NOTICE: Scitation Maintenance Sunday, March 1, 2015.

Scitation users may experience brief connectivity issues on Sunday, March 1, 2015 between 12:00 AM and 7:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. F. Valliant, “A bridge not too far: Linking disciplines through molecular imaging probes,” J. Nucl. Med. 51(8), 12581268 (2010).
2. R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature (London) 452(7187), 580589 (2008).
3. T. Jones, “Molecular imaging with PET—The future challenges,” Br. J. Radiol. 75(90009), S6S15 (2002).
4. C. C. Meltzer, P. E. Kinahan, P. J. Greer, T. E. Nichols, C. Comtat, M. N. Cantwell, M. P. Lin, and J. C. Price, “Comparative evaluation of MR-based partial-volume correction schemes for PET,” J. Nucl. Med. 40(12), 20532065 (1999).
5. O. Rousset, A. Rahmim, A. Alavi, and H. Zaidi, “Partial volume correction strategies in PET,” PET Clin. 2(2), 235249 (2007).
6. D. L. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, “Medical image registration,” Phys. Med. Biol. 46(3), R1R45 (2001).
7. T. Beyer, D. Townsend, T. Brun, P. Kinahan, M. Charron, R. Roddy, J. Jerin, J. Young, L. Byars, and R. Nutt, “A combined PET/CT scanner for clinical oncology,” J. Nucl. Med. 41(8), 13691290 (2000).
8. A. L. Goertzen, A. K. Meadors, R. W. Silverman, and S. R. Cherry, “Simultaneous molecular and anatomical imaging of the mouse in vivo,” Phys. Med. Biol. 21, 43154328 (2002).
9. H. Zaidi, O. Mawlawi, and C. G. Orton, “Point/counterpoint. Simultaneous PET/MR will replace PET/CT as the molecular multimodality imaging platform of choice,” Med. Phys. 34(5), 15251528 (2007).
10. D. W. Townsend, “Multimodality imaging of structure and function,” Phys. Med. Biol. 53(4), R1R39 (2008).
11. B. J. Pichler, A. Kolb, T. Nagele, and H. P. Schlemmer, “PET/MRI: Paving the way for the next generation of clinical multimodality imaging applications,” J. Nucl. Med. 51(3), 333336 (2010).
12. J. M. Park and S. S. Gambhir, “Multimodality radionuclide, fluorescence, and bioluminescence small-animal imaging,” Proc. IEEE 93(4), 771783 (2005).
13. B. Hasegawa and H. Zaidi, “Dual-modality imaging: More than the sum of its components,” Quantitative Analysis in Nuclear Medicine Imaging, edited by H. Zaidi (Springer, New York, 2006), pp. 3581.
14. D. Renker, “Geiger-mode avalanche photodiodes, history, properties and problems,” Nucl. Instrum. Methods Phys. Res. A 567(1), 4856 (2006).
15. H. Zaidi, M. L. Montandon, and A. Alavi, “The clinical role of fusion imaging using PET, CT, and MR imaging,” Magn. Reson. Imaging Clin. N. Am. 18(1), 133149 (2010).
16. H. Iida, I. Kanno, S. Miura, M. Murakami, K. Takahashi, and K. Uemura, “A simulation study of a method to reduce positron annihilation spread distribution using a strong magnetic field in positron emission tomography,” IEEE Trans. Nucl. Sci. 33, 597600 (1986).
17. D. Rickey, R. Gordon, and W. Huda, “On lifting the inherent limitations of positron emission tomography by using magnetic fields (MagPET),” Automedica 14, 355369 (1992).
18. B. E. Hammer, N. L. Christensen, and B. G. Heil, “Use of a magnetic field to increase the spatial resolution of positron emission tomography,” Med. Phys. 21(12), 19171920 (1994).
19. R. R. Raylman, B. E. Hammer, and N. L. Christensen, “Combined MRI-PET scanner: A Monte Carlo evaluation of the improvements in PET resolution due to the effects of a static homogeneous magnetic field,” IEEE Trans. Nucl. Sci. 43(4), 24062412 (1996).
20. A. Blanco, N. Carolino, C. M. B. A. Correia, L. Fazendeiro, N. C. Ferreira, M. F. Ferreira Marques, R. Ferreira Marques, P. Fonte, C. Gil, and M. P. Macedo, “Spatial resolution on a small animal RPC-PET prototype operating under magnetic field,” Nucl. Phys. B, Proc. Suppl. 158, 157160 (2006).
21. A. Wirrwar, H. Vosberg, H. Herzog, H. Halling, S. Weber, and H.-W. Muller-Gartner, “4.5 Tesla magnetic field reduces range of high-energy positrons-potential implications for positron emission tomography,” IEEE Trans. Nucl. Sci. 44(2), 184189 (1997).
22. D. Burdette, E. Chesi, N. H. Clinthorne, K. Honscheid, S. S. Huh, H. Kagan, C. Lacasta, G. Llosa, M. Mikuz, S. J. Park, W. L. Rogers, A. Studen, and P. Weilhammer, “First results from a test bench for very high resolution small animal PET using solid-state detectors,” IEEE Nuclear Science Symposium Conference Record, pp. 23762380 (2005).
23. N. L. Christensen, B. E. Hammer, B. G. Heil, and K. Fetterly, “Positron emission tomography within a magnetic field using photomultiplier tubes and light-guides,” Phys. Med. Biol. 40(4), 691697 (1995).
24. Y. Shao, S. R. Cherry, K. Farahani, and K. Meadors, “Simultaneous PET and MR imaging,” Phys. Med. Biol 42, 19651970 (1997).
25. R. Slates, K. Farahani, Y. Shao, P. K. Marsden, J. Taylor, P. E. Summers, S. Williams, J. Beech, and S. R. Cherry, “A study of artefacts in simultaneous PET and MR imaging using a prototype MR compatible PET scanner,” Phys. Med. Biol. 44, 20152027 (1999).
26. K. Farahani, R. Slates, Y. Shao, R. Silverman, and S. Cherry, “Contemporaneous positron emission tomography and MR imaging at 1.5 T,” J. Magn. Reson. Imaging 9(3), 497500 (1999).<>1.0.CO;2-K
27. S. Yamamoto, S. Takamatsu, H. Murayama, and K. Minato, “A block detector for a multislice, depth-of-interaction MR-compatible PET,” IEEE Trans. Nucl. Sci. 52(1), 3337 (2005).
28. J. E. Mackewn, D. Strul, W. A. Hallett, P. Halsted, R. A. Page, S. F. Keevil, S. C. R. Williams, S. R. Cherry, and P. K. Marsden, “Design and development of an MR-compatible PET scanner for imaging small animals,” IEEE Trans. Nucl. Sci. 52(5), 13761380 (2005).
29. R. R. Raylman, S. Majewski, S. S. Velan, S. Lemieux, B. Kross, V. Popov, M. F. Smith, and A. G. Weisenberger, “Simultaneous acquisition of magnetic resonance spectroscopy (MRS) data and positron emission tomography (PET) images with a prototype MR-compatible, small animal PET imager,” J. Magn. Reson. 186(2), 305310 (2007).
