods 50, 2635 (2010).
http://dx.doi.org/10.1016/j.ymeth.2009.09.003
42.
42.S. B. Clauss, D. L. Walker, M. L. Kirby, D. Schimel, and C. W. Lo, “Patterning of coronary arteries in wildtype and connexin43 knockout mice,” Dev. Dyn. 235, 27862794 (2006).
http://dx.doi.org/10.1002/dvdy.20887
43.
43.E. L. Ritman, “Micro-computed tomography of the lungs and pulmonary-vascular system,” Proc. Am. Thorac. Soc. 2, 477480 (2005).
http://dx.doi.org/10.1513/pats.200508-080DS
44.
44.C. Badea, L. W. Hedlund, and G. A. Johnson, “Micro-CT with respiratory and cardiac gating,” Med. Phys. 31, 33243329 (2004).
http://dx.doi.org/10.1118/1.1812604
45.
45.C. T. Badea, B. Fubara, L. W. Hedlund, and G. A. Johnson, “4-D micro-CT of the mouse heart,” Mol. Imaging 4, 110116 (2005).
46.
46.S. J. Schambach, S. Bag, V. Steil, C. Isaza, L. Schilling, C. Groden, and M. A. Brockmann, “Ultrafast high-resolution in vivo volume-CTA of mice cerebral vessels,” Stroke 40, 14441450 (2009).
http://dx.doi.org/10.1161/STROKEAHA.108.521740
47.
47.T. Abruzzo, L. Tumialan, C. Chaalala, S. Kim, R. E. Guldberg, A. Lin, J. Leach, J. C. Khoury, A. E. Morgan, and C. M. Cawley III, “Microscopic computed tomography imaging of the cerebral circulation in mice: Feasibility and pitfalls,” Synapse 62, 557565 (2008).
http://dx.doi.org/10.1002/syn.20511
48.
48.M. Almajdub, L. Magnier, L. Juillard, and M. Janier, “Kidney volume quantification using contrast-enhanced in vivo x-ray micro-CT in mice,” Contrast Media Mol. Imaging 3, 120126 (2008).
http://dx.doi.org/10.1002/cmmi.238
49.
49.B. Y. Durkee, J. P. Weichert, and R. B. Halberg, “Small animal micro-CT colonography,” Methods 50, 3641 (2010).
http://dx.doi.org/10.1016/j.ymeth.2009.07.008
50.
50.K. Katsanos, D. Karnabatidis, A. Diamantopoulos, G. C. Kagadis, P. Ravazoula, G. C. Nikiforidis, D. Siablis, and N. E. Tsopanoglou, “Thrombin promotes arteriogenesis and hemodynamic recovery in a rabbit hindlimb ischemia model,” J. Vasc. Surg. 49, 10001012 (2009).
http://dx.doi.org/10.1016/j.jvs.2008.11.004
51.
51.M. L. Mouchess, Y. Sohara, M. D. Nelson, Jr., C. Y. A. De, and R. A. Moats, “Multimodal imaging analysis of tumor progression and bone resorption in a murine cancer model,” J. Comput. Assist. Tomogr. 30, 525534 (2006).
http://dx.doi.org/10.1097/00004728-200605000-00030
52.
52.X. F. Li, P. Zanzonico, C. C. Ling, and J. O’Donoghue, “Visualization of experimental lung and bone metastases in live nude mice by x-ray micro-computed tomography,” Technol. Cancer Res. Treat. 5, 147155 (2006).
53.
53.L. W. Dobrucki, D. P. Dione, L. Kalinowski, D. Dione, M. Mendizabal, J. Yu, X. Papademetris, W. C. Sessa, and A. J. Sinusas, “Serial noninvasive targeted imaging of peripheral angiogenesis: Validation and application of a semiautomated quantitative approach,” J. Nucl. Med. 50, 13561363 (2009).
http://dx.doi.org/10.2967/jnumed.108.060822
54.
54.M. Gössl, J. Herrmann, H. Tang, D. Versari, O. Galili, D. Mannheim, S. V. Rajkumar, L. O. Lerman, and A. Lerman, “Prevention of vasa vasorum neovascularization attenuates early neointima formation in experimental hypercholesterolemia,” Basic Res. Cardiol. 104, 695706 (2009).
http://dx.doi.org/10.1007/s00395-009-0036-0
55.
55.R. Savai, A. C. Langheinrich, R. T. Schermuly, S. S. Pullamsetti, R. Dumitrascu, H. Traupe, W. S. Rau, W. Seeger, F. Grimminger, and G. A. Banat, “Evaluation of angiogenesis using micro-computed tomography in a xenograft mouse model of lung cancer,” Neoplasia 11, 4856 (2009).
56.
56.M. Gössl, D. Versari, H. A. Hildebrandt, T. Bajanowski, G. Sangiorgi, R. Erbel, E. L. Ritman, L. O. Lerman, and A. Lerman, “Segmental heterogeneity of vasa vasorum neovascularization in human coronary atherosclerosis,” Journal of the American College of Cardiology: Cardiovascular Imaging 3, 3240 (2010).
http://dx.doi.org/10.1016/j.jcmg.2009.10.009
57.
57.E. M. Kim, E. H. Park, S. J. Cheong, C. M. Lee, D. W. Kim, H. J. Jeong, S. T. Lim, M. H. Sohn, K. Kim, and J. Chung, “Characterization, biodistribution and small-animal SPECT of I-125-labeled c-Met binding peptide in mice bearing c-Met receptor tyrosine kinase-positive tumor xenografts,” Nucl. Med. Biol. 36, 371378 (2009).
http://dx.doi.org/10.1016/j.nucmedbio.2009.01.005
58.
58.N. Maehara, “Experimental microcomputed tomography study of the 3D microangioarchitecture of tumors,” Eur. Radiol. 13, 15591565 (2003).
http://dx.doi.org/10.1007/s00330-002-1729-z
59.
59.J. M. Boone, O. Velazquez, and S. R. Cherry, “Small-animal x-ray dose from micro-CT,” Mol. Imaging 3, 149158 (2004).
http://dx.doi.org/10.1162/1535350042380326
60.
60.N. L. Ford, M. M. Thornton, and D. W. Holdsworth, “Fundamental image quality limits for microcomputed tomography in small animals,” Med. Phys. 30, 28692877 (2003).
http://dx.doi.org/10.1118/1.1617353
61.
61.P. M. Winter, S. D. Caruthers, A. Kassner, T. D. Harris, L. K. Chinen, J. S. Allen, E. K. Lacy, H. Zhang, J. D. Robertson, S. A. Wickline, and G. M. Lanza, “Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(nu)beta3-targeted nanoparticle and 1.5 Tesla magnetic resonance imaging,” Cancer Res. 63, 58385843 (2003).
62.
62.S. Miraux, P. Massot, E. J. Ribot, J. M. Franconi, and E. Thiaudiere, “3D TrueFISP imaging of mouse brain at 4.7T and 9.4T,” J. Magn. Reson Imaging 28, 497503 (2008).
http://dx.doi.org/10.1002/jmri.21449
63.
63.M. Hoehn, K. Nicolay, C. Franke, and B. van der Sanden, “Application of magnetic resonance to animal models of cerebral ischemia,” J. Magn. Reson Imaging 14, 491509 (2001).
http://dx.doi.org/10.1002/jmri.1213
64.
64.A. Heerschap, M. G. Sommers, H. J. in’t Zandt, W. K. Renema, A. A. Veltien, and D. W. Klomp, “Nuclear magnetic resonance in laboratory animals,” Methods Enzymol. 385, 4163 (2004).
http://dx.doi.org/10.1016/S0076-6879(04)85003-1
65.
65.M. R. Viant, “Revealing the metabolome of animal tissues using 1H nuclear magnetic resonance spectroscopy,” Methods Mol. Biol. 358, 229246 (2007).
http://dx.doi.org/10.1007/978-1-59745-244-1_13
66.
66.J. C. Chatham and S. J. Blackband, “Nuclear magnetic resonance spectroscopy and imaging in animal research,” ILAR J. 42, 189208 (2001).
67.
67.J. R. Griffiths and J. D. Glickson, “Monitoring pharmacokinetics of anticancer drugs: Non-invasive investigation using magnetic resonance spectroscopy,” Adv. Drug Delivery Rev. 41, 7589 (2000).
http://dx.doi.org/10.1016/S0169-409X(99)00057-5
68.
68.N. R. Bolo, Y. Hode, J. F. Nedelec, E. Laine, G. Wagner, and J. P. Macher, “Brain pharmacokinetics and tissue distribution in vivo of fluvoxamine and fluoxetine by fluorine magnetic resonance spectroscopy,” Neuropsychopharmacology 23, 428438 (2000).
http://dx.doi.org/10.1016/S0893-133X(00)00116-0
69.
69.I. Tkáč, P. G. Henry, P. Andersen, C. D. Keene, W. C. Low, and R. Gruetter, “Highly resolved in vivo 1H NMR spectroscopy of the mouse brain at 9.4 T,” Magn. Reson. Med. 52, 478484 (2004).
http://dx.doi.org/10.1002/mrm.20184
70.
