Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. S. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, “Small animal imaging. Current technology and perspectives for oncological imaging,” Eur. J. Cancer 38, 21732188 (2002).
2.R. Grassi, C. Cavaliere, S. Cozzolino, L. Mansi, S. Cirillo, G. Tedeschi, R. Franchi, P. Russo, S. Cornacchia, and A. Rotondo, “Small animal imaging facility: New perspectives for the radiologist,” Radiol. Med. (Torino) 114, 152167 (2009).
3.R. Weissleder, “Scaling down imaging: Molecular mapping of cancer in mice,” Nat. Rev. Cancer 2, 1118 (2002).
4.B. M. Tsui and D. L. Kraitchman, “Recent advances in small-animal cardiovascular imaging,” J. Nucl. Med. 50, 667670 (2009).
5.J. A. DiMasi, R. W. Hansen, and H. G. Grabowski, “The price of innovation: New estimates of drug development costs,” Journal of Health Economics 22, 151185 (2003).
6.M. D. Rawlins, “Cutting the cost of drug development?,” Nat. Rev. Drug Discovery 3, 360364 (2004).
7.N. Beckmann, R. Kneuer, H. U. Gremlich, H. Karmouty-Quintana, F. X. Ble, and M. Muller, “In vivo mouse imaging and spectroscopy in drug discovery,” NMR Biomed. 20, 154185 (2007).
8.S. J. Schambach, S. Bag, L. Schilling, C. Groden, and M. A. Brockmann, “Application of micro-CT in small animal imaging,” Methods 50, 213 (2010).
9.C. T. Badea, M. Drangova, D. W. Holdsworth, and G. A. Johnson, “In vivo small-animal imaging using micro-CT and digital subtraction angiography,” Phys. Med. Biol. 53, R319R350 (2008).
10.A. J. Beer and M. Schwaiger, “Imaging of integrin expression,” Cancer Metastasis Rev. 27, 631644 (2008).
11.W. A. Weber, J. Czernin, M. E. Phelps, and H. R. Herschman, “Technology insight: Novel imaging of molecular targets is an emerging area crucial to the development of targeted drugs,” Nature Clinical Practice Oncology 5, 4454 (2008).
12.T. Bach-Gansmo, R. Danielsson, A. Saracco, B. Wilczek, T. V. Bogsrud, A. Fangberget, A. Tangerud, and D. Tobin, “Integrin receptor imaging of breast cancer: A proof-of-concept study to evaluate 99mTc-NC100692,” J. Nucl. Med. 47, 14341439 (2006).
13.R. Pasqualini, E. Koivunen, and E. Ruoslahti, “Alpha v integrins as receptors for tumor targeting by circulating ligands,” Nat. Biotechnol. 15, 542546 (1997).
14.R. Haubner, H. J. Wester, U. Reuning, R. Senekowitsch-Schmidtke, B. Diefenbach, H. Kessler, G. Stocklin, and M. Schwaiger, “Radiolabeled alpha(v)beta3 integrin antagonists: A new class of tracers for tumor targeting,” J. Nucl. Med. 40, 10611071 (1999).
15.K. Hynynen, W. R. Freund, H. E. Cline, A. H. Chung, R. D. Watkins, J. P. Vetro, and F. A. Jolesz, “A clinical, noninvasive, MR imaging-monitored ultrasound surgery method,” Radiographics 16, 185195 (1996).
16.H. E. Cline, J. F. Schenck, K. Hynynen, R. D. Watkins, S. P. Souza, and F. A. Jolesz, “MR-guided focused ultrasound surgery,” J. Comput. Assist. Tomogr. 16, 956965 (1992).
17.J. U. Voigt, “Ultrasound molecular imaging,” Methods 48, 9297 (2009).
18.K. A. Collins, C. E. Korcarz, and R. M. Lang, “Use of echocardiography for the phenotypic assessment of genetically altered mice,” Physiol. Genomics 13, 227239 (2003).
19.R. S. Jaiswal, J. Singh, and G. P. Adams, “High-resolution ultrasound biomicroscopy for monitoring ovarian structures in mice,” Reproductive Biology and Endocrinology 7, 69 (2009).
20.C. K. Phoon, R. P. Ji, O. Aristizabal, D. M. Worrad, B. Zhou, H. S. Baldwin, and D. H. Turnbull, “Embryonic heart failure in NFATc1-/-mice: Novel mechanistic insights from in utero ultrasound biomicroscopy,” Circ. Res. 95, 9299 (2004).
21.V. H. Ho, T. C. Prager, H. Diwan, V. Prieto, and B. Esmaeli, “Ultrasound biomicroscopy for estimation of tumor thickness for conjunctival melanoma,” J. Clin. Ultrasound 35, 533537 (2007).
22.A. M. Cheung, A. S. Brown, L. A. Hastie, V. Cucevic, M. Roy, J. C. Lacefield, A. Fenster, and F. S. Foster, “Three-dimensional ultrasound biomicroscopy for xenograft growth analysis,” Ultrasound Med. Biol. 31, 865870 (2005).
23.F. Kiessling, D. Razansky, and F. Alves, “Anatomical and microstructural imaging of angiogenesis,” Eur. J. Nucl. Med. Mol. Imaging 37, S4S19 (2010).
24.T. T. Rissanen, P. Korpisalo, H. Karvinen, T. Liimatainen, S. Laidinen, O. H. Grohn, and S. Yla-Herttuala, “High-resolution ultrasound perfusion imaging of therapeutic angiogenesis,” Journal of the American College of Cardiology: Cardiovascular Imaging 1, 8391 (2008).
25.Y. Jiang, J. Zhao, D. L. White, and H. K. Genant, “Micro CT and micro MR imaging of 3D architecture of animal skeleton,” J. Musculoskeletal and Neuronal Interact. 1, 4551 (2000).
26.J. C. Elliott and S. D. Dover, “X-ray microtomography,” J. Microsc. 126, 211213 (1982).
27.F. H. Seguin, P. Burstein, P. J. Bjorkholm, F. Homburger, and R. A. Adams, “X-ray computed tomography with 50-Mum resolution,” Appl. Opt. 24, 41174123 (1985).
28.B. P. Flannery, H. W. Deckman, W. G. Roberge, and K. L. D’Amico, “Three-dimensional x-ray microtomography,” Science 237, 14391444 (1987).
29.S. H. Bartling, W. Stiller, M. Grasruck, B. Schmidt, P. Peschke, W. Semmler, and F. Kiessling, “Retrospective motion gating in small animal CT of mice and rats,” Investigative Radiology 42, 704714 (2007).
30.E. L. Ritman, “Molecular imaging in small animals—Roles for micro-CT,” J. Cell Biochem. Suppl. 30, 116124 (2002).
31.S. Zhu, J. Tian, G. Yan, C. Qin, and J. Feng, “Cone beam micro-CT system for small animal imaging and performance evaluation,” Int. J. Biomed. Imaging 2009, 960573 (2009).
32.C. T. Badea, S. M. Johnston, E. Subashi, Y. Qi, L. W. Hedlund, and G. A. Johnson, “Lung perfusion imaging in small animals using 4D micro-CT at heartbeat temporal resolution,” Med. Phys. 37, 5462 (2010).
33.M. J. Paulus, S. S. Gleason, M. E. Easterly, and C. J. Foltz, “A review of high-resolution x-ray computed tomography and other imaging modalities for small animal research,” Lab Anim. 30, 3645 (2001).
34.M. J. Paulus, S. S. Gleason, S. J. Kennel, P. R. Hunsicker, and D. K. Johnson, “High resolution x-ray computed tomography: An emerging tool for small animal cancer research,” Neoplasia 2, 6270 (2000).
35.S. Greschus, F. Kiessling, M. P. Lichy, J. Moll, M. M. Mueller, R. Savai, F. Rose, C. Ruppert, A. Gunther, M. Luecke, N. E. Fusenig, W. Semmler, and H. Traupe, “Potential applications of flat-panel volumetric CT in morphologic and functional small animal imaging,” Neoplasia 7, 730740 (2005).
36.W. A. Kalender and Y. Kyriakou, “Flat-detector computed tomography (FD-CT),” Eur. Radiol. 17, 27672779 (2007).