30. R. R. Raylman, S. Majewski, S. K. Lemieux, S. S. Velan, B. Kross, V. Popov, M. F. Smith, A. G. Weisenberger, C. Zorn, and G. D. Marano, “Simultaneous MRI and PET imaging of a rat brain,” Phys. Med. Biol. 51(24), 63716379 (2006).
31. S. Yamamoto, M. Imaizumi, Y. Kanai, M. Tatsumi, M. Aoki, E. Sugiyama, M. Kawakami, E. Shimosegawa, and J. Hatazawa, “Design and performance from an integrated PET/MRI system for small animals,” Ann. Nucl. Med. 24, 8998 (2010).
32. A. J. Lucas, R. C. Hawkes, R. E. Ansorge, G. B. Williams, R. E. Nutt, J. C. Clark, T. D. Fryer, and T. A. Carpenter, “Development of a combined microPET-MR system,” Technol. Cancer Res. Treat. 5(4), 337341 (2006).
33. W. B. Handler, K. M. Gilbert, H. Peng, and B. A. Chronik, “Simulation of scattering and attenuation of 511 keV photons in a combined PET/field-cycled MRI system,” Phys. Med. Biol. 51(10), 24792491 (2006).
34. R. C. Hawkes, T. D. Fryer, S. Siegel, R. E. Ansorge, and T. A. Carpenter, “Preliminary evaluation of a combined microPET-MR system,” Technol. Cancer Res. Treat. 9(1), 5360 (2010).
35. K. M. Gilbert, T. J. Scholl, W. B. Handler, J. K. Alford, and B. A. Chronik, “Evaluation of a positron emission tomography (PET)-compatible field-cycled MRI (FCMRI) scanner,” Magn. Reson. Med. 62(4), 10171025 (2009).
36. M. Bergeron, J. Cadorette, J. F. Beaudoin, M. D. Lepage, G. Robert, V. Selivanov, M. A. Tetrault, N. Viscogliosi, J. P. Norenberg, R. Fontaine, and R. Lecomte, “Performance evaluation of the LabPET APD-based digital PET scanner,” IEEE Trans. Nucl. Sci. 56(1), 1016 (2009).
37. C. Catana, Y. Wu, M. S. Judenhofer, J. Qi, B. J. Pichler, and S. R. Cherry, “Simultaneous acquisition of multislice PET and MR images: Initial results with a MR-compatible PET scanner,” J. Nucl. Med. 47(12), 19681976 (2006).
38. B. J. Pichler, M. S. Judenhofer, C. Catana, J. H. Walton, M. Kneilling, R. E. Nutt, S. B. Siegel, C. D. Claussen, and S. R. Cherry, “Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI,” J. Nucl. Med. 47(4), 639647 (2006).
39. M. S. Judenhofer, C. Catana, B. K. Swann, S. B. Siegel, W.-I. Jung, R. E. Nutt, S. R. Cherry, C. D. Claussen, and B. J. Pichler, “Simultaneous PET/MR images, acquired with a compact MRI compatible PET detector in a 7 Tesla magnet,” Radiology 244(3), 807814 (2007).
40. C. Woody, D. Schlyer, P. Vaska, D. Tomasi, S. Solis-Najera, W. Rooney, J.-F. Pratte, S. Junnarkar, S. Stoll, Z. Master, M. Purschke, S.-J. Park, S. Southekal, A. Kriplani, S. Krishnamoorthy, S. Maramraju, P. O’Connor, and V. Radeka, “Preliminary studies of a simultaneous PET/MRI scanner based on the RatCAP small animal tomograph,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 102105 (2007).
41. M. S. Judenhofer, H. F. Wehrl, D. F. Newport, C. Catana, S. B. Siegel, M. Becker, A. Thielscher, M. Kneilling, M. P. Lichy, M. Eichner, K. Klingel, G. Reischl, S. Widmaier, M. Rocken, R. E. Nutt, H. J. Machulla, K. Uludag, S. R. Cherry, C. D. Claussen, and B. J. Pichler, “Simultaneous PET-MRI: A new approach for functional and morphological imaging,” Nat. Med. 14(4), 459465 (2008).
42. B. Ravindranath, S. S. Junnarkar, M. L. Purschke, S. H. Maramraju, X. Hong, D. Tomasi, D. Bennett, K. Cheng, S. S. Southekal, S. P. Stoll, J. F. Pratte, P. Vaska, C. L. Woody, and D. J. Schlyer, “Results from prototype II of the BNL simultaneous PET-MRI dedicated breast scanner,” IEEE Nuclear Science Symposium Conference Record, pp. 33153317 (2009).
43. T. Frach, G. Prescher, C. Degenhardt, R. de Gruyter, A. Schmitz, and R. Ballizany, “The digital silicon photomultiplier—Principle of operation and intrinsic detector performance,” IEEE Nuclear Science Symposium Conference Record (NSS/MIC), pp. 19591965 (2009).
44. C. Degenhardt, G. Prescher, T. Frach, A. Thon, R. de Gruyter, A. Schmitz, and R. Ballizany, “The digital silicon photomultiplier—A novel sensor for the detection of scintillation light,” IEEE Nuclear Science Symposium Conference Record (NSS/MIC), pp. 23832386 (2009).
45. B. Dolgoshein, V. Balagura, P. Buzhan, M. Danilov, L. Filatov, E. Garutti, M. Groll, A. Ilyin, V. Kantserov, V. Kaplin, A. Karakash, F. Kayumov, S. Klemin, V. Korbel, H. Meyer, R. Mizuk, V. Morgunov, E. Novikov, P. Pakhlov, E. Popova, V. Rusinov, F. Sefkow, E. Tarkovsky, and I. Tikhomirov, “Status report on silicon photomultiplier development and its applications,” Nucl. Instrum. Methods Phys. Res. A 563(2), 368376 (2006).
46. D. P. McElroy, V. Saveliev, A. Reznik, and J. A. Rowlands, “Evaluation of silicon photomultipliers: A promising new detector for MR compatible PET,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 106109 (2007).
47. S. Moehrs, A. Del Guerra, D. J. Herbert, and M. A. Mandelkern, “A detector head design for small-animal PET with silicon photomultipliers (SiPM),” Phys. Med. Biol. 51(5), 11131127 (2006).
48. D. Renker and E. Lorenz, “Advances in solid state photon detectors,” J Instrum. 4(04), P04004 (2009).
49. H. P. Schlemmer, B. J. Pichler, M. Schmand, Z. Burbar, C. Michel, R. Ladebeck, K. Jattke, D. Townsend, C. Nahmias, P. K. Jacob, W. D. Heiss, and C. D. Claussen, “Simultaneous MR/PET imaging of the human brain: Feasibility study,” Radiology 248(3), 10281035 (2008).
50. H. Herzog, U. Pietrzyk, N. J. Shah, and K. Ziemons, “The current state, challenges and perspectives of MR-PET,” Neuroimage 49(3), 20722082 (2010).
51. S. J. Holdsworth and R. Bammer, “Magnetic resonance imaging techniques: fMRI, DWI, and PWI,” Semin. Neurol. 28(4), 395406 (2008).
52. A. Boss, A. Kolb, M. Hofmann, S. Bisdas, T. Nagele, U. Ernemann, L. Stegger, C. Rossi, H. P. Schlemmer, C. Pfannenberg, M. Reimold, C. D. Claussen, B. J. Pichler, and U. Klose, “Diffusion tensor imaging in a human PET/MR hybrid system,” Invest. Radiol. 45(5), 270274 (2010).