70.S. T. Fricke, O. Rodriguez, J. Vanmeter, L. E. Dettin, M. Casimiro, C. D. Chien, T. Newell, K. Johnson, L. Ileva, J. Ojeifo, M. D. Johnson, and C. Albanese, “In vivo magnetic resonance volumetric and spectroscopic analysis of mouse prostate cancer models,” Prostate 66, 708717 (2006).
http://dx.doi.org/10.1002/pros.20392
71.
71.N. M. Al-Saffar, H. Troy, A. Ramirez de Molina, L. E. Jackson, B. Madhu, J. R. Griffiths, M. O. Leach, P. Workman, J. C. Lacal, I. R. Judson, and Y. L. Chung, “Noninvasive magnetic resonance spectroscopic pharmacodynamic markers of the choline kinase inhibitor MN58b in human carcinoma models,” Cancer Res. 66, 427434 (2006).
http://dx.doi.org/10.1158/0008-5472.CAN-05-1338
72.
72.B. Madhu, J. C. Waterton, J. R. Griffiths, A. J. Ryan, and S. P. Robinson, “The response of RIF-1 fibrosarcomas to the vascular-disrupting agent ZD6126 assessed by in vivo and ex vivo 1H magnetic resonance spectroscopy,” Neoplasia 8, 560567 (2006).
http://dx.doi.org/10.1593/neo.06319
73.
73.L. D. McPhail, Y. L. Chung, B. Madhu, S. Clark, J. R. Griffiths, L. R. Kelland, and S. P. Robinson, “Tumor dose response to the vascular disrupting agent, 5,6-dimethylxanthenone-4-acetic acid, using in vivo magnetic resonance spectroscopy,” Clin. Cancer Res. 11, 37053713 (2005).
http://dx.doi.org/10.1158/1078-0432.CCR-04-2504
74.
74.F. Luo, T. R. Seifert, R. Edalji, R. W. Loebbert, V. P. Hradil, J. Harlan, M. Schmidt, V. Nimmrich, B. F. Cox, and G. B. Fox, “Non-invasive characterization of beta-amyloid(1–40) vasoactivity by functional magnetic resonance imaging in mice,” Neuroscience 155, 263269 (2008).
http://dx.doi.org/10.1016/j.neuroscience.2008.04.021
75.
75.B. Stieltjes, S. Klussmann, M. Bock, R. Umathum, J. Mangalathu, E. Letellier, W. Rittgen, L. Edler, P. H. Krammer, H. U. Kauczor, A. Martin-Villalba, and M. Essig, “Manganese-enhanced magnetic resonance imaging for in vivo assessment of damage and functional improvement following spinal cord injury in mice,” Magn. Reson. Med. 55, 11241131 (2006).
http://dx.doi.org/10.1002/mrm.20888
76.
76.C. A. Mistretta, A. B. Crummy, and C. M. Strother, “Digital angiography: A perspective,” Radiology 139, 273276 (1981).
77.
77.M. de Lin, L. Ning, C. T. Badea, N. N. Mistry, Y. Qi, and G. A. Johnson, “A high-precision contrast injector for small animal x-ray digital subtraction angiography,” IEEE Trans. Biomed. Eng. 55, 10821091 (2008).
http://dx.doi.org/10.1109/TBME.2007.909541
78.
78.M. Lin, C. T. Marshall, Y. Qi, S. M. Johnston, C. T. Badea, C. A. Piantadosi, and G. A. Johnson, “Quantitative blood flow measurements in the small animal cardiopulmonary system using digital subtraction angiography,” Med. Phys. 36, 53475358 (2009).
http://dx.doi.org/10.1118/1.3231823
79.
79.C. T. Badea, L. W. Hedlund, M. De Lin, J. F. Boslego Mackel, and G. A. Johnson, “Tumor imaging in small animals with a combined micro-CT/micro-DSA system using iodinated conventional and blood pool contrast agents,” Contrast Media & Molecular Imaging 1, 153164 (2006).
http://dx.doi.org/10.1002/cmmi.103
80.
80.J. T. Dobbins III, “Tomosynthesis imaging: At a translational crossroads,” Med. Phys. 36, 19561967 (2009).
http://dx.doi.org/10.1118/1.3120285
81.
81.J. T. Dobbins III and D. J. Godfrey, “Digital x-ray tomosynthesis: Current state of the art and clinical potential,” Phys. Med. Biol. 48, R65R106 (2003).
http://dx.doi.org/10.1088/0031-9155/48/19/R01
82.
82.D. Siablis, E. N. Liatsikos, D. Karnabatidis, G. C. Kagadis, G. C. Sakelaropoulos, J. Maroulis, D. Kardamakis, A. Athanassopoulos, P. Perimenis, G. Nikiforidis, and G. A. Barbalias, “Digital subtraction angiography and computer assisted image analysis for the evaluation of the antiangiogenetic effect of ionizing radiation on tumor angiogenesis,” Int. Urol. Nephrol. 38, 407411 (2006).
http://dx.doi.org/10.1007/s11255-005-3617-3
83.
83.G. C. Kagadis, P. Spyridonos, D. Karnabatidis, A. Diamantopoulos, E. Athanasiadis, A. Daskalakis, K. Katsanos, D. Cavouras, D. Mihailidis, D. Siablis, and G. C. Nikiforidis, “Computerized analysis of digital subtraction angiography: A tool for quantitative in-vivo vascular imaging,” J. Digit Imaging 21, 433445 (2008).
http://dx.doi.org/10.1007/s10278-007-9047-2
84.
84.H. O. Anger, M. R. Powell, D. C. van Dyke, L. R. Schaer, R. Fawwaz, and Y. Yano, “Recent applications of the scintillation camera,” Strahlentherapie [Sonderb] 65, 7093 (1967).
85.
85.K. Peremans, B. Cornelissen, B. Van Den Bossche, K. Audenaert, and C. Van de Wiele, “A review of small animal imaging planar and pinhole SPECT Gamma camera imaging,” Vet. Radiol. Ultrasound 46, 162170 (2005).
http://dx.doi.org/10.1111/j.1740-8261.2005.00031.x
86.
86.M. T. Madsen, “Recent advances in SPECT imaging,” J. Nucl. Med. 48, 661673 (2007).
http://dx.doi.org/10.2967/jnumed.106.032680
87.
87.C. L. Melcher, “Perspectives on the future development of new scintillators,” Nucl. Instrum. Methods Phys. Res. A 537, 614 (2005).
http://dx.doi.org/10.1016/j.nima.2004.07.222
88.
88.M. K. O’Connor and B. J. Kemp, “Single-photon emission computed tomography/computed tomography: Basic instrumentation and innovations,” Semin Nucl. Med. 36, 258266 (2006).
http://dx.doi.org/10.1053/j.semnuclmed.2006.05.005
89.
89.S. R. Meikle, P. Kench, M. Kassiou, and R. B. Banati, “Small animal SPECT and its place in the matrix of molecular imaging technologies,” Phys. Med. Biol. 50, R45R61 (2005).
http://dx.doi.org/10.1088/0031-9155/50/22/R01
90.
90.F. van der Have, B. Vastenhouw, R. M. Ramakers, W. Branderhorst, J. O. Krah, C. Ji, S. G. Staelens, and F. J. Beekman, “U-SPECT-II: An ultra-high-resolution device for molecular small-animal imaging,” J. Nucl. Med. 50, 599605 (2009).
http://dx.doi.org/10.2967/jnumed.108.056606
91.
91.T. Funk, P. Despres, W. C. Barber, K. S. Shah, and B. H. Hasegawa, “A multipinhole small animal SPECT system with submillimeter spatial resolution,” Med. Phys. 33, 12591268 (2006).
http://dx.doi.org/10.1118/1.2190332
92.
92.R. Pani, R. Pellegrini, M. N. N. Cinti, M. Mattioli, C. Trotta, L. Montani, G. Iurlaro, G. Trotta, L. D’Addio, S. Ridolfi, G. De Vincentis, and I. N. Weinberg, “Recent advances and future perspectives of position sensitive PMT,” Nucl. Instrum. Methods Phys. Res. B 213, 197205 (2004).
http://dx.doi.org/10.1016/S0168-583X(03)01571-4
93.
93.V. Popov, S. Majewski, and B. L. Welch, “A novel readout concept for multianode photomultiplier tubes with pad matrix anode layout,” Nucl. Instrum. Methods Phys. Res. A 567, 319322 (2006).
http://dx.doi.org/10.1016/j.nima.2006.05.114
94.
94.J. Qian, E. L. Bradley, S. Majewski, V. Popov, M. S. Saha, M. F. Smith, A. G. Weisenberger, and R. E. Welsh, “A small-animal imaging system capable of multipinhole circular/helical SPECT and parallel-hole SPECT,” Nucl. Instrum. Methods Phys. Res. A 594, 102110 (2008).
http://dx.doi.org/10.1016/j.nima.2008.05.061
95.