37.F. Kiessling, S. Greschus, M. P. Lichy, M. Bock, C. Fink, S. Vosseler, J. Moll, M. M. Mueller, N. E. Fusenig, H. Traupe, and W. Semmler, “Volumetric computed tomography (VCT): A new technology for noninvasive, high-resolution monitoring of tumor angiogenesis,” Nat. Med. (N.Y.) 10, 11331138 (2004).
38.X. Pan, E. Y. Sidky, and M. Vannier, “Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?,” Inverse Probl. 25(12), 123009 (2009).
39.A. Dumas, M. Brigitte, M. F. Moreau, F. Chretien, M. F. Basle, and D. Chappard, “Bone mass and microarchitecture of irradiated and bone marrow-transplanted mice: Influences of the donor strain,” Osteoporosis Int. 20, 435443 (2009).
40.M. Li, D. R. Healy, Y. Li, H. A. Simmons, D. T. Crawford, H. Z. Ke, L. C. Pan, T. A. Brown, and D. D. Thompson, “Osteopenia and impaired fracture healing in aged EP4 receptor knockout mice,” Bone (N.Y.) 37, 4654 (2005).
41.S. J. Schambach, S. Bag, C. Groden, L. Schilling, and M. A. Brockmann, “Vascular imaging in small rodents using micro-CT,” Methods 50, 2635 (2010).
42.S. B. Clauss, D. L. Walker, M. L. Kirby, D. Schimel, and C. W. Lo, “Patterning of coronary arteries in wildtype and connexin43 knockout mice,” Dev. Dyn. 235, 27862794 (2006).
43.E. L. Ritman, “Micro-computed tomography of the lungs and pulmonary-vascular system,” Proc. Am. Thorac. Soc. 2, 477480 (2005).
44.C. Badea, L. W. Hedlund, and G. A. Johnson, “Micro-CT with respiratory and cardiac gating,” Med. Phys. 31, 33243329 (2004).
45.C. T. Badea, B. Fubara, L. W. Hedlund, and G. A. Johnson, “4-D micro-CT of the mouse heart,” Mol. Imaging 4, 110116 (2005).
46.S. J. Schambach, S. Bag, V. Steil, C. Isaza, L. Schilling, C. Groden, and M. A. Brockmann, “Ultrafast high-resolution in vivo volume-CTA of mice cerebral vessels,” Stroke 40, 14441450 (2009).
47.T. Abruzzo, L. Tumialan, C. Chaalala, S. Kim, R. E. Guldberg, A. Lin, J. Leach, J. C. Khoury, A. E. Morgan, and C. M. Cawley III, “Microscopic computed tomography imaging of the cerebral circulation in mice: Feasibility and pitfalls,” Synapse 62, 557565 (2008).
48.M. Almajdub, L. Magnier, L. Juillard, and M. Janier, “Kidney volume quantification using contrast-enhanced in vivo x-ray micro-CT in mice,” Contrast Media Mol. Imaging 3, 120126 (2008).
49.B. Y. Durkee, J. P. Weichert, and R. B. Halberg, “Small animal micro-CT colonography,” Methods 50, 3641 (2010).
50.K. Katsanos, D. Karnabatidis, A. Diamantopoulos, G. C. Kagadis, P. Ravazoula, G. C. Nikiforidis, D. Siablis, and N. E. Tsopanoglou, “Thrombin promotes arteriogenesis and hemodynamic recovery in a rabbit hindlimb ischemia model,” J. Vasc. Surg. 49, 10001012 (2009).
51.M. L. Mouchess, Y. Sohara, M. D. Nelson, Jr., C. Y. A. De, and R. A. Moats, “Multimodal imaging analysis of tumor progression and bone resorption in a murine cancer model,” J. Comput. Assist. Tomogr. 30, 525534 (2006).
52.X. F. Li, P. Zanzonico, C. C. Ling, and J. O’Donoghue, “Visualization of experimental lung and bone metastases in live nude mice by x-ray micro-computed tomography,” Technol. Cancer Res. Treat. 5, 147155 (2006).
53.L. W. Dobrucki, D. P. Dione, L. Kalinowski, D. Dione, M. Mendizabal, J. Yu, X. Papademetris, W. C. Sessa, and A. J. Sinusas, “Serial noninvasive targeted imaging of peripheral angiogenesis: Validation and application of a semiautomated quantitative approach,” J. Nucl. Med. 50, 13561363 (2009).
54.M. Gössl, J. Herrmann, H. Tang, D. Versari, O. Galili, D. Mannheim, S. V. Rajkumar, L. O. Lerman, and A. Lerman, “Prevention of vasa vasorum neovascularization attenuates early neointima formation in experimental hypercholesterolemia,” Basic Res. Cardiol. 104, 695706 (2009).
55.R. Savai, A. C. Langheinrich, R. T. Schermuly, S. S. Pullamsetti, R. Dumitrascu, H. Traupe, W. S. Rau, W. Seeger, F. Grimminger, and G. A. Banat, “Evaluation of angiogenesis using micro-computed tomography in a xenograft mouse model of lung cancer,” Neoplasia 11, 4856 (2009).
56.M. Gössl, D. Versari, H. A. Hildebrandt, T. Bajanowski, G. Sangiorgi, R. Erbel, E. L. Ritman, L. O. Lerman, and A. Lerman, “Segmental heterogeneity of vasa vasorum neovascularization in human coronary atherosclerosis,” Journal of the American College of Cardiology: Cardiovascular Imaging 3, 3240 (2010).
57.E. M. Kim, E. H. Park, S. J. Cheong, C. M. Lee, D. W. Kim, H. J. Jeong, S. T. Lim, M. H. Sohn, K. Kim, and J. Chung, “Characterization, biodistribution and small-animal SPECT of I-125-labeled c-Met binding peptide in mice bearing c-Met receptor tyrosine kinase-positive tumor xenografts,” Nucl. Med. Biol. 36, 371378 (2009).
58.N. Maehara, “Experimental microcomputed tomography study of the 3D microangioarchitecture of tumors,” Eur. Radiol. 13, 15591565 (2003).
59.J. M. Boone, O. Velazquez, and S. R. Cherry, “Small-animal x-ray dose from micro-CT,” Mol. Imaging 3, 149158 (2004).
60.N. L. Ford, M. M. Thornton, and D. W. Holdsworth, “Fundamental image quality limits for microcomputed tomography in small animals,” Med. Phys. 30, 28692877 (2003).
61.P. M. Winter, S. D. Caruthers, A. Kassner, T. D. Harris, L. K. Chinen, J. S. Allen, E. K. Lacy, H. Zhang, J. D. Robertson, S. A. Wickline, and G. M. Lanza, “Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(nu)beta3-targeted nanoparticle and 1.5 Tesla magnetic resonance imaging,” Cancer Res. 63, 58385843 (2003).
62.S. Miraux, P. Massot, E. J. Ribot, J. M. Franconi, and E. Thiaudiere, “3D TrueFISP imaging of mouse brain at 4.7T and 9.4T,” J. Magn. Reson Imaging 28, 497503 (2008).
63.M. Hoehn, K. Nicolay, C. Franke, and B. van der Sanden, “Application of magnetic resonance to animal models of cerebral ischemia,” J. Magn. Reson Imaging 14, 491509 (2001).
64.A. Heerschap, M. G. Sommers, H. J. in’t Zandt, W. K. Renema, A. A. Veltien, and D. W. Klomp, “Nuclear magnetic resonance in laboratory animals,” Methods Enzymol. 385, 4163 (2004).
65.M. R. Viant, “Revealing the metabolome of animal tissues using 1H nuclear magnetic resonance spectroscopy,” Methods Mol. Biol. 358, 229246 (2007).
66.J. C. Chatham and S. J. Blackband, “Nuclear magnetic resonance spectroscopy and imaging in animal research,” ILAR J. 42, 189208 (2001).
67.J. R. Griffiths and J. D. Glickson, “Monitoring pharmacokinetics of anticancer drugs: Non-invasive investigation using magnetic resonance spectroscopy,” Adv. Drug Delivery Rev. 41, 7589 (2000).
68.N. R. Bolo, Y. Hode, J. F. Nedelec, E. Laine, G. Wagner, and J. P. Macher, “Brain pharmacokinetics and tissue distribution in vivo of fluvoxamine and fluoxetine by fluorine magnetic resonance spectroscopy,” Neuropsychopharmacology 23, 428438 (2000).
69.I. Tkáč, P. G. Henry, P. Andersen, C. D. Keene, W. C. Low, and R. Gruetter, “Highly resolved in vivo 1H NMR spectroscopy of the mouse brain at 9.4 T,” Magn. Reson. Med. 52, 478484 (2004).