53. Z. H. Cho, Y. D. Son, H. K. Kim, K. N. Kim, S. H. Oh, J. Y. Han, I. K. Hong, and Y. B. Kim, “A fusion PET-MRI system with a high-resolution research tomograph-PET and ultra-high field 7.0 T-MRI for the molecular-genetic imaging of the brain,” Proteomics 8(6), 13021323 (2008).
54. H. P. Schlemmer, B. J. Pichler, R. Krieg, and W. D. Heiss, “An integrated MR/PET system: Prospective applications,” Abdom. Imaging 34(6), 668674 (2009).
55. S. Punwani, S. A. Taylor, A. Bainbridge, V. Prakash, S. Bandula, E. De Vita, O. E. Olsen, S. F. Hain, N. Stevens, S. Daw, A. Shankar, J. B. Bomanji, and P. D. Humphries, “Pediatric and adolescent lymphoma: Comparison of whole-body STIR half-Fourier RARE MR imaging with an enhanced PET/CT reference for initial staging,” Radiology 255(1), 182190 (2010).
56. V. Laurent, G. Trausch, O. Bruot, P. Olivier, J. Felblinger, and D. Regent, “Comparative study of two whole-body imaging techniques in the case of melanoma metastases: Advantages of multi-contrast MRI examination including a diffusion-weighted sequence in comparison with PET-CT,” Eur. J. Radiol. 75(3), 376383 (2010).
57. T. A. Heusner, S. Kuemmel, A. Koeninger, M. E. Hamami, S. Hahn, A. Quinsten, A. Bockisch, M. Forsting, T. Lauenstein, G. Antoch, and A. Stahl, “Diagnostic value of diffusion-weighted magnetic resonance imaging (DWI) compared to FDG PET/CT for whole-body breast cancer staging,” Eur. J. Nucl. Med. Mol. Imaging 37(6), 10771086 (2010).
58. W. Chen, W. Jian, H. T. Li, C. Li, Y. K. Zhang, B. Xie, D. Q. Zhou, Y. M. Dai, Y. Lin, M. Lu, X. Q. Huang, C. X. Xu, and L. Chen, “Whole-body diffusion-weighted imaging vs. FDG-PET for the detection of non-small-cell lung cancer. How do they measure up?,” Magn. Reson. Imaging 28(5), 613620 (2010).
59. D. Takenaka, Y. Ohno, K. Matsumoto, N. Aoyama, Y. Onishi, H. Koyama, M. Nogami, T. Yoshikawa, S. Matsumoto, and K. Sugimura, “Detection of bone metastases in non-small cell lung cancer patients: Comparison of whole-body diffusion-weighted imaging (DWI), whole-body MR imaging without and with DWI, whole-body FDG-PET/CT, and bone scintigraphy,” J. Magn. Reson. Imaging 30(2), 298308 (2009).
60. A. Stecco, G. Romano, M. Negru, D. Volpe, A. Saponaro, S. Costantino, G. Sacchetti, E. Inglese, O. Alabiso, and A. Carriero, “Whole-body diffusion-weighted magnetic resonance imaging in the staging of oncological patients: Comparison with positron emission tomography computed tomography (PET-CT) in a pilot study,” Radiol. Med. 114(1), 117 (2009).
61. G. P. Schmidt, A. Baur-Melnyk, A. Haug, S. Utzschneider, C. R. Becker, R. Tiling, M. F. Reiser, and K. A. Hermann, “Whole-body MRI at 1.5 T and 3 T compared with FDG-PET-CT for the detection of tumour recurrence in patients with colorectal cancer,” Eur. Radiol. 19(6), 13661378 (2009).
62. G. Antoch and A. Bockisch, “Combined PET/MRI: A new dimension in whole-body oncology imaging?,” Eur. J. Nucl. Med. Mol. Imaging 36(Suppl 1), 113120 (2009).
63. C. A. Yi, K. M. Shin, K. S. Lee, B.-T. Kim, H. Kim, O. J. Kwon, J. Y. Choi, and M. J. Chung, “Non-small cell lung cancer staging: Efficacy comparison of integrated PET/CT versus 3.0-T whole-body MR imaging,” Radiology 248(2), 632642 (2008).
64. G. P. Schmidt, A. Baur-Melnyk, A. Haug, V. Heinemann, I. Bauerfeind, M. F. Reiser, and S. O. Schoenberg, “Comprehensive imaging of tumor recurrence in breast cancer patients using whole-body MRI at 1.5 and 3 T compared to FDG-PET-CT,” Eur. J. Radiol. 65(1), 4758 (2008).
65. Y. Ohno, H. Koyama, Y. Onishi, D. Takenaka, M. Nogami, T. Yoshikawa, S. Matsumoto, Y. Kotani, and K. Sugimura, “Non-small cell lung cancer: Whole-body MR examination for M-stage assessment—Utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT,” Radiology 248(2), 643654 (2008).
66. G. P. Schmidt, H. Kramer, M. F. Reiser, and C. Glaser, “Whole-body magnetic resonance imaging and positron emission tomography-computed tomography in oncology,” Top Magn. Reson Imaging 18(3), 193202 (2007).
67. C. Pfannenberg, P. Aschoff, S. Schanz, S. M. Eschmann, C. Plathow, T. K. Eigentler, C. Garbe, K. Brechtel, R. Vonthein, R. Bares, C. D. Claussen, and H. P. Schlemmer, “Prospective comparison of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and whole-body magnetic resonance imaging in staging of advanced malignant melanoma,” Eur. J. Cancer 43(3), 557564 (2007).
68. G. Schmidt, A. Haug, S. Schoenberg, and M. Reiser, “Whole-body MRI and PET-CT in the management of cancer patients,” Eur. Radiol. 16(6), 12161225 (2006).
69. M. D. Seemann, “Whole-body PET/MRI: The future in oncological imaging,” Technol. Cancer Res. Treat. 4(5), 577582 (2005).
70. O. Ratib, J.-P. Willi, M. Wissmeyer, C. Steiner, M. Allaoua, V. Garibotto, O. Rager, H. Zaidi, M. Becker, J. P. Vallee, P. Loubeyre, and C. Becker, “Clinical application of whole body hybrid PET-MR scanner in oncology [abstract],” Eur. J. Nucl. Med. Mol. Imaging 37(Suppl 2), S220 (2010).
71. T. C. Kwee, T. Takahara, R. Ochiai, D. M. Koh, Y. Ohno, K. Nakanishi, T. Niwa, T. L. Chenevert, P. R. Luijten, and A. Alavi, “Complementary roles of whole-body diffusion-weighted MRI and 18F-FDG PET: The state of the art and potential applications,” J. Nucl. Med. 51(10), 15491558 (2010).
72. T. A. Heusner, S. Hahn, C. Jonkmanns, S. Kuemmel, F. Otterbach, M. E. Hamami, A. R. Stahl, A. Bockisch, M. Forsting, and G. Antoch, “Diagnostic accuracy of fused positron emission tomography/magnetic resonance mammography: Initial results,” Br. J. Radiol. 84(998), 126135 (2011).