95.K. Ueno, K. Hattori, C. Ida, S. Iwaki, S. Kabuki, H. Kubo, S. Kurosawa, K. Miuchi, T. Nagayoshi, H. Nishimura, R. Orito, A. Takada, and T. Tanimori, “Performance of the gamma-ray camera based on GSO (Ce) scintillator array and PSPMT with the ASIC readout system,” Nucl. Instrum. Methods Phys. Res. A 591, 268271 (2008).
http://dx.doi.org/10.1016/j.nima.2008.03.071
96.
96.W. Xi, J. Seidel, J. W. Kakareka, T. J. Pohida, D. E. Milenic, J. Proffitt, S. Majewski, A. G. Weisenberger, M. V. Greenb, and P. L. Choyke, “MONICA: A compact, portable dual gamma camera system for mouse whole-body imaging,” Nucl. Med. Biol. 37, 245253 (2010).
http://dx.doi.org/10.1016/j.nucmedbio.2009.12.003
97.
97.K. Ogawa, N. Ohmura, H. Iida, K. Nakamura, T. Nakahara, and A. Kubo, “Development of an ultra-high resolution SPECT system with a CdTe semiconductor detector,” Ann. Nucl. Med. 23, 763770 (2009).
http://dx.doi.org/10.1007/s12149-009-0293-x
98.
98.K. Kacperski, K. Erlandsson, S. Ben-Haim, D. Van Gramberg, and B. Hutton, “Dual radionuclide imaging with a superior energy resolution CZT cardiac SPECT system,” J. Nucl. Med. 49, 395P (2008).
99.
99.E. Grigoriev, A. Akindinov, M. Breitenmoser, S. Buono, E. Charbon, C. Niclass, I. Desforges, and R. Rocca, “Silicon photomultipliers and their bio-medical applications,” Nucl. Instrum. Methods Phys. Res. A 571, 130133 (2007).
http://dx.doi.org/10.1016/j.nima.2006.10.046
100.
100.P. Blake, B. Johnson, and J. W. VanMeter, “Positron emission tomography (PET) and single photon emission computed tomography (SPECT): Clinical applications,” J. Neuroophthalmol. 23, 3441 (2003).
http://dx.doi.org/10.1097/00041327-200303000-00009
101.
101.M. E. Van Dort, A. Rehemtulla, and B. D. Ross, “PET and SPECT imaging of tumor biology: New approaches towards oncology drug discovery and development,” Current Computer-Aided Drug Design 4, 4653 (2008).
http://dx.doi.org/10.2174/157340908783769265
102.
102.D. J. Rowland and S. R. Cherry, “Small-animal preclinical nuclear medicine instrumentation and methodology,” Semin Nucl. Med. 38, 209222 (2008).
http://dx.doi.org/10.1053/j.semnuclmed.2008.01.004
103.
103.B. L. Franc, P. D. Acton, C. Mari, and B. H. Hasegawa, “Small-animal SPECT and SPECT/CT: Important tools for preclinical investigation,” J. Nucl. Med. 49, 16511663 (2008).
http://dx.doi.org/10.2967/jnumed.108.055442
104.
104.Y. S. Choe and K. H. Lee, “Targeted in vivo imaging of angiogenesis: Present status and perspectives,” Curr. Pharm. Des. 13, 1731 (2007).
http://dx.doi.org/10.2174/138161207779313812
105.
105.R. C. Thompson and S. J. Cullom, “Issues regarding radiation dosage of cardiac nuclear and radiography procedures,” J. Nucl. Cardiol. 13, 1923 (2006).
http://dx.doi.org/10.1016/j.nuclcard.2005.11.004
106.
106.T. Funk, M. Sun, and B. H. Hasegawa, “Radiation dose estimate in small animal SPECT and PET,” Med. Phys. 31, 26802686 (2004).
http://dx.doi.org/10.1118/1.1781553
107.
107.T. G. Turkington, “Introduction to PET instrumentation,” J. Nucl. Med. Technol. 29, 411 (2001).
108.
108.H. Zaidi, “Scatter modeling and correction strategies in fully 3-D PET,” Nucl. Med. Commun. 22, 11811184 (2001).
http://dx.doi.org/10.1097/00006231-200111000-00003
109.
109.M. Larobina, A. Brunetti, and M. Salvatore, “Small animal PET: A review of commercially available imaging systems,” Current Medical Imaging Reviews 2, 187192 (2006).
http://dx.doi.org/10.2174/157340506776930610
110.
110.M. Korzhik, A. Fedorov, A. Annenkov, A. Borissevitch, A. Dossovitski, O. Missevitch, and P. Lecoq, “Development of scintillation materials for PET scanners,” Nucl. Instrum. Methods Phys. Res. A 571, 122125 (2007).
http://dx.doi.org/10.1016/j.nima.2006.10.044
111.
111.J. H. Jung, Y. Choi, Y. H. Chung, O. Devroede, M. Krieguer, P. Bruyndonckx, and S. Tavernier, “Optimization of LSO/LuYAP phoswich detector for small animal PET,” Nucl. Instrum. Methods Phys. Res. A 571, 669675 (2007).
http://dx.doi.org/10.1016/j.nima.2006.10.293
112.
112.W. W. Moses, “Recent advances and future advances in time-of-flight PET,” Nucl. Instrum. Methods Phys. Res. A 580, 919924 (2007).
http://dx.doi.org/10.1016/j.nima.2007.06.038
113.
113.J. S. Karp, S. Surti, M. E. Daube-Witherspoon, and G. Muehllehner, “Benefit of time-of-flight in PET: Experimental and clinical results,” J. Nucl. Med. 49, 462470 (2008).
http://dx.doi.org/10.2967/jnumed.107.044834
114.
114.M. Fani, J. P. Andre, and H. R. Maecke, “68Ga-PET: A powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals,” Contrast Media & Molecular Imaging 3, 6777 (2008).
http://dx.doi.org/10.1002/cmmi.232
115.
115.S. K. Imam, T. El-Maghraby, A. Alavi, and S. Basu, “Advances in PET radiopharmaceuticals,” World Journal of Nuclear Medicine 9, 005024 (2010).
116.
116.J. W. Fletcher, B. Djulbegovic, H. P. Soares, B. A. Siegel, V. J. Lowe, G. H. Lyman, R. E. Coleman, R. Wahl, J. C. Paschold, N. Avril, L. H. Einhorn, W. W. Suh, D. Samson, D. Delbeke, M. Gorman, and A. F. Shields, “Recommendations on the use of 18F-FDG PET in oncology,” J. Nucl. Med. 49, 480508 (2008).
http://dx.doi.org/10.2967/jnumed.107.047787
117.
117.K. C. Allman, “18F-FDG PET and myocardial viability assessment: Trials and tribulations,” J. Nucl. Med. 51, 505506 (2010).
http://dx.doi.org/10.2967/jnumed.109.069849
118.
118.A. B. Newberg and A. Alavi, “Normal patterns and variants in PET brain imaging,” PET Clinics (Elsevier) 5, 113 (2010).
http://dx.doi.org/10.1016/j.cpet.2009.12.006
119.
119.R. E. Laing, E. Nair-Gill, O. N. Witte, and C. G. Radu, “Visualizing cancer and immune cell function with metabolic positron emission tomography,” Curr. Opin. Genet. Dev. 20, 100105 (2010).
http://dx.doi.org/10.1016/j.gde.2009.10.008
120.
120.R. Taschereau and A. F. Chatziioannou, “Monte Carlo simulations of absorbed dose in a mouse phantom from 18-fluorine compounds,” Med. Phys. 34, 10261036 (2007).
http://dx.doi.org/10.1118/1.2558115
121.
121.R. T. Sadikot and T. S. Blackwell, “Bioluminescence imaging,” Proc. Am. Thorac. Soc. 2, 537540 (2005).
http://dx.doi.org/10.1513/pats.200507-067DS
122.
122.R. Kraayenhof, A. Visser, and H. C. Gerritsen, Fluorescence Spectroscopy, Imaging and Probes: New Tools in Chemical, Physical and Life Sciences (Springer, Berlin, 2002).
123.
123.R. B. Schulz and W. Semmler, Molecular Imaging I (Springer, Berlin, 2008).
124.
124.S. J. Erickson and A. Godavarty, “Hand-held based near-infrared optical imaging devices: A review,” Med. Eng. Phys. 31, 495509 (2009).
http://dx.doi.org/10.1016/j.medengphy.2008.10.004
125.
125.V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 133 (2006).
http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095831
126.
126.B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 24432451 (2008).
http://dx.doi.org/10.1118/1.2919078
127.
127.P. Ray, A. M. Wu, and S. S. Gambhir, “Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice,” Cancer Res. 63, 11601165 (2003).
128.
128.S. Boddington, T. D. Henning, E. J. Sutton, and H. E. Daldrup-Link, “Labeling stem cells with fluorescent dyes for non-invasive detection with optical imaging,” Journal of Visualized Experiments 2(14), 686 (2008).