70.S. T. Fricke, O. Rodriguez, J. Vanmeter, L. E. Dettin, M. Casimiro, C. D. Chien, T. Newell, K. Johnson, L. Ileva, J. Ojeifo, M. D. Johnson, and C. Albanese, “In vivo magnetic resonance volumetric and spectroscopic analysis of mouse prostate cancer models,” Prostate 66, 708717 (2006).
71.N. M. Al-Saffar, H. Troy, A. Ramirez de Molina, L. E. Jackson, B. Madhu, J. R. Griffiths, M. O. Leach, P. Workman, J. C. Lacal, I. R. Judson, and Y. L. Chung, “Noninvasive magnetic resonance spectroscopic pharmacodynamic markers of the choline kinase inhibitor MN58b in human carcinoma models,” Cancer Res. 66, 427434 (2006).
72.B. Madhu, J. C. Waterton, J. R. Griffiths, A. J. Ryan, and S. P. Robinson, “The response of RIF-1 fibrosarcomas to the vascular-disrupting agent ZD6126 assessed by in vivo and ex vivo 1H magnetic resonance spectroscopy,” Neoplasia 8, 560567 (2006).
73.L. D. McPhail, Y. L. Chung, B. Madhu, S. Clark, J. R. Griffiths, L. R. Kelland, and S. P. Robinson, “Tumor dose response to the vascular disrupting agent, 5,6-dimethylxanthenone-4-acetic acid, using in vivo magnetic resonance spectroscopy,” Clin. Cancer Res. 11, 37053713 (2005).
74.F. Luo, T. R. Seifert, R. Edalji, R. W. Loebbert, V. P. Hradil, J. Harlan, M. Schmidt, V. Nimmrich, B. F. Cox, and G. B. Fox, “Non-invasive characterization of beta-amyloid(1–40) vasoactivity by functional magnetic resonance imaging in mice,” Neuroscience 155, 263269 (2008).
75.B. Stieltjes, S. Klussmann, M. Bock, R. Umathum, J. Mangalathu, E. Letellier, W. Rittgen, L. Edler, P. H. Krammer, H. U. Kauczor, A. Martin-Villalba, and M. Essig, “Manganese-enhanced magnetic resonance imaging for in vivo assessment of damage and functional improvement following spinal cord injury in mice,” Magn. Reson. Med. 55, 11241131 (2006).
76.C. A. Mistretta, A. B. Crummy, and C. M. Strother, “Digital angiography: A perspective,” Radiology 139, 273276 (1981).
77.M. de Lin, L. Ning, C. T. Badea, N. N. Mistry, Y. Qi, and G. A. Johnson, “A high-precision contrast injector for small animal x-ray digital subtraction angiography,” IEEE Trans. Biomed. Eng. 55, 10821091 (2008).
78.M. Lin, C. T. Marshall, Y. Qi, S. M. Johnston, C. T. Badea, C. A. Piantadosi, and G. A. Johnson, “Quantitative blood flow measurements in the small animal cardiopulmonary system using digital subtraction angiography,” Med. Phys. 36, 53475358 (2009).
79.C. T. Badea, L. W. Hedlund, M. De Lin, J. F. Boslego Mackel, and G. A. Johnson, “Tumor imaging in small animals with a combined micro-CT/micro-DSA system using iodinated conventional and blood pool contrast agents,” Contrast Media & Molecular Imaging 1, 153164 (2006).
80.J. T. Dobbins III, “Tomosynthesis imaging: At a translational crossroads,” Med. Phys. 36, 19561967 (2009).
81.J. T. Dobbins III and D. J. Godfrey, “Digital x-ray tomosynthesis: Current state of the art and clinical potential,” Phys. Med. Biol. 48, R65R106 (2003).
82.D. Siablis, E. N. Liatsikos, D. Karnabatidis, G. C. Kagadis, G. C. Sakelaropoulos, J. Maroulis, D. Kardamakis, A. Athanassopoulos, P. Perimenis, G. Nikiforidis, and G. A. Barbalias, “Digital subtraction angiography and computer assisted image analysis for the evaluation of the antiangiogenetic effect of ionizing radiation on tumor angiogenesis,” Int. Urol. Nephrol. 38, 407411 (2006).
83.G. C. Kagadis, P. Spyridonos, D. Karnabatidis, A. Diamantopoulos, E. Athanasiadis, A. Daskalakis, K. Katsanos, D. Cavouras, D. Mihailidis, D. Siablis, and G. C. Nikiforidis, “Computerized analysis of digital subtraction angiography: A tool for quantitative in-vivo vascular imaging,” J. Digit Imaging 21, 433445 (2008).
84.H. O. Anger, M. R. Powell, D. C. van Dyke, L. R. Schaer, R. Fawwaz, and Y. Yano, “Recent applications of the scintillation camera,” Strahlentherapie [Sonderb] 65, 7093 (1967).
85.K. Peremans, B. Cornelissen, B. Van Den Bossche, K. Audenaert, and C. Van de Wiele, “A review of small animal imaging planar and pinhole SPECT Gamma camera imaging,” Vet. Radiol. Ultrasound 46, 162170 (2005).
86.M. T. Madsen, “Recent advances in SPECT imaging,” J. Nucl. Med. 48, 661673 (2007).
87.C. L. Melcher, “Perspectives on the future development of new scintillators,” Nucl. Instrum. Methods Phys. Res. A 537, 614 (2005).
88.M. K. O’Connor and B. J. Kemp, “Single-photon emission computed tomography/computed tomography: Basic instrumentation and innovations,” Semin Nucl. Med. 36, 258266 (2006).
89.S. R. Meikle, P. Kench, M. Kassiou, and R. B. Banati, “Small animal SPECT and its place in the matrix of molecular imaging technologies,” Phys. Med. Biol. 50, R45R61 (2005).
90.F. van der Have, B. Vastenhouw, R. M. Ramakers, W. Branderhorst, J. O. Krah, C. Ji, S. G. Staelens, and F. J. Beekman, “U-SPECT-II: An ultra-high-resolution device for molecular small-animal imaging,” J. Nucl. Med. 50, 599605 (2009).
91.T. Funk, P. Despres, W. C. Barber, K. S. Shah, and B. H. Hasegawa, “A multipinhole small animal SPECT system with submillimeter spatial resolution,” Med. Phys. 33, 12591268 (2006).
92.R. Pani, R. Pellegrini, M. N. N. Cinti, M. Mattioli, C. Trotta, L. Montani, G. Iurlaro, G. Trotta, L. D’Addio, S. Ridolfi, G. De Vincentis, and I. N. Weinberg, “Recent advances and future perspectives of position sensitive PMT,” Nucl. Instrum. Methods Phys. Res. B 213, 197205 (2004).
93.V. Popov, S. Majewski, and B. L. Welch, “A novel readout concept for multianode photomultiplier tubes with pad matrix anode layout,” Nucl. Instrum. Methods Phys. Res. A 567, 319322 (2006).
94.J. Qian, E. L. Bradley, S. Majewski, V. Popov, M. S. Saha, M. F. Smith, A. G. Weisenberger, and R. E. Welsh, “A small-animal imaging system capable of multipinhole circular/helical SPECT and parallel-hole SPECT,” Nucl. Instrum. Methods Phys. Res. A 594, 102110 (2008).
95.K. Ueno, K. Hattori, C. Ida, S. Iwaki, S. Kabuki, H. Kubo, S. Kurosawa, K. Miuchi, T. Nagayoshi, H. Nishimura, R. Orito, A. Takada, and T. Tanimori, “Performance of the gamma-ray camera based on GSO (Ce) scintillator array and PSPMT with the ASIC readout system,” Nucl. Instrum. Methods Phys. Res. A 591, 268271 (2008).
96.W. Xi, J. Seidel, J. W. Kakareka, T. J. Pohida, D. E. Milenic, J. Proffitt, S. Majewski, A. G. Weisenberger, M. V. Greenb, and P. L. Choyke, “MONICA: A compact, portable dual gamma camera system for mouse whole-body imaging,” Nucl. Med. Biol. 37, 245253 (2010).
97.K. Ogawa, N. Ohmura, H. Iida, K. Nakamura, T. Nakahara, and A. Kubo, “Development of an ultra-high resolution SPECT system with a CdTe semiconductor detector,” Ann. Nucl. Med. 23, 763770 (2009).