73. G. Delso and S. Ziegler, “PET/MRI system design,” Eur. J. Nucl. Med. Mol. Imaging 36(Suppl 1), 8692 (2009).
74. D. Gagnon, M. Morich, D. Blakely, and K. Nieman, “Hybrid PET/MR Imaging Systems,” U. S. Patent Application Publication No. 2008/0312526 (2008).
75. H. Zaidi, N. Ojha, M. Morich, J. Griesmer, Z. Hu, P. Maniawski, O. Ratib, D. Izquierdo-Garcia, Z. A. Fayad, and L. Shao, “Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system,” Phys. Med. Biol. 56(10), 30913106 (2011).
76. C. Catana, T. Benner, A. van der Kouwe, L. Byars, M. Hamm, D. B. Chonde, C. J. Michel, G. El Fakhri, M. Schmand, and A. G. Sorensen, “MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner,” J. Nucl. Med. 52(1), 154161 (2011).
77. B. Lipinski, H. Herzog, E. Rota Kops, W. Oberschelp, and H. W. Muller-Gartner, “Expectation maximization reconstruction of positron emission tomography images using anatomical magnetic resonance information,” IEEE Trans. Med. Imaging 16(2), 129136 (1997).
78. K. Baete, J. Nuyts, W. Van Paesschen, P. Suetens, and P. Dupont, “Anatomical-based FDG-PET reconstruction for the detection of hypo-metabolic regions in epilepsy,” IEEE Trans. Med. Imaging 23(4), 510519 (2004).
79. H. Zaidi and A. Alavi, “Current trends in PET and combined (PET/CT and PET/MR) systems design,” PET Clin. 2(2), 109123 (2007).
80. M. Rafecas, B. Mosler, M. Dietz, M. Pogl, A. Stamatakis, D. P. McElroy, and S. I. Ziegler, “Use of a Monte Carlo-based probability matrix for 3-D iterative reconstruction of MADPET-II data,” IEEE Trans. Nucl. Sci. 51(5), 25972605 (2004).
81. S. Moehrs, M. Defrise, N. Belcari, A. Del Guerra, A. Bartoli, S. Fabbri, and G. Zanetti, “Multi-ray-based system matrix generation for 3D PET reconstruction,” Phys. Med. Biol. 53(23), 69256945 (2008).
82. K. Yang, C. L. Melcher, P. D. Rack, and L. A. Eriksson, “Effects of calcium codoping on charge traps in LSO:Ce crystals,” IEEE Trans. Nucl. Sci. 56(5), 29602965 (2009).
83. J. S. Karp, S. Surti, M. E. Daube-Witherspoon, and G. Muehllehner, “Benefit of time-of-flight in PET: Experimental and clinical results,” J. Nucl. Med. 49(3), 462470 (2008).
84. M. Conti, “State of the art and challenges of time-of-flight PET,” Phys. Med. 25(15), 111 (2009).
85. M. Conti, “Focus on time-of-flight PET: The benefits of improved time resolution,” Eur. J. Nucl. Med. Mol. Imaging 38(6), 11471157 (2011).
86. C. Lois, B. W. Jakoby, M. J. Long, K. F. Hubner, D. W. Barker, M. E. Casey, M. Conti, V. Y. Panin, D. J. Kadrmas, and D. W. Townsend, “An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging,” J. Nucl. Med. 51(2), 237245 (2010).
87. G. El Fakhri, S. Surti, C. M. Trott, J. Scheuermann, and J. S. Karp, “Improvement in lesion detection with whole-body oncologic time-of-flight PET,” J. Nucl. Med. 52(3), 347353 (2011).
88. W. W. Moses, “Time of flight in PET revisited,” IEEE Trans. Nucl. Sci. 50(5), 13251330 (2003).
89. Z. H. Cho, Y. D. Son, H. K. Kim, K. N. Kim, S. H. Oh, J. Y. Han, I. K. Hong, and Y. B. Kim, “A hybrid PET-MRI: An integrated molecular-genetic imaging system with HRRT-PET and 7.0-T MRI,” Int. J. Imaging Syst. Technol. 17(4), 252265 (2007).
90. U. Klose, “In vivo proton spectroscopy in presence of eddy currents,” Magn. Reson. Med. 14(1), 2630 (1990).
91. C. R. Camacho, D. B. Plewes, and R. M. Henkelman, “Nonsusceptibility artifacts due to metallic objects in MR imaging,” J. Magn. Reson. Imaging 5(1), 7588 (1995).
92. S. Furst, G. Delso, A. Martinez-Moller, B. Jakoby, F. Schoenahl, C. Ganter, S. Nekolla, S. Ziegler, E. Rummeny, and M. Schwaiger, “Initial performance evaluation of the Biograph mMR,” J. Nucl. Med. 52, 320 (2011).
93. B. Pichler, E. Lorenz, R. Mirzoyan, W. Pimpl, F. Roder, and M. Schwaiger, “Performance tests of a LSO-APD PET module in a 9.4 Tesla magnet,” IEEE Nuclear Science Symposium and Medical Imaging Conference Record, pp. 12371239 (1997).
94. P. K. Marsden, D. Strul, S. F. Keevil, S. C. Williams, and D. Cash, “Simultaneous PET and NMR,” Br. J. Radiol. 75 Spec No, S53S59 (2002).
95. S. R. Cherry, “Multimodality in vivo imaging systems: Twice the power or double the trouble?,” Annu. Rev. Biomed. Eng. 8, 3562 (2006).
96. S. R. Cherry, A. Y. Louie, and R. E. Jacobs, “The integration of positron emission tomography with magnetic resonance imaging,” Proc. IEEE 96(3), 416438 (2008).
97. D. Schlyer, P. Vaska, D. Tomasi, C. Woody, W. Rooney, S. Maramraju, S. Southekal, J.-F. Pratte, S. Junnarkar, M. Purschke, S. Krishnamoorthy, A. Kriplani, and S. Stoll, “A simultaneous PET/MRI scanner based on the RatCAP,” IEEE Nuclear Science Symposium Conference Record, pp. 32563259 (2007).
98. J. Kang, Y. Choi, K. J. Hong, J. H. Jung, W. Hu, Y. S. Huh, H. Lim, and B.-T. Kim, “A feasibility study of photosensor charge signal transmission to preamplifier using long cable for development of hybrid PET-MRI,” Med. Phys. 37(11), 56555664 (2010).
99. Y. Wu, C. Catana, R. Farrell, P. A. Dokhale, K. S. Shah, Q. Jinyi, and S. R. Cherry, “PET performance evaluation of an MR-compatible PET insert,” IEEE Trans. Nucl. Sci. 56(3), 574580 (2009).
100. H. F. Wehrl, M. S. Judenhofer, A. Thielscher, P. Martirosian, F. Schick, and B. J. Pichler, “Assessment of MR compatibility of a PET insert developed for simultaneous multiparametric PET/MR imaging on an animal system operating at 7 T,” Magn. Reson. Med. 65(1), 269279 (2010).
101. H. Wehrl, M. Judenhofer, S. Wiehr, and B. Pichler, “Pre-clinical PET/MR: Technological advances and new perspectives in biomedical research,” Eur. J. Nucl. Med. Mol. Imaging 36(Suppl 1), 5668 (2009).
102. R. Fontaine, F. Belanger, N. Viscogliosi, H. Semmaoui, M. A. Tetrault, J. B. Michaud, C. Pepin, J. Cadorette, and R. Lecomte, “The hardware and signal processing architecture of LabPETTM, a small animal APD-based digital PET scanner,” IEEE Trans. Nucl. Sci. 56(1), 39 (2009).