129.
129.T. J. Snoeks, C. W. Lowik, and E. L. Kaijzel, “‘In vivo’ optical approaches to angiogenesis imaging,” Angiogenesis 13(2), 135147 (2010).
http://dx.doi.org/10.1007/s10456-010-9168-y
130.
130.H. F. Wehrl, M. S. Judenhofer, S. Wiehr, and B. J. Pichler, “Pre-clinical PET/MR: Technological advances and new perspectives in biomedical research,” Eur. J. Nucl. Med. Mol. Imaging 36, S56S68 (2009).
http://dx.doi.org/10.1007/s00259-009-1078-0
131.
131.M. Lijowski, S. Caruthers, G. Hu, H. Zhang, M. J. Scott, T. Williams, T. Erpelding, A. H. Schmieder, G. Kiefer, G. Gulyas, P. S. Athey, P. J. Gaffney, S. A. Wickline, and G. M. Lanza, “High sensitivity: High-resolution SPECT-CT/MR molecular imaging of angiogenesis in the model,” Invest. Radiol. 44, 1522 (2009).
http://dx.doi.org/10.1097/RLI.0b013e31818935eb
132.
132.K. P. Schäfers and L. Stegger, “Combined imaging of molecular function and morphology with PET/CT and SPECT/CT: Image fusion and motion correction,” Basic Res. Cardiol. 103, 191199 (2008).
http://dx.doi.org/10.1007/s00395-008-0717-0
133.
133.Y. Zingerman, H. Golan, A. Gersten, and A. Moalem, “A compact CT/SPECT system for small-object imaging,” Nucl. Instrum. Methods Phys. Res. A 584, 135148 (2008).
http://dx.doi.org/10.1016/j.nima.2007.09.025
134.
134.D. W. Townsend, T. Beyer, and T. M. Blodgett, “PET/CT scanners: A hardware approach to image fusion,” Semin Nucl. Med. 33, 193204 (2003).
http://dx.doi.org/10.1053/snuc.2003.127314
135.
135.E. Even-Sapir, Z. Keidar, and R. Bar-Shalom, “Hybrid imaging (SPECT/CT and PET/CT)—Improving the diagnostic accuracy of functional/metabolic and anatomic imaging,” Semin Nucl. Med. 39, 264275 (2009).
http://dx.doi.org/10.1053/j.semnuclmed.2009.03.004
136.
136.E. L. Kaijzel, T. J. Snoeks, J. T. Buijs, G. van der Pluijm, and C. W. Lowik, “Multimodal imaging and treatment of bone metastasis,” Clin. Exp. Metastasis 26, 371379 (2009).
http://dx.doi.org/10.1007/s10585-008-9217-8
137.
137.H. Zaidi and B. Hasegawa, “Determination of the attenuation map in emission tomography,” J. Nucl. Med. 44, 291315 (2003).
138.
138.H. Zaidi, O. Mawlawi, and C. G. Orton, “Point/counterpoint. Simultaneous PET/MR will replace PET/CT as the molecular multimodality imaging platform of choice,” Med. Phys. 34, 15251528 (2007).
http://dx.doi.org/10.1118/1.2732493
139.
139.C. Catana, Y. Wu, M. S. Judenhofer, J. Qi, B. J. Pichler, and S. R. Cherry, “Simultaneous acquisition of multislice PET and MR images: Initial results with a MR-compatible PET scanner,” J. Nucl. Med. 47, 19681976 (2006).
140.
140.S. I. Ziegler, B. J. Pichler, G. Boening, M. Rafecas, W. Pimpl, E. Lorenz, N. Schmitz, and M. Schwaiger, “A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals,” Eur. J. Nucl. Med. 28, 136143 (2001).
http://dx.doi.org/10.1007/s002590000438
141.
141.D. R. Schaart, H. T. van Dam, S. Seifert, R. Vinke, P. Dendooven, H. Lohner, and F. J. Beekman, “A novel, SiPM-array-based, monolithic scintillator detector for PET,” Phys. Med. Biol. 54, 35013512 (2009).
http://dx.doi.org/10.1088/0031-9155/54/11/015
142.
142.G. Antoch and A. Bockisch, “Combined PET/MRI: A new dimension in whole-body oncology imaging?,” Eur. J. Nucl. Med. Mol. Imaging 36, S113S120 (2009).
http://dx.doi.org/10.1007/s00259-008-0951-6
143.
143.R. Pani, M. N. Cinti, R. Pellegrini, P. Bennati, M. Betti, F. Vittorini, M. Mattioli, G. Trotta, V. Orsolini Cencelli, R. Scafè, F. Navarria, D. Bollini, G. Baldazzi, G. Moschini, and F. de Notaristefani, “LaBr3:Ce scintillation gamma camera prototype for x and gamma ray imaging,” Nucl. Instrum. Methods Phys. Res. A 576, 1518 (2007).
http://dx.doi.org/10.1016/j.nima.2007.01.111
144.
144.G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: Simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol. 51, 20452053 (2006).
http://dx.doi.org/10.1088/0031-9155/51/8/006
145.
145.J. Peter and W. Semmler, “Performance investigation of a dual-modality SPECT/optical small animal imager,” Eur. J. Nucl. Med. Mol. Imaging 33, S117S117 (2006).
http://dx.doi.org/10.1007/s00259-005-1899-4
146.
146.D. Hyde, R. Schulz, D. Brooks, E. Miller, and V. Ntziachristos, “Performance dependence of hybrid x-ray computed tomography/fluorescence molecular tomography on the optical forward problem,” J. Opt. Soc. Am. A Opt. Image Sci. Vis 26, 919923 (2009).
http://dx.doi.org/10.1364/JOSAA.26.000919
147.
147.R. Fahrig, A. Ganguly, P. Lillaney, J. Bracken, J. A. Rowlands, W. Zhifei, Y. Huanzhou, V. Rieke, J. M. Santos, K. B. Pauly, D. Y. Sze, J. K. Frisoli, B. L. Daniel, and N. J. Pelc, “Design, performance, and applications of a hybrid x-ray/MR system for interventional guidance,” Proc. IEEE 96, 468480 (2008).
http://dx.doi.org/10.1109/JPROC.2007.913506
148.
148.M. Niedre and V. Ntziachristos, “Elucidating structure and function in vivo with hybrid fluorescence and magnetic resonance imaging,” Proc. IEEE 96, 382396 (2008).
http://dx.doi.org/10.1109/JPROC.2007.913498
149.
149.R. Weissleder and U. Mahmood, “Molecular imaging,” Radiology 219, 316333 (2001).
150.
150.J. M. Hoffman and S. S. Gambhir, “Molecular imaging: The vision and opportunity for radiology in the future,” Radiology 244, 3947 (2007).
http://dx.doi.org/10.1148/radiol.2441060773
151.
151.A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine, “A review of imaging techniques for systems biology,” BMC Systems Biology 2, 74 (2008).
http://dx.doi.org/10.1186/1752-0509-2-74
152.
152.A. S. Dzik-Jurasz, “Molecular imaging in vivo: An introduction,” Br. J. Radiol. 76, S98S109 (2003).
http://dx.doi.org/10.1259/bjr/25833499
153.
153.R. Sinha, G. J. Kim, S. Nie, and D. M. Shin, “Nanotechnology in cancer therapeutics: Bioconjugated nanoparticles for drug delivery,” Molecular Cancer Therapeutics 5, 19091917 (2006).
http://dx.doi.org/10.1158/1535-7163.MCT-06-0141
154.
154.D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: From microscope to clinic,” Nat. Med. 9, 713725 (2003).
http://dx.doi.org/10.1038/nm0603-713
155.
155.N. Matsuura and J. A. Rowlands, “Towards new functional nanostructures for medical imaging,” Med. Phys. 35, 44744487 (2008).
http://dx.doi.org/10.1118/1.2966595
156.
156.D. P. Cormode, T. Skajaa, Z. A. Fayad, and W. J. Mulder, “Nanotechnology in medical imaging: Probe design and applications,” Arterioscler., Thromb., Vasc., Biol. 29, 9921000 (2009).
http://dx.doi.org/10.1161/ATVBAHA.108.165506
157.
157.S. Qin, C. F. Caskey, and K. W. Ferrara, “Ultrasound contrast microbubbles in imaging and therapy: Physical principles and engineering,” Phys. Med. Biol. 54, R27R57 (2009).
http://dx.doi.org/10.1088/0031-9155/54/6/R01
158.
158.U. Nixdorff, A. Schmidt, T. Morant, N. Stilianakis, J. U. Voigt, F. A. Flachskampf, W. G. Daniel, and C. D. Garlichs, “Dose-dependent disintegration of human endothelial monolayers by contrast echocardiography,” Life Sci. 77, 14931501 (2005).
http://dx.doi.org/10.1016/j.lfs.2005.04.011
159.