98.K. Kacperski, K. Erlandsson, S. Ben-Haim, D. Van Gramberg, and B. Hutton, “Dual radionuclide imaging with a superior energy resolution CZT cardiac SPECT system,” J. Nucl. Med. 49, 395P (2008).
99.E. Grigoriev, A. Akindinov, M. Breitenmoser, S. Buono, E. Charbon, C. Niclass, I. Desforges, and R. Rocca, “Silicon photomultipliers and their bio-medical applications,” Nucl. Instrum. Methods Phys. Res. A 571, 130133 (2007).
100.P. Blake, B. Johnson, and J. W. VanMeter, “Positron emission tomography (PET) and single photon emission computed tomography (SPECT): Clinical applications,” J. Neuroophthalmol. 23, 3441 (2003).
101.M. E. Van Dort, A. Rehemtulla, and B. D. Ross, “PET and SPECT imaging of tumor biology: New approaches towards oncology drug discovery and development,” Current Computer-Aided Drug Design 4, 4653 (2008).
102.D. J. Rowland and S. R. Cherry, “Small-animal preclinical nuclear medicine instrumentation and methodology,” Semin Nucl. Med. 38, 209222 (2008).
103.B. L. Franc, P. D. Acton, C. Mari, and B. H. Hasegawa, “Small-animal SPECT and SPECT/CT: Important tools for preclinical investigation,” J. Nucl. Med. 49, 16511663 (2008).
104.Y. S. Choe and K. H. Lee, “Targeted in vivo imaging of angiogenesis: Present status and perspectives,” Curr. Pharm. Des. 13, 1731 (2007).
105.R. C. Thompson and S. J. Cullom, “Issues regarding radiation dosage of cardiac nuclear and radiography procedures,” J. Nucl. Cardiol. 13, 1923 (2006).
106.T. Funk, M. Sun, and B. H. Hasegawa, “Radiation dose estimate in small animal SPECT and PET,” Med. Phys. 31, 26802686 (2004).
107.T. G. Turkington, “Introduction to PET instrumentation,” J. Nucl. Med. Technol. 29, 411 (2001).
108.H. Zaidi, “Scatter modeling and correction strategies in fully 3-D PET,” Nucl. Med. Commun. 22, 11811184 (2001).
109.M. Larobina, A. Brunetti, and M. Salvatore, “Small animal PET: A review of commercially available imaging systems,” Current Medical Imaging Reviews 2, 187192 (2006).
110.M. Korzhik, A. Fedorov, A. Annenkov, A. Borissevitch, A. Dossovitski, O. Missevitch, and P. Lecoq, “Development of scintillation materials for PET scanners,” Nucl. Instrum. Methods Phys. Res. A 571, 122125 (2007).
111.J. H. Jung, Y. Choi, Y. H. Chung, O. Devroede, M. Krieguer, P. Bruyndonckx, and S. Tavernier, “Optimization of LSO/LuYAP phoswich detector for small animal PET,” Nucl. Instrum. Methods Phys. Res. A 571, 669675 (2007).
112.W. W. Moses, “Recent advances and future advances in time-of-flight PET,” Nucl. Instrum. Methods Phys. Res. A 580, 919924 (2007).
113.J. S. Karp, S. Surti, M. E. Daube-Witherspoon, and G. Muehllehner, “Benefit of time-of-flight in PET: Experimental and clinical results,” J. Nucl. Med. 49, 462470 (2008).
114.M. Fani, J. P. Andre, and H. R. Maecke, “68Ga-PET: A powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals,” Contrast Media & Molecular Imaging 3, 6777 (2008).
115.S. K. Imam, T. El-Maghraby, A. Alavi, and S. Basu, “Advances in PET radiopharmaceuticals,” World Journal of Nuclear Medicine 9, 005024 (2010).
116.J. W. Fletcher, B. Djulbegovic, H. P. Soares, B. A. Siegel, V. J. Lowe, G. H. Lyman, R. E. Coleman, R. Wahl, J. C. Paschold, N. Avril, L. H. Einhorn, W. W. Suh, D. Samson, D. Delbeke, M. Gorman, and A. F. Shields, “Recommendations on the use of 18F-FDG PET in oncology,” J. Nucl. Med. 49, 480508 (2008).
117.K. C. Allman, “18F-FDG PET and myocardial viability assessment: Trials and tribulations,” J. Nucl. Med. 51, 505506 (2010).
118.A. B. Newberg and A. Alavi, “Normal patterns and variants in PET brain imaging,” PET Clinics (Elsevier) 5, 113 (2010).
119.R. E. Laing, E. Nair-Gill, O. N. Witte, and C. G. Radu, “Visualizing cancer and immune cell function with metabolic positron emission tomography,” Curr. Opin. Genet. Dev. 20, 100105 (2010).
120.R. Taschereau and A. F. Chatziioannou, “Monte Carlo simulations of absorbed dose in a mouse phantom from 18-fluorine compounds,” Med. Phys. 34, 10261036 (2007).
121.R. T. Sadikot and T. S. Blackwell, “Bioluminescence imaging,” Proc. Am. Thorac. Soc. 2, 537540 (2005).
122.R. Kraayenhof, A. Visser, and H. C. Gerritsen, Fluorescence Spectroscopy, Imaging and Probes: New Tools in Chemical, Physical and Life Sciences (Springer, Berlin, 2002).
123.R. B. Schulz and W. Semmler, Molecular Imaging I (Springer, Berlin, 2008).
124.S. J. Erickson and A. Godavarty, “Hand-held based near-infrared optical imaging devices: A review,” Med. Eng. Phys. 31, 495509 (2009).
125.V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 133 (2006).
126.B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 24432451 (2008).
127.P. Ray, A. M. Wu, and S. S. Gambhir, “Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice,” Cancer Res. 63, 11601165 (2003).
128.S. Boddington, T. D. Henning, E. J. Sutton, and H. E. Daldrup-Link, “Labeling stem cells with fluorescent dyes for non-invasive detection with optical imaging,” Journal of Visualized Experiments 2(14), 686 (2008).
129.T. J. Snoeks, C. W. Lowik, and E. L. Kaijzel, “‘In vivo’ optical approaches to angiogenesis imaging,” Angiogenesis 13(2), 135147 (2010).
130.H. F. Wehrl, M. S. Judenhofer, S. Wiehr, and B. J. Pichler, “Pre-clinical PET/MR: Technological advances and new perspectives in biomedical research,” Eur. J. Nucl. Med. Mol. Imaging 36, S56S68 (2009).
131.M. Lijowski, S. Caruthers, G. Hu, H. Zhang, M. J. Scott, T. Williams, T. Erpelding, A. H. Schmieder, G. Kiefer, G. Gulyas, P. S. Athey, P. J. Gaffney, S. A. Wickline, and G. M. Lanza, “High sensitivity: High-resolution SPECT-CT/MR molecular imaging of angiogenesis in the model,” Invest. Radiol. 44, 1522 (2009).
132.K. P. Schäfers and L. Stegger, “Combined imaging of molecular function and morphology with PET/CT and SPECT/CT: Image fusion and motion correction,” Basic Res. Cardiol. 103, 191199 (2008).
133.Y. Zingerman, H. Golan, A. Gersten, and A. Moalem, “A compact CT/SPECT system for small-object imaging,” Nucl. Instrum. Methods Phys. Res. A 584, 135148 (2008).
134.D. W. Townsend, T. Beyer, and T. M. Blodgett, “PET/CT scanners: A hardware approach to image fusion,” Semin Nucl. Med. 33, 193204 (2003).
135.E. Even-Sapir, Z. Keidar, and R. Bar-Shalom, “Hybrid imaging (SPECT/CT and PET/CT)—Improving the diagnostic accuracy of functional/metabolic and anatomic imaging,” Semin Nucl. Med. 39, 264275 (2009).
136.E. L. Kaijzel, T. J. Snoeks, J. T. Buijs, G. van der Pluijm, and C. W. Lowik, “Multimodal imaging and treatment of bone metastasis,” Clin. Exp. Metastasis 26, 371379 (2009).
137.H. Zaidi and B. Hasegawa, “Determination of the attenuation map in emission tomography,” J. Nucl. Med. 44, 291315 (2003).
138.H. Zaidi, O. Mawlawi, and C. G. Orton, “Point/counterpoint. Simultaneous PET/MR will replace PET/CT as the molecular multimodality imaging platform of choice,” Med. Phys. 34, 15251528 (2007).