103. A. N. Otte, J. Barral, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, R. Mirzoyan, E. Popova, and M. Teshima, “A test of silicon photomultipliers as readout for PET,” Nucl. Instrum. Methods Phys. Res. A 545(3), 705715 (2005).
104. P. Buzhan, B. Dolgoshein, A. Ilyin, V. Kantserov, V. Kaplin, A. Karakash, A. Pleshko, E. Popova, S. Smirnov, Y. Volkov, L. Filatov, S. Klemin, and F. Kayumov, “An advanced study of silicon photomultiplier,” ICFA Instrum. Bull. 23, 2842 (2001).
105. D. J. Herbert, V. Saveliev, N. Belcari, N. D’Ascenzo, A. Del Guerra, and A. Golovin, “First results of scintillator readout with silicon photomultiplier,” IEEE Trans. Nucl. Sci. 53(1), 389394 (2006).
106. C. Piemonte, R. Battiston, M. Boscardin, G. Collazuol, F. Corsi, G. F. Dalla Betta, A. Del Guerra, N. Dinu, G. Levi, G. Llosa, S. Marcatili, C. Marzocca, A. Pozza, and N. Zorzi, “New results on the characterization of ITC-irst silicon photomultipliers,” IEEE Nuclear Science Symposium Conference Record, pp. 15661569 (2006).
107. G. Llosa, N. Belcari, M. G. Bisogni, G. Collazuol, A. Del Guerra, S. Marcatili, S. Moehrs, and C. Piemonte, “Silicon photomultipliers and SiPM matrices as photodetectors in nuclear medicine,” IEEE Nuclear Science Symposium Conference Record, pp. 32203223 (2007).
108. R. Hawkes, A. Lucas, J. Stevick, G. Llosa, S. Marcatili, C. Piemonte, A. Del Guerra, and T. A. Carpenter, “Silicon photomultiplier performance tests in magnetic resonance pulsed fields,” IEEE Nuclear Science Symposium Conference Record, pp. 34003403 (2007).
109. C. Piemonte, B. Roberto, B. Maurizio, B. Gian-Franco Dalla, G. Alberto Del, D. Nicoleta, P. Alberto, and Z. Nicola, “Characterization of the first prototypes of silicon photomultiplier fabricated at ITC-irst,” IEEE Trans. Nucl. Sci. 54(1), 236244 (2007).
110. G. Llosa, R. Battiston, N. Belcari, M. Boscardin, G. Collazuol, F. Corsi, G.-F. Dalla Betta, A. Del Guerra, N. Dinu, G. Levi, S. Marcatili, S. Moehrs, C. Marzocca, C. Piemonte, and A. Pozza, “Novel silicon photomultipliers for PET applications,” IEEE Trans. Nucl. Sci. 55(3), 877881 (2008).
111. N. Dinu, P. Barrillon, C. Bazin, N. Belcari, M. G. Bisogni, S. Bondil-Blin, M. Boscardin, V. Chaumat, G. Collazuol, C. De La Taille, A. Del Guerra, G. Llosá, S. Marcatili, M. Melchiorri, C. Piemonte, V. Puill, A. Tarolli, J. F. Vagnucci, and N. Zorzi, “Characterization of a prototype matrix of silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res. A 610(1), 101104 (2009).
112. G. Collazuol, G. Ambrosi, M. Boscardin, F. Corsi, G. F. Dalla Betta, A. Del Guerra, M. Galimberti, D. Giulietti, L. A. Gizzi, L. Labate, G. Llosa, S. Marcatili, C. Piemonte, A. Pozza, and N. Zorzi, “Single timing resolution and detection efficiency of the ITC-irst silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res. A 581, 461464 (2007).
113. P. Barrillon, S. Blin, M. Bouchel, T. Caceres, C. de La Taille, G. Martin, P. Puzo, and N. Seguin-Moreau, “MAROC: Multi-anode readout chip for MaPMTs,” IEEE Nuclear Science Symposium Conference Record, pp. 809814 (2006).
114. G. Llosá, N. Belcari, M. G. Bisogni, G. Collazuol, S. Marcatili, M. Boscardin, M. Melchiorri, A. Tarolli, C. Piemonte, N. Zorzi, P. Barrillon, S. Bondil-Blin, V. Chaumat, C. de La Taille, N. Dinu, V. Puill, J. F. Vagnucci, and A. Del Guerra, “First results in the application of silicon photomultiplier matrices to small animal PET,” Nucl. Instrum. Methods Phys. Res. A 610(1), 196199 (2009).
115. M. Bouchel, S. Callier, F. Dulucq, J. Fleury, J.-J. Jaeger, C. de La Taille, G. Martin-Chassard, and L. Raux, “SPIROC (SiPM integrated read-out chip): Dedicated very front-end electronics for an ILC prototype hadronic calorimeter with SiPM read-out,” J. Instrum. 6(01), C01098 (2011).
116. P. Fischer, I. Peric, M. Ritzert, and M. Koniczek, “Fast self triggered multi channel readout ASIC for time- and energy measurement,” IEEE Trans. Nucl. Sci. 56(3), 11531158 (2009).
117. F. Corsi, A. Dragone, C. Marzocca, A. Del Guerra, P. Delizia, N. Dinu, C. Piemonte, M. Boscardin, and G. F. Dalla Betta, “Modelling a silicon photomultiplier (SiPM) as a signal source for optimum front-end design,” Nucl. Instrum. Methods Phys. Res. A 572(1), 416418 (2007).
118. F. Corsi, M. Foresta, C. Marzocca, G. Matarrese, and A. Del Guerra, “BASIC: An 8-channel front-end ASIC for silicon photomultiplier detectors,” IEEE Nuclear Science Symposium Conference Record (NSS/MIC), pp. 10821087 (2009).
119. F. Corsi, A. G. Argentieri, M. Foresta, C. Marzocca, G. Matarrese, and A. Del Guerra, “Front-end electronics for silicon photomultipliers coupled to fast scintillators,” IEEE Nuclear Science Symposium Conference Record (NSS/MIC), pp. 13321339 (2010).
120. S. Marcatili, N. Belcari, M. G. Bisogni, G. Collazuol, G. Ambrosi, F. Corsi, M. Foresta, C. Marzocca, G. Matarrese, G. Sportelli, P. Guerra, A. Santos, and A. Del Guerra, “Development and characterization of a modular acquisition system for a 4D PET block detector,” Nucl. Instr. Meth. A (in press).
121. G. Collazuol, M. G. Bisogni, S. Marcatili, C. Piemonte, and A. Del Guerra, “Studies of silicon photomultipliers at cryogenic temperatures,” Nucl. Instrum. Methods Phys. Res. A 628(1), 389392 (2011).
122. T. Solf, V. Schulz, B. Weissler, A. Thon, P. Fischer, M. Ritzert, V. Mlotok, C. Piemonte, and N. Zorzi, “Solid-state detector stack for ToF-PET/MR,” IEEE Nuclear Science Symposium Conference Record (NSS/MIC), pp. 27982799 (2009).