159.J. M. Tsutsui, P. A. Grayburn, F. Xie, and T. R. Porter, “Drug and gene delivery and enhancement of thrombolysis using ultrasound and microbubbles,” Cardiol. Clin. 22, 299312 (2004).
http://dx.doi.org/10.1016/j.ccl.2004.02.009
160.
160.M. Ao, Z. Wang, H. Ran, D. Guo, J. Yu, A. Li, W. Chen, W. Wu, and Y. Zheng, “Gd-DTPA-loaded PLGA microbubbles as both ultrasound contrast agent and MRI contrast agent—A feasibility research,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 93, 551556 (2010).
161.
161.F. Yang, Y. Li, Z. Chen, Y. Zhang, J. Wu, and N. Gu, “Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging,” Biomaterials 30, 38823890 (2009).
http://dx.doi.org/10.1016/j.biomaterials.2009.03.051
162.
162.R. Bekeredjian, P. A. Grayburn, and R. V. Shohet, “Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine,” J. Am. Coll. Cardiol. 45, 329335 (2005).
http://dx.doi.org/10.1016/j.jacc.2004.08.067
163.
163.T. Imada, T. Tatsumi, Y. Mori, T. Nishiue, M. Yoshida, H. Masaki, M. Okigaki, H. Kojima, Y. Nozawa, Y. Nishiwaki, N. Nitta, T. Iwasaka, and H. Matsubara, “Targeted delivery of bone marrow mononuclear cells by ultrasound destruction of microbubbles induces both angiogenesis and arteriogenesis response,” Arterioscler., Thromb., Vasc., Biol. 25, 21282134 (2005).
http://dx.doi.org/10.1161/01.ATV.0000179768.06206.cb
164.
164.J. N. Marsh, K. C. Partlow, D. R. Abendschein, M. J. Scott, G. M. Lanza, and S. A. Wickline, “Molecular imaging with targeted perfluorocarbon nanoparticles: Quantification of the concentration dependence of contrast enhancement for binding to sparse cellular epitopes,” Ultrasound Med. Biol. 33, 950958 (2007).
http://dx.doi.org/10.1016/j.ultrasmedbio.2006.12.007
165.
165.F. Cavalieri, M. Zhou, and M. Ashokkumar, “The design of multifunctional microbubbles for ultrasound image-guided cancer therapy,” Current Topics in Medicinal Chemistry 10(12), 11981210 (2010).
http://dx.doi.org/10.2174/156802610791384180
166.
166.J. R. Lindner, J. Song, J. Christiansen, A. L. Klibanov, F. Xu, and K. Ley, “Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin,” Circulation 104, 21072112 (2001).
http://dx.doi.org/10.1161/hc4201.097061
167.
167.J. R. Lindner, J. Song, F. Xu, A. L. Klibanov, K. Singbartl, K. Ley, and S. Kaul, “Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes,” Circulation 102, 27452750 (2000).
168.
168.P. Hauff, M. Reinhardt, A. Briel, N. Debus, and M. Schirner, “Molecular targeting of lymph nodes with L-selectin ligand-specific US contrast agent: A feasibility study in mice and dogs,” Radiology 231, 667673 (2004).
http://dx.doi.org/10.1148/radiol.2313030425
169.
169.J. K. Willmann, R. H. Kimura, N. Deshpande, A. M. Lutz, J. R. Cochran, and S. S. Gambhir, “Targeted contrast-enhanced ultrasound imaging of tumor angiogenesis with contrast microbubbles conjugated to integrin-binding knottin peptides,” J. Nucl. Med. 51, 433440 (2010).
http://dx.doi.org/10.2967/jnumed.109.068007
170.
170.G. Korpanty, S. Chen, R. V. Shohet, J. Ding, B. Yang, P. A. Frenkel, and P. A. Grayburn, “Targeting of VEGF-mediated angiogenesis to rat myocardium using ultrasonic destruction of microbubbles,” Gene Ther. 12, 13051312 (2005).
http://dx.doi.org/10.1038/sj.gt.3302532
171.
171.D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, “Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3,” Circulation 108, 336341 (2003).
http://dx.doi.org/10.1161/01.CIR.0000080326.15367.0C
172.
172.H. Leong-Poi, J. Christiansen, A. L. Klibanov, S. Kaul, and J. R. Lindner, “Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins,” Circulation 107, 455460 (2003).
http://dx.doi.org/10.1161/01.CIR.0000044916.05919.8B
173.
173.E. E. Uzgiris, H. Cline, B. Moasser, B. Grimmond, M. Amaratunga, J. F. Smith, and G. Goddard, “Conformation and structure of polymeric contrast agents for medical imaging,” Biomacromolecules 5, 5461 (2004).
http://dx.doi.org/10.1021/bm034197+
174.
174.V. P. Torchilin, “Polymeric contrast agents for medical imaging,” Curr. Pharm. Biotechnol. 1, 183215 (2000).
http://dx.doi.org/10.2174/1389201003378960
175.
175.C. Alric, J. Taleb, G. Le Duc, C. Mandon, C. Billotey, A. Le Meur-Herland, T. Brochard, F. Vocanson, M. Janier, P. Perriat, S. Roux, and O. Tillement, “Gadolinium chelate coated gold nanoparticles as contrast agents for both x-ray computed tomography and magnetic resonance imaging,” J. Am. Chem. Soc. 130, 59085915 (2008).
http://dx.doi.org/10.1021/ja078176p
176.
176.C. Burgstahler and M. Budoff, “Cardiac computed tomography with gadolinium: An alternative to iodinated contrast agents?,” Journal of Cardiovascular Computed Tomography 1, 9596 (2007).
http://dx.doi.org/10.1016/j.jcct.2007.08.002
177.
177.J. Vogel, “Measurement of cardiac output in small laboratory animals using recordings of blood conductivity,” Am. J. Physiol. 273, H2520H2527 (1997).
178.
178.S. Mukundan, Jr., K. B. Ghaghada, C. T. Badea, C. Y. Kao, L. W. Hedlund, J. M. Provenzale, G. A. Johnson, E. Chen, R. V. Bellamkonda, and A. Annapragada, “A liposomal nanoscale contrast agent for preclinical CT in mice,” AJR, Am. J. Roentgenol. 186, 300307 (2006).
http://dx.doi.org/10.2214/AJR.05.0523
179.
179.C. Y. Kao, E. A. Hoffman, K. C. Beck, R. V. Bellamkonda, and A. V. Annapragada, “Long-residence-time nano-scale liposomal iohexol for x-ray-based blood pool imaging,” Acad. Radiol. 10, 475483 (2003).
http://dx.doi.org/10.1016/S1076-6332(03)80055-7
180.
180.J. P. Weichert, M. A. Longino, D. A. Bakan, M. G. Spigarelli, T. Chou, S. W. Schwendner, and R. E. Counsel, “Polyiodinated triglyceride analogs as potential computed tomography imaging agents for the liver,” J. Med. Chem. 38, 636646 (1995).
http://dx.doi.org/10.1021/jm00004a010
181.
181.X. Montet, C. M. Pastor, J. P. Vallee, C. D. Becker, A. Geissbuhler, D. R. Morel, and P. Meda, “Improved visualization of vessels and hepatic tumors by micro-computed tomography (CT) using iodinated liposomes,” Invest. Radiol. 42, 652658 (2007).
http://dx.doi.org/10.1097/RLI.0b013e31805f445b
182.
182.O. Rabin, J. Manuel Perez, J. Grimm, G. Wojtkiewicz, and R. Weissleder, “An x-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles,” Nature Mater. 5, 118122 (2006).
http://dx.doi.org/10.1038/nmat1571
183.
183.J. Zheng, G. Perkins, A. Kirilova, C. Allen, and D. A. Jaffray, “Multimodal contrast agent for combined computed tomography and magnetic resonance imaging applications,” Invest. Radiol. 41, 339348 (2006).
http://dx.doi.org/10.1097/01.rli.0000186568.50265.64
184.
184.P. Hermann, J. Kotek, V. Kubicek, and I. Lukes, “Gadolinium(III) complexes as MRI contrast agents: Ligand design and properties of the complexes,” Dalton Trans. 23, 30273047 (2008).
http://dx.doi.org/10.1039/b719704g
185.
185.P. Reimer, G. Schneider, and W. Schima, “Hepatobiliary contrast agents for contrast-enhanced MRI of the liver: Properties, clinical development and applications,” Eur. Radiol. 14, 559578 (2004).
http://dx.doi.org/10.1007/s00330-004-2236-1
186.
186.S. H. Koenig and K. E. Kellar, “Blood-pool contrast agents for MRI: A critical evaluation,” Acad. Radiol. 5, S226S227 (1998).
http://dx.doi.org/10.1016/S1076-6332(98)80106-2
187.
187.H. Kobayashi and M. W. Brechbiel, “Nano-sized MRI contrast agents with dendrimer cores,” Adv. Drug Delivery Rev. 57, 22712286 (2005).
http://dx.doi.org/10.1016/j.addr.2005.09.016
188.