139.C. Catana, Y. Wu, M. S. Judenhofer, J. Qi, B. J. Pichler, and S. R. Cherry, “Simultaneous acquisition of multislice PET and MR images: Initial results with a MR-compatible PET scanner,” J. Nucl. Med. 47, 19681976 (2006).
140.S. I. Ziegler, B. J. Pichler, G. Boening, M. Rafecas, W. Pimpl, E. Lorenz, N. Schmitz, and M. Schwaiger, “A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals,” Eur. J. Nucl. Med. 28, 136143 (2001).
141.D. R. Schaart, H. T. van Dam, S. Seifert, R. Vinke, P. Dendooven, H. Lohner, and F. J. Beekman, “A novel, SiPM-array-based, monolithic scintillator detector for PET,” Phys. Med. Biol. 54, 35013512 (2009).
142.G. Antoch and A. Bockisch, “Combined PET/MRI: A new dimension in whole-body oncology imaging?,” Eur. J. Nucl. Med. Mol. Imaging 36, S113S120 (2009).
143.R. Pani, M. N. Cinti, R. Pellegrini, P. Bennati, M. Betti, F. Vittorini, M. Mattioli, G. Trotta, V. Orsolini Cencelli, R. Scafè, F. Navarria, D. Bollini, G. Baldazzi, G. Moschini, and F. de Notaristefani, “LaBr3:Ce scintillation gamma camera prototype for x and gamma ray imaging,” Nucl. Instrum. Methods Phys. Res. A 576, 1518 (2007).
144.G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: Simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol. 51, 20452053 (2006).
145.J. Peter and W. Semmler, “Performance investigation of a dual-modality SPECT/optical small animal imager,” Eur. J. Nucl. Med. Mol. Imaging 33, S117S117 (2006).
146.D. Hyde, R. Schulz, D. Brooks, E. Miller, and V. Ntziachristos, “Performance dependence of hybrid x-ray computed tomography/fluorescence molecular tomography on the optical forward problem,” J. Opt. Soc. Am. A Opt. Image Sci. Vis 26, 919923 (2009).
147.R. Fahrig, A. Ganguly, P. Lillaney, J. Bracken, J. A. Rowlands, W. Zhifei, Y. Huanzhou, V. Rieke, J. M. Santos, K. B. Pauly, D. Y. Sze, J. K. Frisoli, B. L. Daniel, and N. J. Pelc, “Design, performance, and applications of a hybrid x-ray/MR system for interventional guidance,” Proc. IEEE 96, 468480 (2008).
148.M. Niedre and V. Ntziachristos, “Elucidating structure and function in vivo with hybrid fluorescence and magnetic resonance imaging,” Proc. IEEE 96, 382396 (2008).
149.R. Weissleder and U. Mahmood, “Molecular imaging,” Radiology 219, 316333 (2001).
150.J. M. Hoffman and S. S. Gambhir, “Molecular imaging: The vision and opportunity for radiology in the future,” Radiology 244, 3947 (2007).
151.A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine, “A review of imaging techniques for systems biology,” BMC Systems Biology 2, 74 (2008).
152.A. S. Dzik-Jurasz, “Molecular imaging in vivo: An introduction,” Br. J. Radiol. 76, S98S109 (2003).
153.R. Sinha, G. J. Kim, S. Nie, and D. M. Shin, “Nanotechnology in cancer therapeutics: Bioconjugated nanoparticles for drug delivery,” Molecular Cancer Therapeutics 5, 19091917 (2006).
154.D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: From microscope to clinic,” Nat. Med. 9, 713725 (2003).
155.N. Matsuura and J. A. Rowlands, “Towards new functional nanostructures for medical imaging,” Med. Phys. 35, 44744487 (2008).
156.D. P. Cormode, T. Skajaa, Z. A. Fayad, and W. J. Mulder, “Nanotechnology in medical imaging: Probe design and applications,” Arterioscler., Thromb., Vasc., Biol. 29, 9921000 (2009).
157.S. Qin, C. F. Caskey, and K. W. Ferrara, “Ultrasound contrast microbubbles in imaging and therapy: Physical principles and engineering,” Phys. Med. Biol. 54, R27R57 (2009).
158.U. Nixdorff, A. Schmidt, T. Morant, N. Stilianakis, J. U. Voigt, F. A. Flachskampf, W. G. Daniel, and C. D. Garlichs, “Dose-dependent disintegration of human endothelial monolayers by contrast echocardiography,” Life Sci. 77, 14931501 (2005).
159.J. M. Tsutsui, P. A. Grayburn, F. Xie, and T. R. Porter, “Drug and gene delivery and enhancement of thrombolysis using ultrasound and microbubbles,” Cardiol. Clin. 22, 299312 (2004).
160.M. Ao, Z. Wang, H. Ran, D. Guo, J. Yu, A. Li, W. Chen, W. Wu, and Y. Zheng, “Gd-DTPA-loaded PLGA microbubbles as both ultrasound contrast agent and MRI contrast agent—A feasibility research,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 93, 551556 (2010).
161.F. Yang, Y. Li, Z. Chen, Y. Zhang, J. Wu, and N. Gu, “Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging,” Biomaterials 30, 38823890 (2009).
162.R. Bekeredjian, P. A. Grayburn, and R. V. Shohet, “Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine,” J. Am. Coll. Cardiol. 45, 329335 (2005).
163.T. Imada, T. Tatsumi, Y. Mori, T. Nishiue, M. Yoshida, H. Masaki, M. Okigaki, H. Kojima, Y. Nozawa, Y. Nishiwaki, N. Nitta, T. Iwasaka, and H. Matsubara, “Targeted delivery of bone marrow mononuclear cells by ultrasound destruction of microbubbles induces both angiogenesis and arteriogenesis response,” Arterioscler., Thromb., Vasc., Biol. 25, 21282134 (2005).
164.J. N. Marsh, K. C. Partlow, D. R. Abendschein, M. J. Scott, G. M. Lanza, and S. A. Wickline, “Molecular imaging with targeted perfluorocarbon nanoparticles: Quantification of the concentration dependence of contrast enhancement for binding to sparse cellular epitopes,” Ultrasound Med. Biol. 33, 950958 (2007).
165.F. Cavalieri, M. Zhou, and M. Ashokkumar, “The design of multifunctional microbubbles for ultrasound image-guided cancer therapy,” Current Topics in Medicinal Chemistry 10(12), 11981210 (2010).
166.J. R. Lindner, J. Song, J. Christiansen, A. L. Klibanov, F. Xu, and K. Ley, “Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin,” Circulation 104, 21072112 (2001).
167.J. R. Lindner, J. Song, F. Xu, A. L. Klibanov, K. Singbartl, K. Ley, and S. Kaul, “Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes,” Circulation 102, 27452750 (2000).
168.P. Hauff, M. Reinhardt, A. Briel, N. Debus, and M. Schirner, “Molecular targeting of lymph nodes with L-selectin ligand-specific US contrast agent: A feasibility study in mice and dogs,” Radiology 231, 667673 (2004).
169.J. K. Willmann, R. H. Kimura, N. Deshpande, A. M. Lutz, J. R. Cochran, and S. S. Gambhir, “Targeted contrast-enhanced ultrasound imaging of tumor angiogenesis with contrast microbubbles conjugated to integrin-binding knottin peptides,” J. Nucl. Med. 51, 433440 (2010).
170.G. Korpanty, S. Chen, R. V. Shohet, J. Ding, B. Yang, P. A. Frenkel, and P. A. Grayburn, “Targeting of VEGF-mediated angiogenesis to rat myocardium using ultrasonic destruction of microbubbles,” Gene Ther. 12, 13051312 (2005).
171.D. B. Ellegala, H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner, “Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3,” Circulation 108, 336341 (2003).
172.H. Leong-Poi, J. Christiansen, A. L. Klibanov, S. Kaul, and J. R. Lindner, “Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins,” Circulation 107, 455460 (2003).
173.E. E. Uzgiris, H. Cline, B. Moasser, B. Grimmond, M. Amaratunga, J. F. Smith, and G. Goddard, “Conformation and structure of polymeric contrast agents for medical imaging,” Biomacromolecules 5, 5461 (2004).
174.V. P. Torchilin, “Polymeric contrast agents for medical imaging,” Curr. Pharm. Biotechnol. 1, 183215 (2000).