125. A. Drzezga, M. Souvatzoglou, A. Beer, S. Ziegler, S. Furst, S. Nekolla, and M. Schwaiger, “Integrated simultaneous whole-body MR/PET: First comparison between MR/PET and PET/CT in patients,” J. Nucl. Med. 52, 262 (2011).
126. S. Basu, H. Zaidi, M. Houseni, J. Udupa, P. Acton, D. Torigian, and A. Alavi, “Novel quantitative techniques for assessing regional and global function and structure based on modern imaging modalities: Implications for normal variation, aging and diseased states,” Semin. Nucl. Med. 37(3), 223239 (2007).
127. H. Zaidi, T. Ruest, F. Schoenahl, and M.-L. Montandon, “Comparative evaluation of statistical brain MR image segmentation algorithms and their impact on partial volume effect correction in PET,” Neuroimage 32(4), 15911607 (2006).
128. H. Zaidi and B. H. Hasegawa, “Determination of the attenuation map in emission tomography,” J. Nucl. Med. 44(2), 291315 (2003).
129. P. E. Kinahan, B. H. Hasegawa, and T. Beyer, “X-ray-based attenuation correction for positron emission tomography/computed tomography scanners,” Semin. Nucl. Med. 33(3), 166179 (2003).
130. H. Zaidi, “Is MRI-guided attenuation correction a viable option for dual-modality PET/MR imaging?,” Radiology 244(3), 639642 (2007).
131. M. Hofmann, B. Pichler, B. Schölkopf, and T. Beyer, “Towards quantitative PET/MRI: A review of MR-based attenuation correction techniques,” Eur. J. Nucl. Med. Mol. Imaging 36(Suppl 1), 93104 (2009).
132. H. Zaidi, “Is radionuclide transmission scanning obsolete for dual-modality PET/CT systems?,” Eur. J. Nucl. Med. Mol. Imaging 34(6), 815818 (2007).
133. H. Zaidi, M.-L. Montandon, and A. Alavi, “Advances in attenuation correction techniques in PET,” PET Clin. 2(2), 191217 (2007).
134. H. Zaidi and K. F. Koral, “Scatter modelling and compensation in emission tomography,” Eur. J. Nucl. Med. Mol. Imaging 31(5), 761782 (2004).
135. C. C. Watson, “New, faster, image-based scatter correction for 3D PET,” IEEE Trans. Nucl. Sci. 47, 15871594 (2000).
136. C. C. Watson, M. E. Casey, C. Michel, and B. Bendriem, “Advances in scatter correction for 3D PET/CT,” Nuclear Science Symposium Conference Record, Oct. 19–22, Rome, Italy, pp. 30083012 (2004).
137. S. D. Wollenweber, “Parameterization of a model-based 3-D PET scatter correction,” IEEE Trans. Nucl. Sci. 49(3), 722727 (2002).
138. R. Accorsi, L.-E. Adam, M. E. Werner, and J. S. Karp, “Optimization of a fully 3D single scatter simulation algorithm for 3D PET,” Phys. Med. Biol. 49(12), 25772598 (2004).
139. C. S. Levin, M. Dahlbom, and E. J. Hoffman, “A Monte Carlo correction for the effect of Compton scattering in 3-D PET brain imaging,” IEEE Trans. Nucl. Sci. 42, 11811188 (1995).
140. H. Zaidi, “Comparative evaluation of scatter correction techniques in 3D positron emission tomography,” Eur. J. Nucl. Med. 27(12), 18131826 (2000).
141. C. H. Holdsworth, C. S. Levin, M. Janecek, M. Dahlbom, and E. J. Hoffman, “Performance analysis of an improved 3-D PET Monte Carlo simulation and scatter correction,” IEEE Trans. Nucl. Sci. 49(1), 8389 (2002).
142. J. Fripp, S. Crozier, S. K. Warfield, and S. Ourselin, “Automatic segmentation of the bone and extraction of the bone–cartilage interface from magnetic resonance images of the knee,” Phys. Med. Biol. 52(6), 16171631 (2007).
143. J. Fripp, S. Crozier, S. K. Warfield, and S. Ourselin, “Automatic segmentation and quantitative analysis of the articular cartilages from magnetic resonance images of the knee,” IEEE Trans. Med. Imaging 29(1), 5564 (2010).
144. A. Martinez-Moller, M. Souvatzoglou, G. Delso, R. A. Bundschuh, C. Chefd’hotel, S. I. Ziegler, N. Navab, M. Schwaiger, and S. G. Nekolla, “Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: Evaluation with PET/CT data,” J. Nucl. Med. 50(4), 520526 (2009).
145. Z. Hu, N. Ojha, S. Renisch, V. Schulz, I. Torres, D. Pal, G. Muswick, J. Penatzer, T. Guo, P. Boernert, C.-H. Tung, J. Kaste, L. Shao, M. Morich, T. Havens, P. Maniawski, W. Schaefer, R. Guenther, and G. Krombach, “MR-based attenuation correction for a whole-body sequential PET/MR system,” IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 35083512 (2009).
146. V. Schulz, I. Torres-Espallardo, S. Renisch, Z. Hu, N. Ojha, P. Börnert, M. Perkuhn, T. Niendorf, W. Schäfer, H. Brockmann, T. Krohn, A. Buhl, R. Günther, F. Mottaghy, and G. Krombach, “Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data,” Eur. J. Nucl. Med. Mol. Imaging 38(1), 138152 (2011).
147. J. Steinberg, G. Jia, S. Sammet, J. Zhang, N. Hall, and M. V. Knopp, “Three-region MRI-based whole-body attenuation correction for automated PET reconstruction,” Nucl. Med. Biol. 37(2), 227235 (2010).
148. H. Zaidi, M.-L. Montandon, and D. O. Slosman, “Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography,” Med. Phys. 30(5), 937948 (2003).
149. H. Zaidi, M.-L. Montandon, and S. Meikle, “Strategies for attenuation compensation in neurological PET studies,” Neuroimage 34(2), 518541 (2007).
150. E. Rota Kops and H. Herzog, “Alternative methods for attenuation correction for PET images in MR-PET scanners,” Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 43274330 (2007).
151. B. Dogdas, D. W. Shattuck, and R. M. Leahy, “Segmentation of skull and scalp in 3-D human MRI using mathematical morphology,” Hum. Brain Mapp. 26(4), 273285 (2005).
152. V. Keereman, Y. Fierens, T. Broux, Y. De Deene, M. Lonneux, and S. Vandenberghe, “MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences,” J. Nucl. Med. 51(5), 812818 (2010).
153. C. Catana, A. van der Kouwe, T. Benner, C. J. Michel, M. Hamm, M. Fenchel, B. Fischl, B. Rosen, M. Schmand, and A. G. Sorensen, “Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype,” J. Nucl. Med. 51(9), 14311438 (2010).
154. Z. Hu, S. Renisch, B. Schweizer, T. Blaffert, N. Ojha, T. Guo, J. Tang, C.-H. Tung, J. Kaste, V. Schulz, I. Torres, and L. Shao, “MR-based attenuation correction for a whole-body PET/MR system,” IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 21192122 (2010).
155. P. J. Robinson and L. Kreel, “Pulmonary tissue attenuation with computed tomography: Comparison of inspiration and expiration scans,” J. Comput. Assist. Tomogr. 3(6), 740748 (1979).