188.S. Sharma, U. Paiphansiri, V. Hombach, V. Mailander, O. Zimmermann, K. Landfester, and V. Rasche, “Characterization of MRI contrast agent-loaded polymeric nanocapsules as versatile vehicle for targeted imaging,” Contrast Media & Molecular Imaging 5, 5969 (2010).
189.
189.C. Zhang, T. Liu, J. Gao, Y. Su, and C. Shi, “Recent development and application of magnetic nanoparticles for cell labeling and imaging,” Mini-Reviews in Medicinal Chemistry 10, 193202 (2010).
190.
190.U. Himmelreich and T. Dresselaers, “Cell labeling and tracking for experimental models using magnetic resonance imaging,” Methods 48, 112124 (2009).
http://dx.doi.org/10.1016/j.ymeth.2009.03.020
191.
191.A. L. Ayyagari, X. Zhang, K. B. Ghaghada, A. Annapragada, X. Hu, and R. V. Bellamkonda, “Long-circulating liposomal contrast agents for magnetic resonance imaging,” Magn. Reson. Med. 55, 10231029 (2006).
http://dx.doi.org/10.1002/mrm.20846
192.
192.G. J. Strijkers, W. J. Mulder, R. B. van Heeswijk, P. M. Frederik, P. Bomans, P. C. Magusin, and K. Nicolay, “Relaxivity of liposomal paramagnetic MRI contrast agents,” MAGMA (N.Y.) 18, 186192 (2005).
http://dx.doi.org/10.1007/s10334-005-0111-y
193.
193.K. B. Hartman and L. J. Wilson, “Carbon nanostructures as a new high-performance platform for MR molecular imaging,” Adv. Exp. Med. Biol. 620, 7484 (2007).
http://dx.doi.org/10.1007/978-0-387-76713-0_6
194.
194.B. Sitharaman and L. J. Wilson, “Gadonanotubes as new high-performance MRI contrast agents,” International Journal of Nanomedicine 1, 291295 (2006).
195.
195.J. W. Chen, M. Querol Sans, A. Bogdanov, Jr., and R. Weissleder, “Imaging of myeloperoxidase in mice by using novel amplifiable paramagnetic substrates,” Radiology 240, 473481 (2006).
http://dx.doi.org/10.1148/radiol.2402050994
196.
196.Y. Feng, E. K. Jeong, A. M. Mohs, L. Emerson, and Z. R. Lu, “Characterization of tumor angiogenesis with dynamic contrast-enhanced MRI and biodegradable macromolecular contrast agents in mice,” Magn. Reson. Med. 60, 13471352 (2008).
http://dx.doi.org/10.1002/mrm.21791
197.
197.G. Fan, P. Zang, F. Jing, Z. Wu, and Q. Guo, “Usefulness of diffusion/perfusion-weighted MRI in rat gliomas: Correlation with histopathology,” Acad. Radiol. 12, 640651 (2005).
http://dx.doi.org/10.1016/j.acra.2005.01.024
198.
198.D. Zhao, L. Jiang, E. W. Hahn, and R. P. Mason, “Continuous low-dose (metronomic) chemotherapy on rat prostate tumors evaluated using MRI in vivo and comparison with histology,” Neoplasia 7, 678687 (2005).
http://dx.doi.org/10.1593/neo.04757
199.
199.T. Bäuerle, S. Bartling, M. Berger, A. Schmitt-Graff, H. Hilbig, H. U. Kauczor, S. Delorme, and F. Kiessling, “Imaging anti-angiogenic treatment response with DCE-VCT, DCE-MRI and DWI in an animal model of breast cancer bone metastasis,” Eur. J. Radiol. 73, 280287 (2010).
http://dx.doi.org/10.1016/j.ejrad.2008.10.020
200.
200.N. Tuncbilek, M. Kaplan, S. Altaner, I. H. Atakan, N. Sut, O. Inci, and M. K. Demir, “Value of dynamic contrast-enhanced MRI and correlation with tumor angiogenesis in bladder cancer,” AJR, Am. J. Roentgenol. 192, 949955 (2009).
http://dx.doi.org/10.2214/AJR.08.1332
201.
201.M. Y. Su, Y. C. Cheung, J. P. Fruehauf, H. Yu, O. Nalcioglu, E. Mechetner, A. Kyshtoobayeva, S. C. Chen, S. Hsueh, C. E. McLaren, and Y. L. Wan, “Correlation of dynamic contrast enhancement MRI parameters with microvessel density and VEGF for assessment of angiogenesis in breast cancer,” J. Magn. Reson Imaging 18, 467477 (2003).
http://dx.doi.org/10.1002/jmri.10380
202.
202.C. A. Cuenod, L. Fournier, D. Balvay, and J. M. Guinebretiere, “Tumor angiogenesis: Pathophysiology and implications for contrast-enhanced MRI and CT assessment,” Abdom. Imaging 31, 188193 (2006).
http://dx.doi.org/10.1007/s00261-005-0386-5
203.
203.C. Granziera, H. D’Arceuil, L. Zai, P. J. Magistretti, A. G. Sorensen, and A. J. de Crespigny, “Long-term monitoring of post-stroke plasticity after transient cerebral ischemia in mice using in vivo and ex vivo diffusion tensor MRI,” The Open Neuroimaging Journal 1, 1017 (2007).
http://dx.doi.org/10.2174/1874440000701010010
204.
204.P. V. Prasad, A. Priatna, K. Spokes, and F. H. Epstein, “Changes in intrarenal oxygenation as evaluated by BOLD MRI in a rat kidney model for radiocontrast nephropathy,” J. Magn. Reson Imaging 13, 744747 (2001).
http://dx.doi.org/10.1002/jmri.1103
205.
205.H. A. Al-Hallaq, M. Zamora, B. L. Fish, A. Farrell, J. E. Moulder, and G. S. Karczmar, “MRI measurements correctly predict the relative effects of tumor oxygenating agents on hypoxic fraction in rodent BA1112 tumors,” Int. J. Radiat. Oncol., Biol., Phys. 47, 481488 (2000).
http://dx.doi.org/10.1016/S0360-3016(00)00445-4
206.
206.T. Barrett, H. Kobayashi, M. Brechbiel, and P. L. Choyke, “Macromolecular MRI contrast agents for imaging tumor angiogenesis,” Eur. J. Radiol. 60, 353366 (2006).
http://dx.doi.org/10.1016/j.ejrad.2006.06.025
207.
207.S. K. Imam, “Molecular nuclear imaging: The radiopharmaceuticals (review),” Cancer Biother. Radiopharm. 20, 163172 (2005).
http://dx.doi.org/10.1089/cbr.2005.20.163
208.
208.M. Fani, D. Psimadas, C. Zikos, S. Xanthopoulos, G. K. Loudos, P. Bouziotis, and A. D. Varvarigou, “Comparative evaluation of linear and cyclic 99mTc-RGD peptides for targeting of integrins in tumor angiogenesis,” Anticancer Res. 26, 431434 (2006).
209.
209.P. Bouziotis, D. Psimadas, M. Fani, E. Gourni, G. Loudos, S. Xanthopoulos, S. C. Archimandritis, and A. D. Varvarig, “Radiolabeled biomolecules for early cancer detection and therapy via angiogenesis targeting,” Nucl. Instrum. Methods Phys. Res. A 569, 492496 (2006).
http://dx.doi.org/10.1016/j.nima.2006.08.142
210.
210.G. Murphy and F. Willenbrock, “Tissue inhibitors of matrix metalloproteinases,” Methods Enzymol. 248, 496510 (1995).
http://dx.doi.org/10.1016/0076-6879(95)48032-3
211.
211.P. McQuade, L. C. Knight, and M. J. Welch, “Evaluation of - and -radiolabeled bitistatin as potential agents for targeting integrins in tumor angiogenesis,” Bioconjugate Chem. 15, 988996 (2004).
http://dx.doi.org/10.1021/bc049961j
212.
212.T. D. Harris, S. Kalogeropoulos, T. Nguyen, S. Liu, J. Bartis, C. Ellars, S. Edwards, D. Onthank, P. Silva, P. Yalamanchili, S. Robinson, J. Lazewatsky, J. Barrett, and J. Bozarth, “Design, synthesis, and evaluation of radiolabeled integrin alpha v beta 3 receptor antagonists for tumor imaging and radiotherapy,” Cancer Biother. Radiopharm. 18, 627641 (2003).
http://dx.doi.org/10.1089/108497803322287727
213.
213.T. H. Stollman, M. G. Scheer, W. P. Leenders, K. C. Verrijp, A. C. Soede, W. J. Oyen, T. J. Ruers, and O. C. Boerman, “Specific imaging of VEGF-A expression with radiolabeled anti-VEGF monoclonal antibody,” Int. J. Cancer 122, 23102314 (2008).
http://dx.doi.org/10.1002/ijc.23404
214.
214.E. Lu, W. R. Wagner, U. Schellenberger, J. A. Abraham, A. L. Klibanov, S. R. Woulfe, M. M. Csikari, D. Fischer, G. F. Schreiner, G. H. Brandenburger, and F. S. Villanueva, “Targeted in vivo labeling of receptors for vascular endothelial growth factor: Approach to identification of ischemic tissue,” Circulation 108, 97103 (2003).
http://dx.doi.org/10.1161/01.CIR.0000079100.38176.83
215.
215.S. Li, M. Peck-Radosavljevic, O. Kienast, J. Preitfellner, E. Havlik, W. Schima, T. Traub-Weidinger, S. Graf, M. Beheshti, M. Schmid, P. Angelberger, and R. Dudczak, “Iodine-123-vascular endothelial growth factor-165 (123I-VEGF165). Biodistribution, safety and radiation dosimetry in patients with pancreatic carcinoma,” Q. J. Nucl. Med. Mol. Imaging 48, 198206 (2004).
216.
216.J. Hua, L. W. Dobrucki, M. M. Sadeghi, J. Zhang, B. N. Bourke, P. Cavaliere, J. Song, C. Chow, N. Jahanshad, N. van Royen, I. Buschmann, J. A. Madri, M. Mendizabal, and A. J. Sinusas, “Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia,” Circulation 111, 32553260 (2005).
http://dx.doi.org/10.1161/CIRCULATIONAHA.104.485029
217.
217.B. K. Giersing, M. T. Rae, M. CarballidoBrea, R. A. Williamson, and P. J. Blower, “Synthesis and characterization of 111In-DTPA-N-TIMP-2: A radiopharmaceutical for imaging matrix metalloproteinase expression,” Bioconjugate Chem. 12, 964971 (2001).
http://dx.doi.org/10.1021/bc010028f
218.
218.K. Kopka, H. J. Breyholz, S. Wagner, M. P. Law, B. Riemann, S. Schroer, M. Trub, B. Guilbert, B. Levkau, O. Schober, and M. Schafers, “Synthesis and preliminary biological evaluation of new radioiodinated MMP inhibitors for imaging MMP activity in vivo,” Nucl. Med. Biol. 31, 257267 (2004).
http://dx.doi.org/10.1016/j.nucmedbio.2003.08.003
219.
219.M. Schafers, B. Riemann, K. Kopka, H. J. Breyholz, S. Wagner, K. P. Schafers, M. P. Law, O. Schober, and B. Levkau, “Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo,” Circulation 109, 25542559 (2004).
http://dx.doi.org/10.1161/01.CIR.0000129088.49276.83
220.
220.W. S. Richter, “Imaging biomarkers as surrogate endpoints for drug development,” Eur. J. Nucl. Med. Mol. Imaging 33, 610 (2006).
http://dx.doi.org/10.1007/s00259-006-0129-z
221.
221.L. B. Been, A. J. Suurmeijer, D. C. Cobben, P. L. Jager, H. J. Hoekstra, and P. H. Elsinga, “[18F]FLT-PET in oncology: Current status and opportunities,” Eur. J. Nucl. Med. Mol. Imaging 31, 16591672 (2004).
http://dx.doi.org/10.1007/s00259-004-1687-6
222.
222.A. J. Beer, S. Lorenzen, S. Metz, K. Herrmann, P. Watzlowik, H. J. Wester, C. Peschel, F. Lordick, and M. Schwaiger, “Comparison of integrin alphaVbeta3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: A PET study using 18F-galacto-RGD and 18F-FDG,” J. Nucl. Med. 49, 2229 (2007).
http://dx.doi.org/10.2967/jnumed.107.045864
223.
223.X. Chen, Y. Hou, M. Tohme, R. Park, V. Khankaldyyan, I. Gonzales-Gomez, J. R. Bading, W. E. Laug, and P. S. Conti, “Pegylated Arg-Gly-Asp peptide: 64Cu labeling and PET imaging of brain tumor alphavbeta3-integrin expression,” J. Nucl. Med. 45, 17761783 (2004).
224.
224.M. Rodriguez-Porcel, W. Cai, O. Gheysens, J. K. Willmann, K. Chen, H. Wang, I. Y. Chen, L. He, J. C. Wu, Z. B. Li, K. A. Mohamedali, S. Kim, M. G. Rosenblum, X. Chen, and S. S. Gambhir, “Imaging of VEGF receptor in a rat myocardial infarction model using PET,” J. Nucl. Med. 49, 667673 (2008).
http://dx.doi.org/10.2967/jnumed.107.040576
225.
225.K. Chen, W. Cai, Z. B. Li, H. Wang, and X. Chen, “Quantitative PET imaging of VEGF receptor expression,” Mol. Imaging Biol. 11, 1522 (2009).
http://dx.doi.org/10.1007/s11307-008-0172-1
226.
226.D. H. Kim, Y. S. Choe, K. H. Jung, K. H. Lee, Y. Choi, and B. T. Kim, “Synthesis and evaluation of 4-[(18)F]fluorothalidomide for the in vivo studies of angiogenesis,” Nucl. Med. Biol. 33, 255262 (2006).
http://dx.doi.org/10.1016/j.nucmedbio.2005.12.003
227.
227.I. Lee, Y. Seong Choe, K. H. Jung, K. H. Lee, J. Young Choi, Y. Choi, and B. T. Kim, “2-[methyl-(11)C]methoxyestradiol: Synthesis, evaluation and pharmacokinetics for in vivo studies on angiogenesis,” Nucl. Med. Biol. 34, 625631 (2007).
http://dx.doi.org/10.1016/j.nucmedbio.2007.06.004
228.
228.S. Furumoto, K. Takashima, K. Kubota, T. Ido, R. Iwata, and H. Fukuda, “Tumor detection using 18F-labeled matrix metalloproteinase-2 inhibitor,” Nucl. Med. Biol. 30, 119125 (2003).
http://dx.doi.org/10.1016/S0969-8051(02)00393-1
229.
229.Q. H. Zheng, X. Fei, X. Liu, J. Q. Wang, H. Bin Sun, B. H. Mock, K. Lee Stone, T. D. Martinez, K. D. Miller, G. W. Sledge, and G. D. Hutchins, “Synthesis and preliminary biological evaluation of MMP inhibitor radiotracers [11C]methyl-halo-CGS 27023A analogs, new potential PET breast cancer imaging agents,” Nucl. Med. Biol. 29, 761770 (2002).
http://dx.doi.org/10.1016/S0969-8051(02)00338-4
230.
230.G. D. Luker and K. E. Luker, “Optical imaging: Current applications and future directions,” J. Nucl. Med. 49, 14 (2008).
http://dx.doi.org/10.2967/jnumed.107.045799
231.
231.K. M. Venisnik, T. Olafsen, S. S. Gambhir, and A. M. Wu, “Fusion of Gaussian luciferase to an engineered anti-carcinoembryonic antigen (CEA) antibody for in vivo optical imaging,” Mol. Imaging Biol. 9, 267277 (2007).
http://dx.doi.org/10.1007/s11307-007-0101-8
232.
232.A. M. Loening, A. M. Wu, and S. S. Gambhir, “Red-shifted Renilla reniformis luciferase variants for imaging in living subjects,” Nat. Methods 4, 641643 (2007).
http://dx.doi.org/10.1038/nmeth1070
233.
233.J. L. Kadurugamuwa, K. Modi, O. Coquoz, B. Rice, S. Smith, P. R. Contag, and T. Purchio, “Reduction of astrogliosis by early treatment of pneumococcal meningitis measured by simultaneous imaging, in vivo, of the pathogen and host response,” Infect. Immun. 73, 78367843 (2005).
http://dx.doi.org/10.1128/IAI.73.12.7836-7843.2005
234.
234.M. V. Backer, Z. Levashova, V. Patel, B. T. Jehning, K. Claffey, F. G. Blankenberg, and J. M. Backer, “Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes,” Nat. Med. 13, 504509 (2007).
http://dx.doi.org/10.1038/nm1522
235.
235.G. Niu, Z. Xiong, Z. Cheng, W. Cai, S. S. Gambhir, L. Xing, and X. Chen, “In vivo bioluminescence tumor imaging of RGD peptide-modified adenoviral vector encoding firefly luciferase reporter gene,” Mol. Imaging Biol. 9, 126134 (2007).
http://dx.doi.org/10.1007/s11307-007-0079-2
236.
236.J. Zhang, R. E. Campbell, A. Y. Ting, and R. Y. Tsien, “Creating new fluorescent probes for cell biology,” Nat. Rev. Mol. Cell Biol. 3, 906918 (2002).
http://dx.doi.org/10.1038/nrm976
237.
237.T. Nagai, K. Ibata, E. S. Park, M. Kubota, K. Mikoshiba, and A. Miyawaki, “A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications,” Nat. Biotechnol. 20, 8790 (2002).
http://dx.doi.org/10.1038/nbt0102-87
238.
238.O. Scholz, A. Thiel, W. Hillen, and M. Niederweis, “Quantitative analysis of gene expression with an improved green fluorescent protein p6,” Eur. J. Biochem. 267, 15651570 (2000).
http://dx.doi.org/10.1046/j.1432-1327.2000.01170.x
239.
239.J. Klohs, A. Wunder, and K. Licha, “Near-infrared fluorescent probes for imaging vascular pathophysiology,” Basic Res. Cardiol. 103, 144151 (2008).
http://dx.doi.org/10.1007/s00395-008-0702-7
240.
240.X. Chen, P. S. Conti, and R. A. Moats, “In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts,” Cancer Res. 64, 80098014 (2004).
http://dx.doi.org/10.1158/0008-5472.CAN-04-1956
241.
241.A. von Wallbrunn, C. Holtke, M. Zuhlsdorf, W. Heindel, M. Schafers, and C. Bremer, “In vivo imaging of integrin alpha v beta 3 expression using fluorescence-mediated tomography,” Eur. J. Nucl. Med. Mol. Imaging 34, 745754 (2007).
http://dx.doi.org/10.1007/s00259-006-0269-1
242.
242.Z. H. Jin, V. Josserand, S. Foillard, D. Boturyn, P. Dumy, M. C. Favrot, and J. L. Coll, “In vivo optical imaging of integrin alphaV-beta3 in mice using multivalent or monovalent cRGD targeting vectors,” Mol. Cancer 6, 41 (2007).
http://dx.doi.org/10.1186/1476-4598-6-41
243.
243.N. C. Biswal, J. K. Gamelin, B. Yuan, M. V. Backer, J. M. Backer, and Q. Zhu, “Fluorescence imaging of vascular endothelial growth factor in tumors for mice embedded in a turbid medium,” J. Biomed. Opt. 15, 016012 (2010).
http://dx.doi.org/10.1117/1.3306704
244.
244.J. Klohs, N. Baeva, J. Steinbrink, R. Bourayou, C. Boettcher, G. Royl, D. Megow, U. Dirnagl, J. Priller, and A. Wunder, “In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia,” J. Cereb. Blood Flow Metab. 29, 12841292 (2009).
http://dx.doi.org/10.1038/jcbfm.2009.51
245.
245.C. Bremer, S. Bredow, U. Mahmood, R. Weissleder, and C. H. Tung, “Optical imaging of matrix metalloproteinase-2 activity in tumors: Feasibility study in a mouse model,” Radiology 221, 523529 (2001).
http://dx.doi.org/10.1148/radiol.2212010368
246.
246.G. Bergers and D. Hanahan, “Modes of resistance to anti-angiogenic therapy,” Nat. Rev. Cancer 8, 592603 (2008).
http://dx.doi.org/10.1038/nrc2442
247.
247.T. Boehm, J. Folkman, T. Browder, and M. S. O’Reilly, “Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance,” Nature (London) 390, 404407 (1997).
http://dx.doi.org/10.1038/37126
248.
248.R. S. Kerbel, “Antiangiogenic therapy: A universal chemosensitization strategy for cancer?,” Science 312, 11711175 (2006).
http://dx.doi.org/10.1126/science.1125950
249.
249.M. Palmowski, J. Huppert, G. Ladewig, P. Hauff, M. Reinhardt, M. M. Mueller, E. C. Woenne, J. W. Jenne, M. Maurer, G. W. Kauffmann, W. Semmler, and F. Kiessling, “Molecular profiling of angiogenesis with targeted ultrasound imaging: Early assessment of antiangiogenic therapy effects,” Molecular Cancer Therapeutics 7, 101109 (2008).
http://dx.doi.org/10.1158/1535-7163.MCT-07-0409
250.
250.Z. Levashova, M. Backer, C. V. Hamby, J. Pizzonia, J. M. Backer, and F. G. Blankenberg, “Molecular imaging of changes in the prevalence of vascular endothelial growth factor receptor in sunitinib-treated murine mammary tumors,” J. Nucl. Med. 51, 959966 (2010).
http://dx.doi.org/10.2967/jnumed.109.072199
251.
251.S. E. DePrimo and C. Bello, “Surrogate biomarkers in evaluating response to anti-angiogenic agents: Focus on sunitinib,” Ann. Oncol. 18, x11x19 (2007).
http://dx.doi.org/10.1093/annonc/mdm409
252.
252.J. Virostko, J. Xie, D. E. Hallahan, C. L. Arteaga, J. C. Gore, and H. C. Manning, “A molecular imaging paradigm to rapidly profile response to angiogenesis-directed therapy in small animals,” Mol. Imaging Biol. 11, 204212 (2009).
http://dx.doi.org/10.1007/s11307-008-0193-9
253.
253.T. H. Stollman, M. G. Scheer, G. M. Franssen, K. N. Verrijp, W. J. Oyen, T. J. Ruers, W. P. Leenders, and O. C. Boerman, “Tumor accumulation of radiolabeled bevacizumab due to targeting of cell- and matrix-associated VEGF-A isoforms,” Cancer Biother. Radiopharm. 24, 195200 (2009).
http://dx.doi.org/10.1089/cbr.2008.0574
254.
254.W. B. Nagengast, E. G. de Vries, G. A. Hospers, N. H. Mulder, J. R. de Jong, H. Hollema, A. H. Brouwers, G. A. van Dongen, L. R. Perk, and M. N. Lub-de Hooge, “In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft,” J. Nucl. Med. 48, 13131319 (2007).
http://dx.doi.org/10.2967/jnumed.107.041301
255.
255.M. Fani, P. Bouziotis, A. L. Harris, D. Psimadas, E. Gourni, G. Loudos, A. D. Varvarigou, and H. R. Maecke, “177Lu-labeled-VG76e monoclonal antibody in tumor angiogenesis: A comparative study using DOTA and DTPA chelating systems,” Radiochim. Acta 95, 351357 (2007).
http://dx.doi.org/10.1524/ract.2007.95.6.351
256.
256.G. J. Strijkers, E. Kluza, G. A. Van Tilborg, D. W. van der Schaft, A. W. Griffioen, W. J. Mulder, and K. Nicolay, “Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis,” Angiogenesis 13(2), 161173 (2010).
http://dx.doi.org/10.1007/s10456-010-9165-1
257.
257.J. Kim, Y. Piao, and T. Hyeon, “Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy,” Chem. Soc. Rev. 38, 372390 (2009).
http://dx.doi.org/10.1039/b709883a
258.
258.N. Sanvicens and M. P. Marco, “Multifunctional nanoparticles—Properties and prospects for their use in human medicine,” Trends Biotechnol. 26, 425433 (2008).
http://dx.doi.org/10.1016/j.tibtech.2008.04.005
259.
259.M. E. Gindy and R. K. Prud’homme, “Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy,” Expert Opin. Drug Deliv. 6, 865878 (2009).
http://dx.doi.org/10.1517/17425240902932908
260.
260.G. Cao, L. M. Burk, Y. Z. Lee, X. Calderon-Colon, S. Sultana, J. Lu, and O. Zhou, “Prospective-gated cardiac micro-CT imaging of free-breathing mice using carbon nanotube field emission x-ray,” Med. Phys. 37, 53065312 (2010).
http://dx.doi.org/10.1118/1.3491806
261.
261.G. E. Weller, M. K. Wong, R. A. Modzelewski, E. Lu, A. L. Klibanov, W. R. Wagner, and F. S. Villanueva, “Ultrasonic imaging of tumor angiogenesis using contrast microbubbles targeted via the tumor-binding peptide arginine-arginine-leucine,” Cancer Res. 65, 533539 (2005).
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/37/12/10.1118/1.3515456
Loading
/content/aapm/journal/medphys/37/12/10.1118/1.3515456
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/37/12/10.1118/1.3515456
2010-11-24
2016-08-31

Abstract

The use of small animal models in basic and preclinical sciences constitutes an integral part of testing new pharmaceutical agents prior to commercial translation to clinical practice. Whole-body small animal imaging is a particularly elegant and cost-effective experimental platform for the timely validation and commercialization of novel agents from the bench to the bedside. Biomedical imaging is now listed along with genomics, proteomics, and metabolomics as an integral part of biological and medical sciences. Miniaturized versions of clinical diagnostic modalities, including but not limited to microcomputed tomography, micromagnetic resonance tomography, microsingle-photon-emission tomography, micropositron-emission tomography, optical imaging, digital angiography, and ultrasound, have all greatly improved our investigative abilities to longitudinally study various experimental models of human disease in mice and rodents. After an exhaustive literature search, the authors present a concise and critical review of small animal imaging, focusing on currently available modalities as well as emerging imaging technologies on one side and molecularly targeted contrast agents on the other. Aforementioned scientific topics are analyzed in the context of cancer angiogenesis and innovative antiangiogenic strategies under-the-way to the clinic. Proposed hybrid approaches for diagnosis and targeted site-specific therapy are highlighted to offer an intriguing glimpse of the future.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/37/12/1.3515456.html;jsessionid=k-FAWRdjW084ITTdADeQ9rsX.x-aip-live-03?itemId=/content/aapm/journal/medphys/37/12/10.1118/1.3515456&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/37/12/10.1118/1.3515456&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/37/12/10.1118/1.3515456'
Right1,Right2,Right3,