175.C. Alric, J. Taleb, G. Le Duc, C. Mandon, C. Billotey, A. Le Meur-Herland, T. Brochard, F. Vocanson, M. Janier, P. Perriat, S. Roux, and O. Tillement, “Gadolinium chelate coated gold nanoparticles as contrast agents for both x-ray computed tomography and magnetic resonance imaging,” J. Am. Chem. Soc. 130, 59085915 (2008).
176.C. Burgstahler and M. Budoff, “Cardiac computed tomography with gadolinium: An alternative to iodinated contrast agents?,” Journal of Cardiovascular Computed Tomography 1, 9596 (2007).
177.J. Vogel, “Measurement of cardiac output in small laboratory animals using recordings of blood conductivity,” Am. J. Physiol. 273, H2520H2527 (1997).
178.S. Mukundan, Jr., K. B. Ghaghada, C. T. Badea, C. Y. Kao, L. W. Hedlund, J. M. Provenzale, G. A. Johnson, E. Chen, R. V. Bellamkonda, and A. Annapragada, “A liposomal nanoscale contrast agent for preclinical CT in mice,” AJR, Am. J. Roentgenol. 186, 300307 (2006).
179.C. Y. Kao, E. A. Hoffman, K. C. Beck, R. V. Bellamkonda, and A. V. Annapragada, “Long-residence-time nano-scale liposomal iohexol for x-ray-based blood pool imaging,” Acad. Radiol. 10, 475483 (2003).
180.J. P. Weichert, M. A. Longino, D. A. Bakan, M. G. Spigarelli, T. Chou, S. W. Schwendner, and R. E. Counsel, “Polyiodinated triglyceride analogs as potential computed tomography imaging agents for the liver,” J. Med. Chem. 38, 636646 (1995).
181.X. Montet, C. M. Pastor, J. P. Vallee, C. D. Becker, A. Geissbuhler, D. R. Morel, and P. Meda, “Improved visualization of vessels and hepatic tumors by micro-computed tomography (CT) using iodinated liposomes,” Invest. Radiol. 42, 652658 (2007).
182.O. Rabin, J. Manuel Perez, J. Grimm, G. Wojtkiewicz, and R. Weissleder, “An x-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles,” Nature Mater. 5, 118122 (2006).
183.J. Zheng, G. Perkins, A. Kirilova, C. Allen, and D. A. Jaffray, “Multimodal contrast agent for combined computed tomography and magnetic resonance imaging applications,” Invest. Radiol. 41, 339348 (2006).
184.P. Hermann, J. Kotek, V. Kubicek, and I. Lukes, “Gadolinium(III) complexes as MRI contrast agents: Ligand design and properties of the complexes,” Dalton Trans. 23, 30273047 (2008).
185.P. Reimer, G. Schneider, and W. Schima, “Hepatobiliary contrast agents for contrast-enhanced MRI of the liver: Properties, clinical development and applications,” Eur. Radiol. 14, 559578 (2004).
186.S. H. Koenig and K. E. Kellar, “Blood-pool contrast agents for MRI: A critical evaluation,” Acad. Radiol. 5, S226S227 (1998).
187.H. Kobayashi and M. W. Brechbiel, “Nano-sized MRI contrast agents with dendrimer cores,” Adv. Drug Delivery Rev. 57, 22712286 (2005).
188.S. Sharma, U. Paiphansiri, V. Hombach, V. Mailander, O. Zimmermann, K. Landfester, and V. Rasche, “Characterization of MRI contrast agent-loaded polymeric nanocapsules as versatile vehicle for targeted imaging,” Contrast Media & Molecular Imaging 5, 5969 (2010).
189.C. Zhang, T. Liu, J. Gao, Y. Su, and C. Shi, “Recent development and application of magnetic nanoparticles for cell labeling and imaging,” Mini-Reviews in Medicinal Chemistry 10, 193202 (2010).
190.U. Himmelreich and T. Dresselaers, “Cell labeling and tracking for experimental models using magnetic resonance imaging,” Methods 48, 112124 (2009).
191.A. L. Ayyagari, X. Zhang, K. B. Ghaghada, A. Annapragada, X. Hu, and R. V. Bellamkonda, “Long-circulating liposomal contrast agents for magnetic resonance imaging,” Magn. Reson. Med. 55, 10231029 (2006).
192.G. J. Strijkers, W. J. Mulder, R. B. van Heeswijk, P. M. Frederik, P. Bomans, P. C. Magusin, and K. Nicolay, “Relaxivity of liposomal paramagnetic MRI contrast agents,” MAGMA (N.Y.) 18, 186192 (2005).
193.K. B. Hartman and L. J. Wilson, “Carbon nanostructures as a new high-performance platform for MR molecular imaging,” Adv. Exp. Med. Biol. 620, 7484 (2007).
194.B. Sitharaman and L. J. Wilson, “Gadonanotubes as new high-performance MRI contrast agents,” International Journal of Nanomedicine 1, 291295 (2006).
195.J. W. Chen, M. Querol Sans, A. Bogdanov, Jr., and R. Weissleder, “Imaging of myeloperoxidase in mice by using novel amplifiable paramagnetic substrates,” Radiology 240, 473481 (2006).
196.Y. Feng, E. K. Jeong, A. M. Mohs, L. Emerson, and Z. R. Lu, “Characterization of tumor angiogenesis with dynamic contrast-enhanced MRI and biodegradable macromolecular contrast agents in mice,” Magn. Reson. Med. 60, 13471352 (2008).
197.G. Fan, P. Zang, F. Jing, Z. Wu, and Q. Guo, “Usefulness of diffusion/perfusion-weighted MRI in rat gliomas: Correlation with histopathology,” Acad. Radiol. 12, 640651 (2005).
198.D. Zhao, L. Jiang, E. W. Hahn, and R. P. Mason, “Continuous low-dose (metronomic) chemotherapy on rat prostate tumors evaluated using MRI in vivo and comparison with histology,” Neoplasia 7, 678687 (2005).
199.T. Bäuerle, S. Bartling, M. Berger, A. Schmitt-Graff, H. Hilbig, H. U. Kauczor, S. Delorme, and F. Kiessling, “Imaging anti-angiogenic treatment response with DCE-VCT, DCE-MRI and DWI in an animal model of breast cancer bone metastasis,” Eur. J. Radiol. 73, 280287 (2010).
200.N. Tuncbilek, M. Kaplan, S. Altaner, I. H. Atakan, N. Sut, O. Inci, and M. K. Demir, “Value of dynamic contrast-enhanced MRI and correlation with tumor angiogenesis in bladder cancer,” AJR, Am. J. Roentgenol. 192, 949955 (2009).
201.M. Y. Su, Y. C. Cheung, J. P. Fruehauf, H. Yu, O. Nalcioglu, E. Mechetner, A. Kyshtoobayeva, S. C. Chen, S. Hsueh, C. E. McLaren, and Y. L. Wan, “Correlation of dynamic contrast enhancement MRI parameters with microvessel density and VEGF for assessment of angiogenesis in breast cancer,” J. Magn. Reson Imaging 18, 467477 (2003).
202.C. A. Cuenod, L. Fournier, D. Balvay, and J. M. Guinebretiere, “Tumor angiogenesis: Pathophysiology and implications for contrast-enhanced MRI and CT assessment,” Abdom. Imaging 31, 188193 (2006).
203.C. Granziera, H. D’Arceuil, L. Zai, P. J. Magistretti, A. G. Sorensen, and A. J. de Crespigny, “Long-term monitoring of post-stroke plasticity after transient cerebral ischemia in mice using in vivo and ex vivo diffusion tensor MRI,” The Open Neuroimaging Journal 1, 1017 (2007).
204.P. V. Prasad, A. Priatna, K. Spokes, and F. H. Epstein, “Changes in intrarenal oxygenation as evaluated by BOLD MRI in a rat kidney model for radiocontrast nephropathy,” J. Magn. Reson Imaging 13, 744747 (2001).
205.H. A. Al-Hallaq, M. Zamora, B. L. Fish, A. Farrell, J. E. Moulder, and G. S. Karczmar, “MRI measurements correctly predict the relative effects of tumor oxygenating agents on hypoxic fraction in rodent BA1112 tumors,” Int. J. Radiat. Oncol., Biol., Phys. 47, 481488 (2000).