156. M.-L. Montandon and H. Zaidi, “Atlas-guided non-uniform attenuation correction in cerebral 3D PET imaging,” Neuroimage 25(1), 278286 (2005).
157. E. Schreibmann, J. A. Nye, D. M. Schuster, D. R. Martin, J. Votaw, and T. Fox, “MR-based attenuation correction for hybrid PET-MR brain imaging systems using deformable image registration,” Med. Phys. 37(5), 21012109 (2010).
158. M. Hofmann, F. Steinke, V. Scheel, G. Charpiat, J. Farquhar, P. Aschoff, M. Brady, B. Scholkopf, and B. J. Pichler, “MRI-based attenuation correction for PET/MRI: A novel approach combining pattern recognition and Atlas registration,” J. Nucl. Med. 49(11), 18751883 (2008).
159. S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P. W. Pluim, “Elastix: A toolbox for intensity-based medical image registration,” IEEE Trans. Med. Imaging 29(1), 196205 (2010).
160. B. Zhang, D. Pal, Z. Hu, N. Ojha, G. Muswick, C.-H. Tung, and J. Kaste, “Attenuation correction for MR table and coils for a sequential PET/MR system,” IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 33033306 (2009).
161. G. Delso, A. Martinez-Moller, R. A. Bundschuh, R. Ladebeck, Y. Candidus, D. Faul, and S. I. Ziegler, “Evaluation of the attenuation properties of MR equipment for its use in a whole-body PET/MR scanner,” Phys. Med. Biol. 55(15), 43614374 (2010).
162. F. Mantlik, M. Hofmann, M. K. Werner, A. Sauter, J. Kupferschlager, B. Scholkopf, B. J. Pichler, and T. Beyer, “The effect of patient positioning aids on PET quantification in PET/MR imaging,” Eur. J. Nucl. Med. Mol. Imaging 38(5), 920929 (2011).
163. G. Delso, A. Martinez-Moller, R. A. Bundschuh, S. G. Nekolla, and S. I. Ziegler, “The effect of limited MR field of view in MR/PET attenuation correction,” Med. Phys. 37(6), 28042812 (2010).
164. J. Nuyts, C. Michel, M. Fenchel, G. Bal, and C. C. Watson, “Completion of a truncated attenuation image from the attenuated PET emission data,” IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 21232127 (2010).
165. T. G. Turkington and J. M. Wilson, “Attenuation artifacts and time-of-flight PET,” IEEE Nuclear Science Symposium Conference Record (NSS/MIC), pp. 29972999 (2009).
166. A. Salomon, A. Goedicke, B. Schweizer, T. Aach, and V. Schulz, “Simultaneous reconstruction of activity and attenuation for PET/MR,” IEEE Trans. Med. Imaging 30(3), 804813 (2011).
167. A. J. Reader and H. Zaidi, “Advances in PET image reconstruction,” PET Clin. 2(2), 173190 (2007).
168. P. J. Green, “Bayesian reconstructions from emission tomography data using a modified EM algorithm,” IEEE Trans. Med. Imaging 9(1), 8493 (1990).
169. C. Comtat, P. E. Kinahan, J. A. Fessler, T. Beyer, D. W. Townsend, M. Defrise, and C. Michel, “Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels,” Phys. Med. Biol. 47(1), 120 (2002).
170. G. Gindi, M. Lee, A. Rangarajan, and I. G. Zubal, “Bayesian reconstruction of functional images using anatomical information as priors,” IEEE Trans. Med. Imaging 12(4), 670680 (1993).
171. J. Tang and A. Rahmim, “Bayesian PET image reconstruction incorporating anato-functional joint entropy,” Phys. Med. Biol. 54(23), 70637075 (2009).
172. M. Soret, S. L. Bacharach, and I. Buvat, “Partial-volume effect in PET tumor imaging,” J. Nucl. Med. 48(6), 932945 (2007).
173. R. M. Kessler, J. R. Ellis, and M. Eden, “Analysis of emission tomographic scan data: Limitations imposed by resolution and background,” J. Comput. Assist. Tomogr. 8(3), 514522 (1984).
174. L. Geworski, B. O. Knoop, M. L. de Cabrejas, W. H. Knapp, and D. L. Munz, “Recovery correction for quantitation in emission tomography: A feasibility study,” Eur. J. Nucl. Med. 27(2), 161169 (2000).
175. M. Quarantelli, K. Berkouk, A. Prinster, B. Landeau, C. Svarer, L. Balkay, B. Alfano, A. Brunetti, J.-C. Baron, and M. Salvatore, “Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction,” J. Nucl. Med. 45(2), 192201 (2004).
176. A. J. Da Silva, H. R. Tang, K. H. Wong, M. C. Wu, M. W. Dae, and B. H. Hasegawa, “Absolute quantification of regional myocardial uptake of 99mTc-sestamibi with SPECT: Experimental validation in a porcine model,” J. Nucl. Med. 42, 772779 (2001).
177. H. Matsuda, T. Ohnishi, T. Asada, Z. J. Li, H. Kanetaka, E. Imabayashi, F. Tanaka, and S. Nakano, “Correction for partial-volume effects on brain perfusion SPECT in healthy men,” J. Nucl. Med. 44(8), 12431252 (2003).
178. M. Shidahara, C. Tsoumpas, A. Hammers, N. Boussion, D. Visvikis, T. Suhara, I. Kanno, and F. E. Turkheimer, “Functional and structural synergy for resolution recovery and partial volume correction in brain PET,” Neuroimage 44(2), 340348 (2009).
179. K. Baete, J. Nuyts, K. V. Laere, W. Van Paesschen, S. Ceyssens, L. De Ceuninck, O. Gheysens, A. Kelles, J. Van den Eynden, P. Suetens, and P. Dupont, “Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-PET,” Neuroimage 23(1), 305317 (2004).
180. A. Rahmim, O. Rousset, and H. Zaidi, “Strategies for motion tracking and correction in PET,” PET Clin. 2(2), 251266 (2007).
181. A. J. van der Kouwe, T. Benner, and A. M. Dale, “Real-time rigid body motion correction and shimming using cloverleaf navigators,” Magn. Reson. Med. 56(5), 10191032 (2006).
182. C. Tsoumpas, J. E. Mackewn, P. Halsted, A. P. King, C. Buerger, J. J. Totman, T. Schaeffter, and P. K. Marsden, “Simultaneous PET-MR acquisition and MR-derived motion fields for correction of non-rigid motion in PET,” Ann. Nucl. Med. 24(10), 745750 (2010).
183. P. Kellman, C. Chefd’hotel, C. H. Lorenz, C. Mancini, A. E. Arai, and E. R. McVeigh, “Fully automatic, retrospective enhancement of real-time acquired cardiac cine MR images using image-based navigators and respiratory motion-corrected averaging,” Magn. Reson. Med. 59(4), 771778 (2008).
184. A. H. Davarpanah, Y. P. Chen, A. Kino, C. T. Farrelly, A. N. Keeling, J. J. Sheehan, A. B. Ragin, P. J. Weale, S. Zuehlsdorff, and J. C. Carr, “Accelerated two- and three-dimensional cine MR imaging of the heart by using a 32-channel coil,” Radiology 254(1), 98108 (2010).
185. J. Czernin, M. Allen-Auerbach, and H. R. Schelbert, “Improvements in cancer staging with PET/CT: Literature-based evidence as of September 2006,” J. Nucl. Med. 48 (Suppl 1), 78S88S (2007).
186. M. F. Di Carli, S. Dorbala, J. Meserve, G. El Fakhri, A. Sitek, and S. C. Moore, “Clinical myocardial perfusion PET/CT,” J. Nucl. Med. 48(5), 783793 (2007).
187. P. A. Kaufmann and M. F. Di Carli, “Hybrid SPECT/CT and PET/CT imaging: The next step in noninvasive cardiac imaging,” Semin. Nucl. Med. 39(5), 341347 (2009).
188. D. C. Costa, L. S. Pilowsky, and P. J. Ell, “Nuclear medicine in neurology and psychiatry,” Lancet 354(9184), 11071111 (1999).
189. K. Tatsch and P. J. Ell, “PET and SPECT in common neuropsychiatric disease,” Clin. Med. 6(3), 259262 (2006).
190. H.-J. Wester, “Nuclear imaging probes: From bench to bedside,” Clin. Cancer Res. 13(12), 34703481 (2007).
191. C. A. Pelizzari, G. T. Chen, D. R. Spelbring, R. R. Weichselbaum, and C. T. Chen, “Accurate three-dimensional registration of CT, PET, and/or MR images of the brain,” J. Comput. Assist. Tomogr. 13(1), 2026 (1989).
192. R. P. Woods, J. C. Mazziotta, and S. R. Cherry, “MRI-PET registration with automated algorithm,” J. Comput. Assist. Tomogr. 17(4), 536546 (1993).
193. S. Gilman, “Imaging the brain. First of two parts,” N. Engl. J. Med. 338(12), 812820 (1998).
194. K. Goffin, S. Dedeurwaerdere, K. Van Laere, and W. Van Paesschen, “Neuronuclear assessment of patients with epilepsy,” Semin. Nucl. Med. 38(4), 227239 (2008).
195. W. Chen and D. H. S. Silverman, “Advances in evaluation of primary brain tumors,” Semin. Nucl. Med. 38(4), 240250 (2008).
196. H. Vees, S. Senthamizhchelvan, R. Miralbell, D. Weber, O. Ratib, and H. Zaidi, “Assessment of various strategies for 18F-FET PET-guided delineation of target volumes in high-grade glioma patients,” Eur. J. Nucl. Med. Mol. Imaging 36(2), 182193 (2009).
197. S. Bisdas, T. Nagele, H. P. Schlemmer, A. Boss, C. D. Claussen, B. Pichler, and U. Ernemann, “Switching on the lights for real-time multimodality tumor neuroimaging: The integrated positron–emission tomography/MR imaging system,” AJNR Am. J. Neuroradiol. 31(4), 610614 (2010).
198. A. Boss, S. Bisdas, A. Kolb, M. Hofmann, U. Ernemann, C. D. Claussen, C. Pfannenberg, B. J. Pichler, M. Reimold, and L. Stegger, “Hybrid PET/MRI of intracranial masses: Initial experiences and comparison to PET/CT,” J. Nucl. Med. 51(8), 11981205 (2010).
199. D. Thorwarth, G. Henke, A. C. Muller, M. Reimold, T. Beyer, A. Boss, A. Kolb, B. Pichler, and C. Pfannenberg, “Simultaneous (68)Ga-DOTATOC-PET/MRI for IMRT treatment planning for meningioma: First experience,” Int. J. Radiat. Oncol., Biol., Phys. 81(1), 277283 (2011).
200. A. Boss, L. Stegger, S. Bisdas, A. Kolb, N. Schwenzer, M. Pfister, C. D. Claussen, B. J. Pichler, and C. Pfannenberg, “Feasibility of simultaneous PET/MR imaging in the head and upper neck area,” Eur. Radiol. 21(7), 14391446 (2011).
201. Z. H. Cho, Y. D. Son, H. K. Kim, N. B. Kim, E. J. Choi, S. Y. Lee, J. G. Chi, C. W. Park, Y. B. Kim, and S. Ogawa, “Observation of glucose metabolism in the thalamic nuclei by fusion PET/MRI,” J. Nucl. Med. 52(3), 401414 (2011).
202. D. Patel, A. Kell, B. Simard, B. Xiang, H. Y. Lin, and G. Tian, “The cell labeling efficacy, cytotoxicity and relaxivity of copper-activated MRI/PET imaging contrast agents,” Biomaterials 32(4), 11671176 (2011).
203. D. Wagenaar, O. Nalcioglu, L. Muftuler, D. Meier, K. Parnham, M. Szawlowski, M. Kapusta, S. Azman, J. Gjaerum, G. Maehlum, Y. Wang, B. Tsui, and B. Patt, “A multi-ring small animal CZT system for simultaneous SPECT/MRI imaging,” J. Nucl. Med. 48, 89P (2007).
204. M. J. Hamamura, S. Ha, W. W. Roeck, L. T. Muftuler, D. J. Wagenaar, D. Meier, B. E. Patt, and O. Nalcioglu, “Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition,” Phys. Med. Biol. 55(6), 15631575 (2010).
205. K. S. Lee, W. W. Roeck, G. T. Gullberg, and O. Nalcioglu, “MR-based keyhole SPECT for small animal imaging,” Phys. Med. Biol. 56(3), 685702 (2011).
207. G. Llosa, J. Barrio, C. Lacasta, M. G. Bisogni, A. Del Guerra, S. Marcatili, P. Barrillon, S. Bondil-Blin, C. de la Taille, and C. Piemonte, “Characterization of a PET detector head based on continuous LYSO crystals and monolithic, 64-pixel silicon photomultiplier matrices,” Phys. Med. Biol. 55(23), 72997315 (2010).

Data & Media loading...


Article metrics loading...



Early diagnosis and therapy increasingly operate at the cellular, molecular, or even at the genetic level. As diagnostic techniques transition from the systems to the molecular level, the role of multimodality molecular imaging becomes increasingly important. Positron emission tomography(PET) and magnetic resonance imaging(MRI) are powerful techniques for in vivo molecular imaging. The inability of PET to provide anatomical information is a major limitation of standalone PETsystems. Combining PET and CT proved to be clinically relevant and successfully reduced this limitation by providing the anatomical information required for localization of metabolic abnormalities. However, this technology still lacks the excellent soft-tissue contrast provided by MRI. Standalone MRIsystems reveal structure and function but cannot provide insight into the physiology and/or the pathology at the molecular level. The combination of PET and MRI, enabling truly simultaneous acquisition, bridges the gap between molecular and systems diagnosis. MRI and PET offer richly complementary functionality and sensitivity; fusion into a combined system offering simultaneous acquisition will capitalize the strengths of each, providing a hybrid technology that is greatly superior to the sum of its parts. A combined PET/MRI system provides both the anatomical and structural description of MRI simultaneously with the quantitative capabilities of PET. In addition, such a system would allow exploiting the power of MR spectroscopy (MRS) to measure the regional biochemical content and to assess the metabolic status or the presence of neoplasia and other diseases in specific tissue areas. This paper briefly summarizes state-of-the-art developments and latest advances in dedicated hybrid PET/MRI instrumentation. Future prospects and potential clinical applications of this technology will also be discussed.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: An outlook on future design of hybrid PET/MRI systems