206.T. Barrett, H. Kobayashi, M. Brechbiel, and P. L. Choyke, “Macromolecular MRI contrast agents for imaging tumor angiogenesis,” Eur. J. Radiol. 60, 353366 (2006).
207.S. K. Imam, “Molecular nuclear imaging: The radiopharmaceuticals (review),” Cancer Biother. Radiopharm. 20, 163172 (2005).
208.M. Fani, D. Psimadas, C. Zikos, S. Xanthopoulos, G. K. Loudos, P. Bouziotis, and A. D. Varvarigou, “Comparative evaluation of linear and cyclic 99mTc-RGD peptides for targeting of integrins in tumor angiogenesis,” Anticancer Res. 26, 431434 (2006).
209.P. Bouziotis, D. Psimadas, M. Fani, E. Gourni, G. Loudos, S. Xanthopoulos, S. C. Archimandritis, and A. D. Varvarig, “Radiolabeled biomolecules for early cancer detection and therapy via angiogenesis targeting,” Nucl. Instrum. Methods Phys. Res. A 569, 492496 (2006).
210.G. Murphy and F. Willenbrock, “Tissue inhibitors of matrix metalloproteinases,” Methods Enzymol. 248, 496510 (1995).
211.P. McQuade, L. C. Knight, and M. J. Welch, “Evaluation of - and -radiolabeled bitistatin as potential agents for targeting integrins in tumor angiogenesis,” Bioconjugate Chem. 15, 988996 (2004).
212.T. D. Harris, S. Kalogeropoulos, T. Nguyen, S. Liu, J. Bartis, C. Ellars, S. Edwards, D. Onthank, P. Silva, P. Yalamanchili, S. Robinson, J. Lazewatsky, J. Barrett, and J. Bozarth, “Design, synthesis, and evaluation of radiolabeled integrin alpha v beta 3 receptor antagonists for tumor imaging and radiotherapy,” Cancer Biother. Radiopharm. 18, 627641 (2003).
213.T. H. Stollman, M. G. Scheer, W. P. Leenders, K. C. Verrijp, A. C. Soede, W. J. Oyen, T. J. Ruers, and O. C. Boerman, “Specific imaging of VEGF-A expression with radiolabeled anti-VEGF monoclonal antibody,” Int. J. Cancer 122, 23102314 (2008).
214.E. Lu, W. R. Wagner, U. Schellenberger, J. A. Abraham, A. L. Klibanov, S. R. Woulfe, M. M. Csikari, D. Fischer, G. F. Schreiner, G. H. Brandenburger, and F. S. Villanueva, “Targeted in vivo labeling of receptors for vascular endothelial growth factor: Approach to identification of ischemic tissue,” Circulation 108, 97103 (2003).
215.S. Li, M. Peck-Radosavljevic, O. Kienast, J. Preitfellner, E. Havlik, W. Schima, T. Traub-Weidinger, S. Graf, M. Beheshti, M. Schmid, P. Angelberger, and R. Dudczak, “Iodine-123-vascular endothelial growth factor-165 (123I-VEGF165). Biodistribution, safety and radiation dosimetry in patients with pancreatic carcinoma,” Q. J. Nucl. Med. Mol. Imaging 48, 198206 (2004).
216.J. Hua, L. W. Dobrucki, M. M. Sadeghi, J. Zhang, B. N. Bourke, P. Cavaliere, J. Song, C. Chow, N. Jahanshad, N. van Royen, I. Buschmann, J. A. Madri, M. Mendizabal, and A. J. Sinusas, “Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia,” Circulation 111, 32553260 (2005).
217.B. K. Giersing, M. T. Rae, M. CarballidoBrea, R. A. Williamson, and P. J. Blower, “Synthesis and characterization of 111In-DTPA-N-TIMP-2: A radiopharmaceutical for imaging matrix metalloproteinase expression,” Bioconjugate Chem. 12, 964971 (2001).
218.K. Kopka, H. J. Breyholz, S. Wagner, M. P. Law, B. Riemann, S. Schroer, M. Trub, B. Guilbert, B. Levkau, O. Schober, and M. Schafers, “Synthesis and preliminary biological evaluation of new radioiodinated MMP inhibitors for imaging MMP activity in vivo,” Nucl. Med. Biol. 31, 257267 (2004).
219.M. Schafers, B. Riemann, K. Kopka, H. J. Breyholz, S. Wagner, K. P. Schafers, M. P. Law, O. Schober, and B. Levkau, “Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo,” Circulation 109, 25542559 (2004).
220.W. S. Richter, “Imaging biomarkers as surrogate endpoints for drug development,” Eur. J. Nucl. Med. Mol. Imaging 33, 610 (2006).
221.L. B. Been, A. J. Suurmeijer, D. C. Cobben, P. L. Jager, H. J. Hoekstra, and P. H. Elsinga, “[18F]FLT-PET in oncology: Current status and opportunities,” Eur. J. Nucl. Med. Mol. Imaging 31, 16591672 (2004).
222.A. J. Beer, S. Lorenzen, S. Metz, K. Herrmann, P. Watzlowik, H. J. Wester, C. Peschel, F. Lordick, and M. Schwaiger, “Comparison of integrin alphaVbeta3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: A PET study using 18F-galacto-RGD and 18F-FDG,” J. Nucl. Med. 49, 2229 (2007).
223.X. Chen, Y. Hou, M. Tohme, R. Park, V. Khankaldyyan, I. Gonzales-Gomez, J. R. Bading, W. E. Laug, and P. S. Conti, “Pegylated Arg-Gly-Asp peptide: 64Cu labeling and PET imaging of brain tumor alphavbeta3-integrin expression,” J. Nucl. Med. 45, 17761783 (2004).
224.M. Rodriguez-Porcel, W. Cai, O. Gheysens, J. K. Willmann, K. Chen, H. Wang, I. Y. Chen, L. He, J. C. Wu, Z. B. Li, K. A. Mohamedali, S. Kim, M. G. Rosenblum, X. Chen, and S. S. Gambhir, “Imaging of VEGF receptor in a rat myocardial infarction model using PET,” J. Nucl. Med. 49, 667673 (2008).
225.K. Chen, W. Cai, Z. B. Li, H. Wang, and X. Chen, “Quantitative PET imaging of VEGF receptor expression,” Mol. Imaging Biol. 11, 1522 (2009).
226.D. H. Kim, Y. S. Choe, K. H. Jung, K. H. Lee, Y. Choi, and B. T. Kim, “Synthesis and evaluation of 4-[(18)F]fluorothalidomide for the in vivo studies of angiogenesis,” Nucl. Med. Biol. 33, 255262 (2006).
227.I. Lee, Y. Seong Choe, K. H. Jung, K. H. Lee, J. Young Choi, Y. Choi, and B. T. Kim, “2-[methyl-(11)C]methoxyestradiol: Synthesis, evaluation and pharmacokinetics for in vivo studies on angiogenesis,” Nucl. Med. Biol. 34, 625631 (2007).
228.S. Furumoto, K. Takashima, K. Kubota, T. Ido, R. Iwata, and H. Fukuda, “Tumor detection using 18F-labeled matrix metalloproteinase-2 inhibitor,” Nucl. Med. Biol. 30, 119125 (2003).
229.Q. H. Zheng, X. Fei, X. Liu, J. Q. Wang, H. Bin Sun, B. H. Mock, K. Lee Stone, T. D. Martinez, K. D. Miller, G. W. Sledge, and G. D. Hutchins, “Synthesis and preliminary biological evaluation of MMP inhibitor radiotracers [11C]methyl-halo-CGS 27023A analogs, new potential PET breast cancer imaging agents,” Nucl. Med. Biol. 29, 761770 (2002).
230.G. D. Luker and K. E. Luker, “Optical imaging: Current applications and future directions,” J. Nucl. Med. 49, 14 (2008).
231.K. M. Venisnik, T. Olafsen, S. S. Gambhir, and A. M. Wu, “Fusion of Gaussian luciferase to an engineered anti-carcinoembryonic antigen (CEA) antibody for in vivo optical imaging,” Mol. Imaging Biol. 9, 267277 (2007).
232.A. M. Loening, A. M. Wu, and S. S. Gambhir, “Red-shifted Renilla reniformis luciferase variants for imaging in living subjects,” Nat. Methods 4, 641643 (2007).
233.J. L. Kadurugamuwa, K. Modi, O. Coquoz, B. Rice, S. Smith, P. R. Contag, and T. Purchio, “Reduction of astrogliosis by early treatment of pneumococcal meningitis measured by simultaneous imaging, in vivo, of the pathogen and host response,” Infect. Immun. 73, 78367843 (2005).
234.M. V. Backer, Z. Levashova, V. Patel, B. T. Jehning, K. Claffey, F. G. Blankenberg, and J. M. Backer, “Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes,” Nat. Med. 13, 504509 (2007).
235.G. Niu, Z. Xiong, Z. Cheng, W. Cai, S. S. Gambhir, L. Xing, and X. Chen, “In vivo bioluminescence tumor imaging of RGD peptide-modified adenoviral vector encoding firefly luciferase reporter gene,” Mol. Imaging Biol. 9, 126134 (2007).
236.J. Zhang, R. E. Campbell, A. Y. Ting, and R. Y. Tsien, “Creating new fluorescent probes for cell biology,” Nat. Rev. Mol. Cell Biol. 3, 906918 (2002).
237.T. Nagai, K. Ibata, E. S. Park, M. Kubota, K. Mikoshiba, and A. Miyawaki, “A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications,” Nat. Biotechnol. 20, 8790 (2002).
238.O. Scholz, A. Thiel, W. Hillen, and M. Niederweis, “Quantitative analysis of gene expression with an improved green fluorescent protein p6,” Eur. J. Biochem. 267, 15651570 (2000).
239.J. Klohs, A. Wunder, and K. Licha, “Near-infrared fluorescent probes for imaging vascular pathophysiology,” Basic Res. Cardiol. 103, 144151 (2008).
240.X. Chen, P. S. Conti, and R. A. Moats, “In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts,” Cancer Res. 64, 80098014 (2004).
241.A. von Wallbrunn, C. Holtke, M. Zuhlsdorf, W. Heindel, M. Schafers, and C. Bremer, “In vivo imaging of integrin alpha v beta 3 expression using fluorescence-mediated tomography,” Eur. J. Nucl. Med. Mol. Imaging 34, 745754 (2007).
242.Z. H. Jin, V. Josserand, S. Foillard, D. Boturyn, P. Dumy, M. C. Favrot, and J. L. Coll, “In vivo optical imaging of integrin alphaV-beta3 in mice using multivalent or monovalent cRGD targeting vectors,” Mol. Cancer 6, 41 (2007).
243.N. C. Biswal, J. K. Gamelin, B. Yuan, M. V. Backer, J. M. Backer, and Q. Zhu, “Fluorescence imaging of vascular endothelial growth factor in tumors for mice embedded in a turbid medium,” J. Biomed. Opt. 15, 016012 (2010).
244.J. Klohs, N. Baeva, J. Steinbrink, R. Bourayou, C. Boettcher, G. Royl, D. Megow, U. Dirnagl, J. Priller, and A. Wunder, “In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia,” J. Cereb. Blood Flow Metab. 29, 12841292 (2009).
245.C. Bremer, S. Bredow, U. Mahmood, R. Weissleder, and C. H. Tung, “Optical imaging of matrix metalloproteinase-2 activity in tumors: Feasibility study in a mouse model,” Radiology 221, 523529 (2001).
246.G. Bergers and D. Hanahan, “Modes of resistance to anti-angiogenic therapy,” Nat. Rev. Cancer 8, 592603 (2008).
247.T. Boehm, J. Folkman, T. Browder, and M. S. O’Reilly, “Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance,” Nature (London) 390, 404407 (1997).
248.R. S. Kerbel, “Antiangiogenic therapy: A universal chemosensitization strategy for cancer?,” Science 312, 11711175 (2006).
249.M. Palmowski, J. Huppert, G. Ladewig, P. Hauff, M. Reinhardt, M. M. Mueller, E. C. Woenne, J. W. Jenne, M. Maurer, G. W. Kauffmann, W. Semmler, and F. Kiessling, “Molecular profiling of angiogenesis with targeted ultrasound imaging: Early assessment of antiangiogenic therapy effects,” Molecular Cancer Therapeutics 7, 101109 (2008).
250.Z. Levashova, M. Backer, C. V. Hamby, J. Pizzonia, J. M. Backer, and F. G. Blankenberg, “Molecular imaging of changes in the prevalence of vascular endothelial growth factor receptor in sunitinib-treated murine mammary tumors,” J. Nucl. Med. 51, 959966 (2010).
251.S. E. DePrimo and C. Bello, “Surrogate biomarkers in evaluating response to anti-angiogenic agents: Focus on sunitinib,” Ann. Oncol. 18, x11x19 (2007).
252.J. Virostko, J. Xie, D. E. Hallahan, C. L. Arteaga, J. C. Gore, and H. C. Manning, “A molecular imaging paradigm to rapidly profile response to angiogenesis-directed therapy in small animals,” Mol. Imaging Biol. 11, 204212 (2009).
253.T. H. Stollman, M. G. Scheer, G. M. Franssen, K. N. Verrijp, W. J. Oyen, T. J. Ruers, W. P. Leenders, and O. C. Boerman, “Tumor accumulation of radiolabeled bevacizumab due to targeting of cell- and matrix-associated VEGF-A isoforms,” Cancer Biother. Radiopharm. 24, 195200 (2009).
254.W. B. Nagengast, E. G. de Vries, G. A. Hospers, N. H. Mulder, J. R. de Jong, H. Hollema, A. H. Brouwers, G. A. van Dongen, L. R. Perk, and M. N. Lub-de Hooge, “In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft,” J. Nucl. Med. 48, 13131319 (2007).
255.M. Fani, P. Bouziotis, A. L. Harris, D. Psimadas, E. Gourni, G. Loudos, A. D. Varvarigou, and H. R. Maecke, “177Lu-labeled-VG76e monoclonal antibody in tumor angiogenesis: A comparative study using DOTA and DTPA chelating systems,” Radiochim. Acta 95, 351357 (2007).
256.G. J. Strijkers, E. Kluza, G. A. Van Tilborg, D. W. van der Schaft, A. W. Griffioen, W. J. Mulder, and K. Nicolay, “Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis,” Angiogenesis 13(2), 161173 (2010).
257.J. Kim, Y. Piao, and T. Hyeon, “Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy,” Chem. Soc. Rev. 38, 372390 (2009).
258.N. Sanvicens and M. P. Marco, “Multifunctional nanoparticles—Properties and prospects for their use in human medicine,” Trends Biotechnol. 26, 425433 (2008).
259.M. E. Gindy and R. K. Prud’homme, “Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy,” Expert Opin. Drug Deliv. 6, 865878 (2009).
260.G. Cao, L. M. Burk, Y. Z. Lee, X. Calderon-Colon, S. Sultana, J. Lu, and O. Zhou, “Prospective-gated cardiac micro-CT imaging of free-breathing mice using carbon nanotube field emission x-ray,” Med. Phys. 37, 53065312 (2010).
261.G. E. Weller, M. K. Wong, R. A. Modzelewski, E. Lu, A. L. Klibanov, W. R. Wagner, and F. S. Villanueva, “Ultrasonic imaging of tumor angiogenesis using contrast microbubbles targeted via the tumor-binding peptide arginine-arginine-leucine,” Cancer Res. 65, 533539 (2005).

Data & Media loading...


Article metrics loading...



The use of small animal models in basic and preclinical sciences constitutes an integral part of testing new pharmaceutical agents prior to commercial translation to clinical practice. Whole-body small animal imaging is a particularly elegant and cost-effective experimental platform for the timely validation and commercialization of novel agents from the bench to the bedside. Biomedical imaging is now listed along with genomics, proteomics, and metabolomics as an integral part of biological and medical sciences. Miniaturized versions of clinical diagnostic modalities, including but not limited to microcomputed tomography, micromagnetic resonance tomography, microsingle-photon-emission tomography, micropositron-emission tomography, optical imaging, digital angiography, and ultrasound, have all greatly improved our investigative abilities to longitudinally study various experimental models of human disease in mice and rodents. After an exhaustive literature search, the authors present a concise and critical review of small animal imaging, focusing on currently available modalities as well as emerging imaging technologies on one side and molecularly targeted contrast agents on the other. Aforementioned scientific topics are analyzed in the context of cancer angiogenesis and innovative antiangiogenic strategies under-the-way to the clinic. Proposed hybrid approaches for diagnosis and targeted site-specific therapy are highlighted to offer an intriguing glimpse of the future.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd