1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
An outlook on future design of hybrid PET/MRI systems
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/38/10/10.1118/1.3633909
1.
1. J. F. Valliant, “A bridge not too far: Linking disciplines through molecular imaging probes,” J. Nucl. Med. 51(8), 12581268 (2010).
http://dx.doi.org/10.2967/jnumed.109.068312
2.
2. R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature (London) 452(7187), 580589 (2008).
http://dx.doi.org/10.1038/nature06917
3.
3. T. Jones, “Molecular imaging with PET—The future challenges,” Br. J. Radiol. 75(90009), S6S15 (2002).
4.
4. C. C. Meltzer, P. E. Kinahan, P. J. Greer, T. E. Nichols, C. Comtat, M. N. Cantwell, M. P. Lin, and J. C. Price, “Comparative evaluation of MR-based partial-volume correction schemes for PET,” J. Nucl. Med. 40(12), 20532065 (1999).
5.
5. O. Rousset, A. Rahmim, A. Alavi, and H. Zaidi, “Partial volume correction strategies in PET,” PET Clin. 2(2), 235249 (2007).
http://dx.doi.org/10.1016/j.cpet.2007.10.005
6.
6. D. L. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, “Medical image registration,” Phys. Med. Biol. 46(3), R1R45 (2001).
http://dx.doi.org/10.1088/0031-9155/46/3/201
7.
7. T. Beyer, D. Townsend, T. Brun, P. Kinahan, M. Charron, R. Roddy, J. Jerin, J. Young, L. Byars, and R. Nutt, “A combined PET/CT scanner for clinical oncology,” J. Nucl. Med. 41(8), 13691290 (2000).
8.
8. A. L. Goertzen, A. K. Meadors, R. W. Silverman, and S. R. Cherry, “Simultaneous molecular and anatomical imaging of the mouse in vivo,” Phys. Med. Biol. 21, 43154328 (2002).
http://dx.doi.org/10.1088/0031-9155/47/24/301
9.
9. H. Zaidi, O. Mawlawi, and C. G. Orton, “Point/counterpoint. Simultaneous PET/MR will replace PET/CT as the molecular multimodality imaging platform of choice,” Med. Phys. 34(5), 15251528 (2007).
http://dx.doi.org/10.1118/1.2732493
10.
10. D. W. Townsend, “Multimodality imaging of structure and function,” Phys. Med. Biol. 53(4), R1R39 (2008).
http://dx.doi.org/10.1088/0031-9155/53/4/R01
11.
11. B. J. Pichler, A. Kolb, T. Nagele, and H. P. Schlemmer, “PET/MRI: Paving the way for the next generation of clinical multimodality imaging applications,” J. Nucl. Med. 51(3), 333336 (2010).
http://dx.doi.org/10.2967/jnumed.109.061853
12.
12. J. M. Park and S. S. Gambhir, “Multimodality radionuclide, fluorescence, and bioluminescence small-animal imaging,” Proc. IEEE 93(4), 771783 (2005).
http://dx.doi.org/10.1109/JPROC.2005.844263
13.
13. B. Hasegawa and H. Zaidi, “Dual-modality imaging: More than the sum of its components,” Quantitative Analysis in Nuclear Medicine Imaging, edited by H. Zaidi (Springer, New York, 2006), pp. 3581.
14.
14. D. Renker, “Geiger-mode avalanche photodiodes, history, properties and problems,” Nucl. Instrum. Methods Phys. Res. A 567(1), 4856 (2006).
http://dx.doi.org/10.1016/j.nima.2006.05.060
15.
15. H. Zaidi, M. L. Montandon, and A. Alavi, “The clinical role of fusion imaging using PET, CT, and MR imaging,” Magn. Reson. Imaging Clin. N. Am. 18(1), 133149 (2010).
http://dx.doi.org/10.1016/j.mric.2009.09.010
16.
16. H. Iida, I. Kanno, S. Miura, M. Murakami, K. Takahashi, and K. Uemura, “A simulation study of a method to reduce positron annihilation spread distribution using a strong magnetic field in positron emission tomography,” IEEE Trans. Nucl. Sci. 33, 597600 (1986).
http://dx.doi.org/10.1109/TNS.1986.4337173
17.
17. D. Rickey, R. Gordon, and W. Huda, “On lifting the inherent limitations of positron emission tomography by using magnetic fields (MagPET),” Automedica 14, 355369 (1992).
18.
18. B. E. Hammer, N. L. Christensen, and B. G. Heil, “Use of a magnetic field to increase the spatial resolution of positron emission tomography,” Med. Phys. 21(12), 19171920 (1994).
http://dx.doi.org/10.1118/1.597178
19.
19. R. R. Raylman, B. E. Hammer, and N. L. Christensen, “Combined MRI-PET scanner: A Monte Carlo evaluation of the improvements in PET resolution due to the effects of a static homogeneous magnetic field,” IEEE Trans. Nucl. Sci. 43(4), 24062412 (1996).
http://dx.doi.org/10.1109/23.531789
20.
20. A. Blanco, N. Carolino, C. M. B. A. Correia, L. Fazendeiro, N. C. Ferreira, M. F. Ferreira Marques, R. Ferreira Marques, P. Fonte, C. Gil, and M. P. Macedo, “Spatial resolution on a small animal RPC-PET prototype operating under magnetic field,” Nucl. Phys. B, Proc. Suppl. 158, 157160 (2006).
http://dx.doi.org/10.1016/j.nuclphysbps.2006.07.006
21.
21. A. Wirrwar, H. Vosberg, H. Herzog, H. Halling, S. Weber, and H.-W. Muller-Gartner, “4.5 Tesla magnetic field reduces range of high-energy positrons-potential implications for positron emission tomography,” IEEE Trans. Nucl. Sci. 44(2), 184189 (1997).
http://dx.doi.org/10.1109/23.568801
22.
22. D. Burdette, E. Chesi, N. H. Clinthorne, K. Honscheid, S. S. Huh, H. Kagan, C. Lacasta, G. Llosa, M. Mikuz, S. J. Park, W. L. Rogers, A. Studen, and P. Weilhammer, “First results from a test bench for very high resolution small animal PET using solid-state detectors,” IEEE Nuclear Science Symposium Conference Record, pp. 23762380 (2005).
23.
23. N. L. Christensen, B. E. Hammer, B. G. Heil, and K. Fetterly, “Positron emission tomography within a magnetic field using photomultiplier tubes and light-guides,” Phys. Med. Biol. 40(4), 691697 (1995).
http://dx.doi.org/10.1088/0031-9155/40/4/014
24.
24. Y. Shao, S. R. Cherry, K. Farahani, and K. Meadors, “Simultaneous PET and MR imaging,” Phys. Med. Biol 42, 19651970 (1997).
http://dx.doi.org/10.1088/0031-9155/42/10/010
25.
25. R. Slates, K. Farahani, Y. Shao, P. K. Marsden, J. Taylor, P. E. Summers, S. Williams, J. Beech, and S. R. Cherry, “A study of artefacts in simultaneous PET and MR imaging using a prototype MR compatible PET scanner,” Phys. Med. Biol. 44, 20152027 (1999).
http://dx.doi.org/10.1088/0031-9155/44/8/312
26.
26. K. Farahani, R. Slates, Y. Shao, R. Silverman, and S. Cherry, “Contemporaneous positron emission tomography and MR imaging at 1.5 T,” J. Magn. Reson. Imaging 9(3), 497500 (1999).
http://dx.doi.org/10.1002/(SICI)1522-2586(199903)9:3<>1.0.CO;2-K
27.
27. S. Yamamoto, S. Takamatsu, H. Murayama, and K. Minato, “A block detector for a multislice, depth-of-interaction MR-compatible PET,” IEEE Trans. Nucl. Sci. 52(1), 3337 (2005).
http://dx.doi.org/10.1109/TNS.2004.843091
28.
28. J. E. Mackewn, D. Strul, W. A. Hallett, P. Halsted, R. A. Page, S. F. Keevil, S. C. R. Williams, S. R. Cherry, and P. K. Marsden, “Design and development of an MR-compatible PET scanner for imaging small animals,” IEEE Trans. Nucl. Sci. 52(5), 13761380 (2005).
http://dx.doi.org/10.1109/TNS.2005.858260
29.
29. R. R. Raylman, S. Majewski, S. S. Velan, S. Lemieux, B. Kross, V. Popov, M. F. Smith, and A. G. Weisenberger, “Simultaneous acquisition of magnetic resonance spectroscopy (MRS) data and positron emission tomography (PET) images with a prototype MR-compatible, small animal PET imager,” J. Magn. Reson. 186(2), 305310 (2007).
http://dx.doi.org/10.1016/j.jmr.2007.03.012
30.
30. R. R. Raylman, S. Majewski, S. K. Lemieux, S. S. Velan, B. Kross, V. Popov, M. F. Smith, A. G. Weisenberger, C. Zorn, and G. D. Marano, “Simultaneous MRI and PET imaging of a rat brain,” Phys. Med. Biol. 51(24), 63716379 (2006).
http://dx.doi.org/10.1088/0031-9155/51/24/006
31.
31. S. Yamamoto, M. Imaizumi, Y. Kanai, M. Tatsumi, M. Aoki, E. Sugiyama, M. Kawakami, E. Shimosegawa, and J. Hatazawa, “Design and performance from an integrated PET/MRI system for small animals,” Ann. Nucl. Med. 24, 8998 (2010).
http://dx.doi.org/10.1007/s12149-009-0333-6
32.
32. A. J. Lucas, R. C. Hawkes, R. E. Ansorge, G. B. Williams, R. E. Nutt, J. C. Clark, T. D. Fryer, and T. A. Carpenter, “Development of a combined microPET-MR system,” Technol. Cancer Res. Treat. 5(4), 337341 (2006).
33.
33. W. B. Handler, K. M. Gilbert, H. Peng, and B. A. Chronik, “Simulation of scattering and attenuation of 511 keV photons in a combined PET/field-cycled MRI system,” Phys. Med. Biol. 51(10), 24792491 (2006).
http://dx.doi.org/10.1088/0031-9155/51/10/008
34.
34. R. C. Hawkes, T. D. Fryer, S. Siegel, R. E. Ansorge, and T. A. Carpenter, “Preliminary evaluation of a combined microPET-MR system,” Technol. Cancer Res. Treat. 9(1), 5360 (2010).
35.
35. K. M. Gilbert, T. J. Scholl, W. B. Handler, J. K. Alford, and B. A. Chronik, “Evaluation of a positron emission tomography (PET)-compatible field-cycled MRI (FCMRI) scanner,” Magn. Reson. Med. 62(4), 10171025 (2009).
http://dx.doi.org/10.1002/mrm.22081
36.
36. M. Bergeron, J. Cadorette, J. F. Beaudoin, M. D. Lepage, G. Robert, V. Selivanov, M. A. Tetrault, N. Viscogliosi, J. P. Norenberg, R. Fontaine, and R. Lecomte, “Performance evaluation of the LabPET APD-based digital PET scanner,” IEEE Trans. Nucl. Sci. 56(1), 1016 (2009).
http://dx.doi.org/10.1109/TNS.2008.2010257
37.
37. C. Catana, Y. Wu, M. S. Judenhofer, J. Qi, B. J. Pichler, and S. R. Cherry, “Simultaneous acquisition of multislice PET and MR images: Initial results with a MR-compatible PET scanner,” J. Nucl. Med. 47(12), 19681976 (2006).
38.
38. B. J. Pichler, M. S. Judenhofer, C. Catana, J. H. Walton, M. Kneilling, R. E. Nutt, S. B. Siegel, C. D. Claussen, and S. R. Cherry, “Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI,” J. Nucl. Med. 47(4), 639647 (2006).
39.
39. M. S. Judenhofer, C. Catana, B. K. Swann, S. B. Siegel, W.-I. Jung, R. E. Nutt, S. R. Cherry, C. D. Claussen, and B. J. Pichler, “Simultaneous PET/MR images, acquired with a compact MRI compatible PET detector in a 7 Tesla magnet,” Radiology 244(3), 807814 (2007).
http://dx.doi.org/10.1148/radiol.2443061756
40.
40. C. Woody, D. Schlyer, P. Vaska, D. Tomasi, S. Solis-Najera, W. Rooney, J.-F. Pratte, S. Junnarkar, S. Stoll, Z. Master, M. Purschke, S.-J. Park, S. Southekal, A. Kriplani, S. Krishnamoorthy, S. Maramraju, P. O’Connor, and V. Radeka, “Preliminary studies of a simultaneous PET/MRI scanner based on the RatCAP small animal tomograph,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 102105 (2007).
http://dx.doi.org/10.1016/j.nima.2006.10.039
41.
41. M. S. Judenhofer, H. F. Wehrl, D. F. Newport, C. Catana, S. B. Siegel, M. Becker, A. Thielscher, M. Kneilling, M. P. Lichy, M. Eichner, K. Klingel, G. Reischl, S. Widmaier, M. Rocken, R. E. Nutt, H. J. Machulla, K. Uludag, S. R. Cherry, C. D. Claussen, and B. J. Pichler, “Simultaneous PET-MRI: A new approach for functional and morphological imaging,” Nat. Med. 14(4), 459465 (2008).
http://dx.doi.org/10.1038/nm1700
42.
42. B. Ravindranath, S. S. Junnarkar, M. L. Purschke, S. H. Maramraju, X. Hong, D. Tomasi, D. Bennett, K. Cheng, S. S. Southekal, S. P. Stoll, J. F. Pratte, P. Vaska, C. L. Woody, and D. J. Schlyer, “Results from prototype II of the BNL simultaneous PET-MRI dedicated breast scanner,” IEEE Nuclear Science Symposium Conference Record, pp. 33153317 (2009).
43.
43. T. Frach, G. Prescher, C. Degenhardt, R. de Gruyter, A. Schmitz, and R. Ballizany, “The digital silicon photomultiplier—Principle of operation and intrinsic detector performance,” IEEE Nuclear Science Symposium Conference Record (NSS/MIC), pp. 19591965 (2009).
44.
44. C. Degenhardt, G. Prescher, T. Frach, A. Thon, R. de Gruyter, A. Schmitz, and R. Ballizany, “The digital silicon photomultiplier—A novel sensor for the detection of scintillation light,” IEEE Nuclear Science Symposium Conference Record (NSS/MIC), pp. 23832386 (2009).
45.
45. B. Dolgoshein, V. Balagura, P. Buzhan, M. Danilov, L. Filatov, E. Garutti, M. Groll, A. Ilyin, V. Kantserov, V. Kaplin, A. Karakash, F. Kayumov, S. Klemin, V. Korbel, H. Meyer, R. Mizuk, V. Morgunov, E. Novikov, P. Pakhlov, E. Popova, V. Rusinov, F. Sefkow, E. Tarkovsky, and I. Tikhomirov, “Status report on silicon photomultiplier development and its applications,” Nucl. Instrum. Methods Phys. Res. A 563(2), 368376 (2006).
http://dx.doi.org/10.1016/j.nima.2006.02.193
46.
46. D. P. McElroy, V. Saveliev, A. Reznik, and J. A. Rowlands, “Evaluation of silicon photomultipliers: A promising new detector for MR compatible PET,” Nucl. Instrum. Methods Phys. Res. A 571(1-2), 106109 (2007).
http://dx.doi.org/10.1016/j.nima.2006.10.040
47.
47. S. Moehrs, A. Del Guerra, D. J. Herbert, and M. A. Mandelkern, “A detector head design for small-animal PET with silicon photomultipliers (SiPM),” Phys. Med. Biol. 51(5), 11131127 (2006).
http://dx.doi.org/10.1088/0031-9155/51/5/004
48.
48. D. Renker and E. Lorenz, “Advances in solid state photon detectors,” J Instrum. 4(04), P04004 (2009).
http://dx.doi.org/10.1088/1748-0221/4/04/P04004
49.
49. H. P. Schlemmer, B. J. Pichler, M. Schmand, Z. Burbar, C. Michel, R. Ladebeck, K. Jattke, D. Townsend, C. Nahmias, P. K. Jacob, W. D. Heiss, and C. D. Claussen, “Simultaneous MR/PET imaging of the human brain: Feasibility study,” Radiology 248(3), 10281035 (2008).
http://dx.doi.org/10.1148/radiol.2483071927
50.
50. H. Herzog, U. Pietrzyk, N. J. Shah, and K. Ziemons, “The current state, challenges and perspectives of MR-PET,” Neuroimage 49(3), 20722082 (2010).
http://dx.doi.org/10.1016/j.neuroimage.2009.10.036
51.
51. S. J. Holdsworth and R. Bammer, “Magnetic resonance imaging techniques: fMRI, DWI, and PWI,” Semin. Neurol. 28(4), 395406 (2008).
http://dx.doi.org/10.1055/s-0028-1083697
52.
52. A. Boss, A. Kolb, M. Hofmann, S. Bisdas, T. Nagele, U. Ernemann, L. Stegger, C. Rossi, H. P. Schlemmer, C. Pfannenberg, M. Reimold, C. D. Claussen, B. J. Pichler, and U. Klose, “Diffusion tensor imaging in a human PET/MR hybrid system,” Invest. Radiol. 45(5), 270274 (2010).
http://dx.doi.org/10.1097/RLI.0b013e3181dc3671
53.
53. Z. H. Cho, Y. D. Son, H. K. Kim, K. N. Kim, S. H. Oh, J. Y. Han, I. K. Hong, and Y. B. Kim, “A fusion PET-MRI system with a high-resolution research tomograph-PET and ultra-high field 7.0 T-MRI for the molecular-genetic imaging of the brain,” Proteomics 8(6), 13021323 (2008).
http://dx.doi.org/10.1002/pmic.v8:6
54.
54. H. P. Schlemmer, B. J. Pichler, R. Krieg, and W. D. Heiss, “An integrated MR/PET system: Prospective applications,” Abdom. Imaging 34(6), 668674 (2009).
http://dx.doi.org/10.1007/s00261-008-9450-2
55.
55. S. Punwani, S. A. Taylor, A. Bainbridge, V. Prakash, S. Bandula, E. De Vita, O. E. Olsen, S. F. Hain, N. Stevens, S. Daw, A. Shankar, J. B. Bomanji, and P. D. Humphries, “Pediatric and adolescent lymphoma: Comparison of whole-body STIR half-Fourier RARE MR imaging with an enhanced PET/CT reference for initial staging,” Radiology 255(1), 182190 (2010).
http://dx.doi.org/10.1148/radiol.09091105
56.
56. V. Laurent, G. Trausch, O. Bruot, P. Olivier, J. Felblinger, and D. Regent, “Comparative study of two whole-body imaging techniques in the case of melanoma metastases: Advantages of multi-contrast MRI examination including a diffusion-weighted sequence in comparison with PET-CT,” Eur. J. Radiol. 75(3), 376383 (2010).
http://dx.doi.org/10.1016/j.ejrad.2009.04.059
57.
57. T. A. Heusner, S. Kuemmel, A. Koeninger, M. E. Hamami, S. Hahn, A. Quinsten, A. Bockisch, M. Forsting, T. Lauenstein, G. Antoch, and A. Stahl, “Diagnostic value of diffusion-weighted magnetic resonance imaging (DWI) compared to FDG PET/CT for whole-body breast cancer staging,” Eur. J. Nucl. Med. Mol. Imaging 37(6), 10771086 (2010).
http://dx.doi.org/10.1007/s00259-010-1399-z
58.
58. W. Chen, W. Jian, H. T. Li, C. Li, Y. K. Zhang, B. Xie, D. Q. Zhou, Y. M. Dai, Y. Lin, M. Lu, X. Q. Huang, C. X. Xu, and L. Chen, “Whole-body diffusion-weighted imaging vs. FDG-PET for the detection of non-small-cell lung cancer. How do they measure up?,” Magn. Reson. Imaging 28(5), 613620 (2010).
http://dx.doi.org/10.1016/j.mri.2010.02.009
59.
59. D. Takenaka, Y. Ohno, K. Matsumoto, N. Aoyama, Y. Onishi, H. Koyama, M. Nogami, T. Yoshikawa, S. Matsumoto, and K. Sugimura, “Detection of bone metastases in non-small cell lung cancer patients: Comparison of whole-body diffusion-weighted imaging (DWI), whole-body MR imaging without and with DWI, whole-body FDG-PET/CT, and bone scintigraphy,” J. Magn. Reson. Imaging 30(2), 298308 (2009).
http://dx.doi.org/10.1002/jmri.21858
60.
60. A. Stecco, G. Romano, M. Negru, D. Volpe, A. Saponaro, S. Costantino, G. Sacchetti, E. Inglese, O. Alabiso, and A. Carriero, “Whole-body diffusion-weighted magnetic resonance imaging in the staging of oncological patients: Comparison with positron emission tomography computed tomography (PET-CT) in a pilot study,” Radiol. Med. 114(1), 117 (2009).
http://dx.doi.org/10.1007/s11547-008-0348-4
61.
61. G. P. Schmidt, A. Baur-Melnyk, A. Haug, S. Utzschneider, C. R. Becker, R. Tiling, M. F. Reiser, and K. A. Hermann, “Whole-body MRI at 1.5 T and 3 T compared with FDG-PET-CT for the detection of tumour recurrence in patients with colorectal cancer,” Eur. Radiol. 19(6), 13661378 (2009).
http://dx.doi.org/10.1007/s00330-008-1289-y
62.
62. G. Antoch and A. Bockisch, “Combined PET/MRI: A new dimension in whole-body oncology imaging?,” Eur. J. Nucl. Med. Mol. Imaging 36(Suppl 1), 113120 (2009).
http://dx.doi.org/10.1007/s00259-008-0951-6
63.
63. C. A. Yi, K. M. Shin, K. S. Lee, B.-T. Kim, H. Kim, O. J. Kwon, J. Y. Choi, and M. J. Chung, “Non-small cell lung cancer staging: Efficacy comparison of integrated PET/CT versus 3.0-T whole-body MR imaging,” Radiology 248(2), 632642 (2008).
http://dx.doi.org/10.1148/radiol.2482071822
64.
64. G. P. Schmidt, A. Baur-Melnyk, A. Haug, V. Heinemann, I. Bauerfeind, M. F. Reiser, and S. O. Schoenberg, “Comprehensive imaging of tumor recurrence in breast cancer patients using whole-body MRI at 1.5 and 3 T compared to FDG-PET-CT,” Eur. J. Radiol. 65(1), 4758 (2008).
http://dx.doi.org/10.1016/j.ejrad.2007.10.021
65.
65. Y. Ohno, H. Koyama, Y. Onishi, D. Takenaka, M. Nogami, T. Yoshikawa, S. Matsumoto, Y. Kotani, and K. Sugimura, “Non-small cell lung cancer: Whole-body MR examination for M-stage assessment—Utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT,” Radiology 248(2), 643654 (2008).
http://dx.doi.org/10.1148/radiol.2482072039
66.
66. G. P. Schmidt, H. Kramer, M. F. Reiser, and C. Glaser, “Whole-body magnetic resonance imaging and positron emission tomography-computed tomography in oncology,” Top Magn. Reson Imaging 18(3), 193202 (2007).
http://dx.doi.org/10.1097/RMR.0b013e318093e6bo
67.
67. C. Pfannenberg, P. Aschoff, S. Schanz, S. M. Eschmann, C. Plathow, T. K. Eigentler, C. Garbe, K. Brechtel, R. Vonthein, R. Bares, C. D. Claussen, and H. P. Schlemmer, “Prospective comparison of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and whole-body magnetic resonance imaging in staging of advanced malignant melanoma,” Eur. J. Cancer 43(3), 557564 (2007).
http://dx.doi.org/10.1016/j.ejca.2006.11.014
68.
68. G. Schmidt, A. Haug, S. Schoenberg, and M. Reiser, “Whole-body MRI and PET-CT in the management of cancer patients,” Eur. Radiol. 16(6), 12161225 (2006).
http://dx.doi.org/10.1007/s00330-006-0183-8
69.
69. M. D. Seemann, “Whole-body PET/MRI: The future in oncological imaging,” Technol. Cancer Res. Treat. 4(5), 577582 (2005).
70.
70. O. Ratib, J.-P. Willi, M. Wissmeyer, C. Steiner, M. Allaoua, V. Garibotto, O. Rager, H. Zaidi, M. Becker, J. P. Vallee, P. Loubeyre, and C. Becker, “Clinical application of whole body hybrid PET-MR scanner in oncology [abstract],” Eur. J. Nucl. Med. Mol. Imaging 37(Suppl 2), S220 (2010).
71.
71. T. C. Kwee, T. Takahara, R. Ochiai, D. M. Koh, Y. Ohno, K. Nakanishi, T. Niwa, T. L. Chenevert, P. R. Luijten, and A. Alavi, “Complementary roles of whole-body diffusion-weighted MRI and 18F-FDG PET: The state of the art and potential applications,” J. Nucl. Med. 51(10), 15491558 (2010).
http://dx.doi.org/10.2967/jnumed.109.073908
72.
72. T. A. Heusner, S. Hahn, C. Jonkmanns, S. Kuemmel, F. Otterbach, M. E. Hamami, A. R. Stahl, A. Bockisch, M. Forsting, and G. Antoch, “Diagnostic accuracy of fused positron emission tomography/magnetic resonance mammography: Initial results,” Br. J. Radiol. 84(998), 126135 (2011).
http://dx.doi.org/10.1259/bjr/93330765
73.
73. G. Delso and S. Ziegler, “PET/MRI system design,” Eur. J. Nucl. Med. Mol. Imaging 36(Suppl 1), 8692 (2009).
http://dx.doi.org/10.1007/s00259-008-1008-6
74.
74. D. Gagnon, M. Morich, D. Blakely, and K. Nieman, “Hybrid PET/MR Imaging Systems,” U. S. Patent Application Publication No. 2008/0312526 (2008).
75.
75. H. Zaidi, N. Ojha, M. Morich, J. Griesmer, Z. Hu, P. Maniawski, O. Ratib, D. Izquierdo-Garcia, Z. A. Fayad, and L. Shao, “Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system,” Phys. Med. Biol. 56(10), 30913106 (2011).
http://dx.doi.org/10.1088/0031-9155/56/10/013
76.
76. C. Catana, T. Benner, A. van der Kouwe, L. Byars, M. Hamm, D. B. Chonde, C. J. Michel, G. El Fakhri, M. Schmand, and A. G. Sorensen, “MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner,” J. Nucl. Med. 52(1), 154161 (2011).
http://dx.doi.org/10.2967/jnumed.110.079343
77.
77. B. Lipinski, H. Herzog, E. Rota Kops, W. Oberschelp, and H. W. Muller-Gartner, “Expectation maximization reconstruction of positron emission tomography images using anatomical magnetic resonance information,” IEEE Trans. Med. Imaging 16(2), 129136 (1997).
http://dx.doi.org/10.1109/42.563658
78.
78. K. Baete, J. Nuyts, W. Van Paesschen, P. Suetens, and P. Dupont, “Anatomical-based FDG-PET reconstruction for the detection of hypo-metabolic regions in epilepsy,” IEEE Trans. Med. Imaging 23(4), 510519 (2004).
http://dx.doi.org/10.1109/TMI.2004.825623
79.
79. H. Zaidi and A. Alavi, “Current trends in PET and combined (PET/CT and PET/MR) systems design,” PET Clin. 2(2), 109123 (2007).
http://dx.doi.org/10.1016/j.cpet.2007.10.004
80.
80. M. Rafecas, B. Mosler, M. Dietz, M. Pogl, A. Stamatakis, D. P. McElroy, and S. I. Ziegler, “Use of a Monte Carlo-based probability matrix for 3-D iterative reconstruction of MADPET-II data,” IEEE Trans. Nucl. Sci. 51(5), 25972605 (2004).
http://dx.doi.org/10.1109/TNS.2004.834827
81.
81. S. Moehrs, M. Defrise, N. Belcari, A. Del Guerra, A. Bartoli, S. Fabbri, and G. Zanetti, “Multi-ray-based system matrix generation for 3D PET reconstruction,” Phys. Med. Biol. 53(23), 69256945 (2008).
http://dx.doi.org/10.1088/0031-9155/53/23/018
82.
82. K. Yang, C. L. Melcher, P. D. Rack, and L. A. Eriksson, “Effects of calcium codoping on charge traps in LSO:Ce crystals,” IEEE Trans. Nucl. Sci. 56(5), 29602965 (2009).
http://dx.doi.org/10.1109/TNS.2009.2027018
83.
83. J. S. Karp, S. Surti, M. E. Daube-Witherspoon, and G. Muehllehner, “Benefit of time-of-flight in PET: Experimental and clinical results,” J. Nucl. Med. 49(3), 462470 (2008).
http://dx.doi.org/10.2967/jnumed.107.044834
84.
84. M. Conti, “State of the art and challenges of time-of-flight PET,” Phys. Med. 25(15), 111 (2009).
http://dx.doi.org/10.1016/j.ejmp.2008.10.001
85.
85. M. Conti, “Focus on time-of-flight PET: The benefits of improved time resolution,” Eur. J. Nucl. Med. Mol. Imaging 38(6), 11471157 (2011).
http://dx.doi.org/10.1007/s00259-010-1711-y
86.
86. C. Lois, B. W. Jakoby, M. J. Long, K. F. Hubner, D. W. Barker, M. E. Casey, M. Conti, V. Y. Panin, D. J. Kadrmas, and D. W. Townsend, “An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging,” J. Nucl. Med. 51(2), 237245 (2010).
http://dx.doi.org/10.2967/jnumed.109.068098
87.
87. G. El Fakhri, S. Surti, C. M. Trott, J. Scheuermann, and J. S. Karp, “Improvement in lesion detection with whole-body oncologic time-of-flight PET,” J. Nucl. Med. 52(3), 347353 (2011).
http://dx.doi.org/10.2967/jnumed.110.080382
88.
88. W. W. Moses, “Time of flight in PET revisited,” IEEE Trans. Nucl. Sci. 50(5), 13251330 (2003).
http://dx.doi.org/10.1109/TNS.2003.817319
89.
89. Z. H. Cho, Y. D. Son, H. K. Kim, K. N. Kim, S. H. Oh, J. Y. Han, I. K. Hong, and Y. B. Kim, “A hybrid PET-MRI: An integrated molecular-genetic imaging system with HRRT-PET and 7.0-T MRI,” Int. J. Imaging Syst. Technol. 17(4), 252265 (2007).
http://dx.doi.org/10.1002/ima.v17:4
90.
90. U. Klose, “In vivo proton spectroscopy in presence of eddy currents,” Magn. Reson. Med. 14(1), 2630 (1990).
http://dx.doi.org/10.1002/mrm.v14:1
91.
91. C. R. Camacho, D. B. Plewes, and R. M. Henkelman, “Nonsusceptibility artifacts due to metallic objects in MR imaging,” J. Magn. Reson. Imaging 5(1), 7588 (1995).
http://dx.doi.org/10.1002/jmri.v5:1
92.
92. S. Furst, G. Delso, A. Martinez-Moller, B. Jakoby, F. Schoenahl, C. Ganter, S. Nekolla, S. Ziegler, E. Rummeny, and M. Schwaiger, “Initial performance evaluation of the Biograph mMR,” J. Nucl. Med. 52, 320 (2011).
93.
93. B. Pichler, E. Lorenz, R. Mirzoyan, W. Pimpl, F. Roder, and M. Schwaiger, “Performance tests of a LSO-APD PET module in a 9.4 Tesla magnet,” IEEE Nuclear Science Symposium and Medical Imaging Conference Record, pp. 12371239 (1997).
94.
94. P. K. Marsden, D. Strul, S. F. Keevil, S. C. Williams, and D. Cash, “Simultaneous PET and NMR,” Br. J. Radiol. 75 Spec No, S53S59 (2002).
95.
95. S. R. Cherry, “Multimodality in vivo imaging systems: Twice the power or double the trouble?,” Annu. Rev. Biomed. Eng. 8, 3562 (2006).
http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095728
96.
96. S. R. Cherry, A. Y. Louie, and R. E. Jacobs, “The integration of positron emission tomography with magnetic resonance imaging,” Proc. IEEE 96(3), 416438 (2008).
http://dx.doi.org/10.1109/JPROC.2007.913502
97.
97. D. Schlyer, P. Vaska, D. Tomasi, C. Woody, W. Rooney, S. Maramraju, S. Southekal, J.-F. Pratte, S. Junnarkar, M. Purschke, S. Krishnamoorthy, A. Kriplani, and S. Stoll, “A simultaneous PET/MRI scanner based on the RatCAP,” IEEE Nuclear Science Symposium Conference Record, pp. 32563259 (2007).
98.
98. J. Kang, Y. Choi, K. J. Hong, J. H. Jung, W. Hu, Y. S. Huh, H. Lim, and B.-T. Kim, “A feasibility study of photosensor charge signal transmission to preamplifier using long cable for development of hybrid PET-MRI,” Med. Phys. 37(11), 56555664 (2010).
http://dx.doi.org/10.1118/1.3495683
99.
99. Y. Wu, C. Catana, R. Farrell, P. A. Dokhale, K. S. Shah, Q. Jinyi, and S. R. Cherry, “PET performance evaluation of an MR-compatible PET insert,” IEEE Trans. Nucl. Sci. 56(3), 574580 (2009).
http://dx.doi.org/10.1109/TNS.2009.2015448
100.
100. H. F. Wehrl, M. S. Judenhofer, A. Thielscher, P. Martirosian, F. Schick, and B. J. Pichler, “Assessment of MR compatibility of a PET insert developed for simultaneous multiparametric PET/MR imaging on an animal system operating at 7 T,” Magn. Reson. Med. 65(1), 269279 (2010).
101.
101. H. Wehrl, M. Judenhofer, S. Wiehr, and B. Pichler, “Pre-clinical PET/MR: Technological advances and new perspectives in biomedical research,” Eur. J. Nucl. Med. Mol. Imaging 36(Suppl 1), 5668 (2009).
http://dx.doi.org/10.1007/s00259-009-1078-0
102.
102. R. Fontaine, F. Belanger, N. Viscogliosi, H. Semmaoui, M. A. Tetrault, J. B. Michaud, C. Pepin, J. Cadorette, and R. Lecomte, “The hardware and signal processing architecture of LabPETTM, a small animal APD-based digital PET scanner,” IEEE Trans. Nucl. Sci. 56(1), 39 (2009).
http://dx.doi.org/10.1109/TNS.2008.2007485
103.
103. A. N. Otte, J. Barral, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, R. Mirzoyan, E. Popova, and M. Teshima, “A test of silicon photomultipliers as readout for PET,” Nucl. Instrum. Methods Phys. Res. A 545(3), 705715 (2005).
http://dx.doi.org/10.1016/j.nima.2005.02.014
104.
104. P. Buzhan, B. Dolgoshein, A. Ilyin, V. Kantserov, V. Kaplin, A. Karakash, A. Pleshko, E. Popova, S. Smirnov, Y. Volkov, L. Filatov, S. Klemin, and F. Kayumov, “An advanced study of silicon photomultiplier,” ICFA Instrum. Bull. 23, 2842 (2001).
105.
105. D. J. Herbert, V. Saveliev, N. Belcari, N. D’Ascenzo, A. Del Guerra, and A. Golovin, “First results of scintillator readout with silicon photomultiplier,” IEEE Trans. Nucl. Sci. 53(1), 389394 (2006).
http://dx.doi.org/10.1109/TNS.2006.869848
106.
106. C. Piemonte, R. Battiston, M. Boscardin, G. Collazuol, F. Corsi, G. F. Dalla Betta, A. Del Guerra, N. Dinu, G. Levi, G. Llosa, S. Marcatili, C. Marzocca, A. Pozza, and N. Zorzi, “New results on the characterization of ITC-irst silicon photomultipliers,” IEEE Nuclear Science Symposium Conference Record, pp. 15661569 (2006).
107.
107. G. Llosa, N. Belcari, M. G. Bisogni, G. Collazuol, A. Del Guerra, S. Marcatili, S. Moehrs, and C. Piemonte, “Silicon photomultipliers and SiPM matrices as photodetectors in nuclear medicine,” IEEE Nuclear Science Symposium Conference Record, pp. 32203223 (2007).
108.
108. R. Hawkes, A. Lucas, J. Stevick, G. Llosa, S. Marcatili, C. Piemonte, A. Del Guerra, and T. A. Carpenter, “Silicon photomultiplier performance tests in magnetic resonance pulsed fields,” IEEE Nuclear Science Symposium Conference Record, pp. 34003403 (2007).
109.
109. C. Piemonte, B. Roberto, B. Maurizio, B. Gian-Franco Dalla, G. Alberto Del, D. Nicoleta, P. Alberto, and Z. Nicola, “Characterization of the first prototypes of silicon photomultiplier fabricated at ITC-irst,” IEEE Trans. Nucl. Sci. 54(1), 236244 (2007).
http://dx.doi.org/10.1109/TNS.2006.887115
110.
110. G. Llosa, R. Battiston, N. Belcari, M. Boscardin, G. Collazuol, F. Corsi, G.-F. Dalla Betta, A. Del Guerra, N. Dinu, G. Levi, S. Marcatili, S. Moehrs, C. Marzocca, C. Piemonte, and A. Pozza, “Novel silicon photomultipliers for PET applications,” IEEE Trans. Nucl. Sci. 55(3), 877881 (2008).
http://dx.doi.org/10.1109/TNS.2008.922812
111.
111. N. Dinu, P. Barrillon, C. Bazin, N. Belcari, M. G. Bisogni, S. Bondil-Blin, M. Boscardin, V. Chaumat, G. Collazuol, C. De La Taille, A. Del Guerra, G. Llosá, S. Marcatili, M. Melchiorri, C. Piemonte, V. Puill, A. Tarolli, J. F. Vagnucci, and N. Zorzi, “Characterization of a prototype matrix of silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res. A 610(1), 101104 (2009).
http://dx.doi.org/10.1016/j.nima.2009.05.080
112.
112. G. Collazuol, G. Ambrosi, M. Boscardin, F. Corsi, G. F. Dalla Betta, A. Del Guerra, M. Galimberti, D. Giulietti, L. A. Gizzi, L. Labate, G. Llosa, S. Marcatili, C. Piemonte, A. Pozza, and N. Zorzi, “Single timing resolution and detection efficiency of the ITC-irst silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res. A 581, 461464 (2007).
http://dx.doi.org/10.1016/j.nima.2007.08.027
113.
113. P. Barrillon, S. Blin, M. Bouchel, T. Caceres, C. de La Taille, G. Martin, P. Puzo, and N. Seguin-Moreau, “MAROC: Multi-anode readout chip for MaPMTs,” IEEE Nuclear Science Symposium Conference Record, pp. 809814 (2006).
114.
114. G. Llosá, N. Belcari, M. G. Bisogni, G. Collazuol, S. Marcatili, M. Boscardin, M. Melchiorri, A. Tarolli, C. Piemonte, N. Zorzi, P. Barrillon, S. Bondil-Blin, V. Chaumat, C. de La Taille, N. Dinu, V. Puill, J. F. Vagnucci, and A. Del Guerra, “First results in the application of silicon photomultiplier matrices to small animal PET,” Nucl. Instrum. Methods Phys. Res. A 610(1), 196199 (2009).
http://dx.doi.org/10.1016/j.nima.2009.05.073
115.
115. M. Bouchel, S. Callier, F. Dulucq, J. Fleury, J.-J. Jaeger, C. de La Taille, G. Martin-Chassard, and L. Raux, “SPIROC (SiPM integrated read-out chip): Dedicated very front-end electronics for an ILC prototype hadronic calorimeter with SiPM read-out,” J. Instrum. 6(01), C01098 (2011).
http://dx.doi.org/10.1088/1748-0221/6/01/C01098
116.
116. P. Fischer, I. Peric, M. Ritzert, and M. Koniczek, “Fast self triggered multi channel readout ASIC for time- and energy measurement,” IEEE Trans. Nucl. Sci. 56(3), 11531158 (2009).
http://dx.doi.org/10.1109/TNS.2008.2008807
117.
117. F. Corsi, A. Dragone, C. Marzocca, A. Del Guerra, P. Delizia, N. Dinu, C. Piemonte, M. Boscardin, and G. F. Dalla Betta, “Modelling a silicon photomultiplier (SiPM) as a signal source for optimum front-end design,” Nucl. Instrum. Methods Phys. Res. A 572(1), 416418 (2007).
http://dx.doi.org/10.1016/j.nima.2006.10.219
118.
118. F. Corsi, M. Foresta, C. Marzocca, G. Matarrese, and A. Del Guerra, “BASIC: An 8-channel front-end ASIC for silicon photomultiplier detectors,” IEEE Nuclear Science Symposium Conference Record (NSS/MIC), pp. 10821087 (2009).
119.
119. F. Corsi, A. G. Argentieri, M. Foresta, C. Marzocca, G. Matarrese, and A. Del Guerra, “Front-end electronics for silicon photomultipliers coupled to fast scintillators,” IEEE Nuclear Science Symposium Conference Record (NSS/MIC), pp. 13321339 (2010).
120.
120. S. Marcatili, N. Belcari, M. G. Bisogni, G. Collazuol, G. Ambrosi, F. Corsi, M. Foresta, C. Marzocca, G. Matarrese, G. Sportelli, P. Guerra, A. Santos, and A. Del Guerra, “Development and characterization of a modular acquisition system for a 4D PET block detector,” Nucl. Instr. Meth. A (in press).
121.
121. G. Collazuol, M. G. Bisogni, S. Marcatili, C. Piemonte, and A. Del Guerra, “Studies of silicon photomultipliers at cryogenic temperatures,” Nucl. Instrum. Methods Phys. Res. A 628(1), 389392 (2011).
http://dx.doi.org/10.1016/j.nima.2010.07.008
122.
122. T. Solf, V. Schulz, B. Weissler, A. Thon, P. Fischer, M. Ritzert, V. Mlotok, C. Piemonte, and N. Zorzi, “Solid-state detector stack for ToF-PET/MR,” IEEE Nuclear Science Symposium Conference Record (NSS/MIC), pp. 27982799 (2009).
125.
125. A. Drzezga, M. Souvatzoglou, A. Beer, S. Ziegler, S. Furst, S. Nekolla, and M. Schwaiger, “Integrated simultaneous whole-body MR/PET: First comparison between MR/PET and PET/CT in patients,” J. Nucl. Med. 52, 262 (2011).
126.
126. S. Basu, H. Zaidi, M. Houseni, J. Udupa, P. Acton, D. Torigian, and A. Alavi, “Novel quantitative techniques for assessing regional and global function and structure based on modern imaging modalities: Implications for normal variation, aging and diseased states,” Semin. Nucl. Med. 37(3), 223239 (2007).
http://dx.doi.org/10.1053/j.semnuclmed.2007.01.005
127.
127. H. Zaidi, T. Ruest, F. Schoenahl, and M.-L. Montandon, “Comparative evaluation of statistical brain MR image segmentation algorithms and their impact on partial volume effect correction in PET,” Neuroimage 32(4), 15911607 (2006).
http://dx.doi.org/10.1016/j.neuroimage.2006.05.031
128.
128. H. Zaidi and B. H. Hasegawa, “Determination of the attenuation map in emission tomography,” J. Nucl. Med. 44(2), 291315 (2003).
129.
129. P. E. Kinahan, B. H. Hasegawa, and T. Beyer, “X-ray-based attenuation correction for positron emission tomography/computed tomography scanners,” Semin. Nucl. Med. 33(3), 166179 (2003).
http://dx.doi.org/10.1053/snuc.2003.127307
130.
130. H. Zaidi, “Is MRI-guided attenuation correction a viable option for dual-modality PET/MR imaging?,” Radiology 244(3), 639642 (2007).
http://dx.doi.org/10.1148/radiol.2443070092
131.
131. M. Hofmann, B. Pichler, B. Schölkopf, and T. Beyer, “Towards quantitative PET/MRI: A review of MR-based attenuation correction techniques,” Eur. J. Nucl. Med. Mol. Imaging 36(Suppl 1), 93104 (2009).
http://dx.doi.org/10.1007/s00259-008-1007-7
132.
132. H. Zaidi, “Is radionuclide transmission scanning obsolete for dual-modality PET/CT systems?,” Eur. J. Nucl. Med. Mol. Imaging 34(6), 815818 (2007).
http://dx.doi.org/10.1007/s00259-006-0337-6
133.
133. H. Zaidi, M.-L. Montandon, and A. Alavi, “Advances in attenuation correction techniques in PET,” PET Clin. 2(2), 191217 (2007).
http://dx.doi.org/10.1016/j.cpet.2007.12.002
134.
134. H. Zaidi and K. F. Koral, “Scatter modelling and compensation in emission tomography,” Eur. J. Nucl. Med. Mol. Imaging 31(5), 761782 (2004).
http://dx.doi.org/10.1007/s00259-004-1495-z
135.
135. C. C. Watson, “New, faster, image-based scatter correction for 3D PET,” IEEE Trans. Nucl. Sci. 47, 15871594 (2000).
http://dx.doi.org/10.1109/23.873020
136.
136. C. C. Watson, M. E. Casey, C. Michel, and B. Bendriem, “Advances in scatter correction for 3D PET/CT,” Nuclear Science Symposium Conference Record, Oct. 19–22, Rome, Italy, pp. 30083012 (2004).
137.
137. S. D. Wollenweber, “Parameterization of a model-based 3-D PET scatter correction,” IEEE Trans. Nucl. Sci. 49(3), 722727 (2002).
http://dx.doi.org/10.1109/TNS.2002.1039554
138.
138. R. Accorsi, L.-E. Adam, M. E. Werner, and J. S. Karp, “Optimization of a fully 3D single scatter simulation algorithm for 3D PET,” Phys. Med. Biol. 49(12), 25772598 (2004).
http://dx.doi.org/10.1088/0031-9155/49/12/008
139.
139. C. S. Levin, M. Dahlbom, and E. J. Hoffman, “A Monte Carlo correction for the effect of Compton scattering in 3-D PET brain imaging,” IEEE Trans. Nucl. Sci. 42, 11811188 (1995).
http://dx.doi.org/10.1109/23.467880
140.
140. H. Zaidi, “Comparative evaluation of scatter correction techniques in 3D positron emission tomography,” Eur. J. Nucl. Med. 27(12), 18131826 (2000).
http://dx.doi.org/10.1007/s002590000385
141.
141. C. H. Holdsworth, C. S. Levin, M. Janecek, M. Dahlbom, and E. J. Hoffman, “Performance analysis of an improved 3-D PET Monte Carlo simulation and scatter correction,” IEEE Trans. Nucl. Sci. 49(1), 8389 (2002).
http://dx.doi.org/10.1109/TNS.2002.998686
142.
142. J. Fripp, S. Crozier, S. K. Warfield, and S. Ourselin, “Automatic segmentation of the bone and extraction of the bone–cartilage interface from magnetic resonance images of the knee,” Phys. Med. Biol. 52(6), 16171631 (2007).
http://dx.doi.org/10.1088/0031-9155/52/6/005
143.
143. J. Fripp, S. Crozier, S. K. Warfield, and S. Ourselin, “Automatic segmentation and quantitative analysis of the articular cartilages from magnetic resonance images of the knee,” IEEE Trans. Med. Imaging 29(1), 5564 (2010).
http://dx.doi.org/10.1109/TMI.2009.2024743
144.
144. A. Martinez-Moller, M. Souvatzoglou, G. Delso, R. A. Bundschuh, C. Chefd’hotel, S. I. Ziegler, N. Navab, M. Schwaiger, and S. G. Nekolla, “Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: Evaluation with PET/CT data,” J. Nucl. Med. 50(4), 520526 (2009).
http://dx.doi.org/10.2967/jnumed.108.054726
145.
145. Z. Hu, N. Ojha, S. Renisch, V. Schulz, I. Torres, D. Pal, G. Muswick, J. Penatzer, T. Guo, P. Boernert, C.-H. Tung, J. Kaste, L. Shao, M. Morich, T. Havens, P. Maniawski, W. Schaefer, R. Guenther, and G. Krombach, “MR-based attenuation correction for a whole-body sequential PET/MR system,” IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 35083512 (2009).
146.
146. V. Schulz, I. Torres-Espallardo, S. Renisch, Z. Hu, N. Ojha, P. Börnert, M. Perkuhn, T. Niendorf, W. Schäfer, H. Brockmann, T. Krohn, A. Buhl, R. Günther, F. Mottaghy, and G. Krombach, “Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data,” Eur. J. Nucl. Med. Mol. Imaging 38(1), 138152 (2011).
http://dx.doi.org/10.1007/s00259-010-1603-1
147.
147. J. Steinberg, G. Jia, S. Sammet, J. Zhang, N. Hall, and M. V. Knopp, “Three-region MRI-based whole-body attenuation correction for automated PET reconstruction,” Nucl. Med. Biol. 37(2), 227235 (2010).
http://dx.doi.org/10.1016/j.nucmedbio.2009.11.002
148.
148. H. Zaidi, M.-L. Montandon, and D. O. Slosman, “Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography,” Med. Phys. 30(5), 937948 (2003).
http://dx.doi.org/10.1118/1.1569270
149.
149. H. Zaidi, M.-L. Montandon, and S. Meikle, “Strategies for attenuation compensation in neurological PET studies,” Neuroimage 34(2), 518541 (2007).
http://dx.doi.org/10.1016/j.neuroimage.2006.10.002
150.
150. E. Rota Kops and H. Herzog, “Alternative methods for attenuation correction for PET images in MR-PET scanners,” Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 43274330 (2007).
151.
151. B. Dogdas, D. W. Shattuck, and R. M. Leahy, “Segmentation of skull and scalp in 3-D human MRI using mathematical morphology,” Hum. Brain Mapp. 26(4), 273285 (2005).
http://dx.doi.org/10.1002/hbm.v26:4
152.
152. V. Keereman, Y. Fierens, T. Broux, Y. De Deene, M. Lonneux, and S. Vandenberghe, “MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences,” J. Nucl. Med. 51(5), 812818 (2010).
http://dx.doi.org/10.2967/jnumed.109.065425
153.
153. C. Catana, A. van der Kouwe, T. Benner, C. J. Michel, M. Hamm, M. Fenchel, B. Fischl, B. Rosen, M. Schmand, and A. G. Sorensen, “Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype,” J. Nucl. Med. 51(9), 14311438 (2010).
http://dx.doi.org/10.2967/jnumed.109.069112
154.
154. Z. Hu, S. Renisch, B. Schweizer, T. Blaffert, N. Ojha, T. Guo, J. Tang, C.-H. Tung, J. Kaste, V. Schulz, I. Torres, and L. Shao, “MR-based attenuation correction for a whole-body PET/MR system,” IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 21192122 (2010).
155.
155. P. J. Robinson and L. Kreel, “Pulmonary tissue attenuation with computed tomography: Comparison of inspiration and expiration scans,” J. Comput. Assist. Tomogr. 3(6), 740748 (1979).
156.
156. M.-L. Montandon and H. Zaidi, “Atlas-guided non-uniform attenuation correction in cerebral 3D PET imaging,” Neuroimage 25(1), 278286 (2005).
http://dx.doi.org/10.1016/j.neuroimage.2004.11.021
157.
157. E. Schreibmann, J. A. Nye, D. M. Schuster, D. R. Martin, J. Votaw, and T. Fox, “MR-based attenuation correction for hybrid PET-MR brain imaging systems using deformable image registration,” Med. Phys. 37(5), 21012109 (2010).
http://dx.doi.org/10.1118/1.3377774
158.
158. M. Hofmann, F. Steinke, V. Scheel, G. Charpiat, J. Farquhar, P. Aschoff, M. Brady, B. Scholkopf, and B. J. Pichler, “MRI-based attenuation correction for PET/MRI: A novel approach combining pattern recognition and Atlas registration,” J. Nucl. Med. 49(11), 18751883 (2008).
http://dx.doi.org/10.2967/jnumed.107.049353
159.
159. S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P. W. Pluim, “Elastix: A toolbox for intensity-based medical image registration,” IEEE Trans. Med. Imaging 29(1), 196205 (2010).
http://dx.doi.org/10.1109/TMI.2009.2035616
160.
160. B. Zhang, D. Pal, Z. Hu, N. Ojha, G. Muswick, C.-H. Tung, and J. Kaste, “Attenuation correction for MR table and coils for a sequential PET/MR system,” IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 33033306 (2009).
161.
161. G. Delso, A. Martinez-Moller, R. A. Bundschuh, R. Ladebeck, Y. Candidus, D. Faul, and S. I. Ziegler, “Evaluation of the attenuation properties of MR equipment for its use in a whole-body PET/MR scanner,” Phys. Med. Biol. 55(15), 43614374 (2010).
http://dx.doi.org/10.1088/0031-9155/55/15/011
162.
162. F. Mantlik, M. Hofmann, M. K. Werner, A. Sauter, J. Kupferschlager, B. Scholkopf, B. J. Pichler, and T. Beyer, “The effect of patient positioning aids on PET quantification in PET/MR imaging,” Eur. J. Nucl. Med. Mol. Imaging 38(5), 920929 (2011).
http://dx.doi.org/10.1007/s00259-010-1721-9
163.
163. G. Delso, A. Martinez-Moller, R. A. Bundschuh, S. G. Nekolla, and S. I. Ziegler, “The effect of limited MR field of view in MR/PET attenuation correction,” Med. Phys. 37(6), 28042812 (2010).
http://dx.doi.org/10.1118/1.3431576
164.
164. J. Nuyts, C. Michel, M. Fenchel, G. Bal, and C. C. Watson, “Completion of a truncated attenuation image from the attenuated PET emission data,” IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 21232127 (2010).
165.
165. T. G. Turkington and J. M. Wilson, “Attenuation artifacts and time-of-flight PET,” IEEE Nuclear Science Symposium Conference Record (NSS/MIC), pp. 29972999 (2009).
166.
166. A. Salomon, A. Goedicke, B. Schweizer, T. Aach, and V. Schulz, “Simultaneous reconstruction of activity and attenuation for PET/MR,” IEEE Trans. Med. Imaging 30(3), 804813 (2011).
http://dx.doi.org/10.1109/TMI.2010.2095464
167.
167. A. J. Reader and H. Zaidi, “Advances in PET image reconstruction,” PET Clin. 2(2), 173190 (2007).
http://dx.doi.org/10.1016/j.cpet.2007.08.001
168.
168. P. J. Green, “Bayesian reconstructions from emission tomography data using a modified EM algorithm,” IEEE Trans. Med. Imaging 9(1), 8493 (1990).
http://dx.doi.org/10.1109/42.52985
169.
169. C. Comtat, P. E. Kinahan, J. A. Fessler, T. Beyer, D. W. Townsend, M. Defrise, and C. Michel, “Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels,” Phys. Med. Biol. 47(1), 120 (2002).
http://dx.doi.org/10.1088/0031-9155/47/1/301
170.
170. G. Gindi, M. Lee, A. Rangarajan, and I. G. Zubal, “Bayesian reconstruction of functional images using anatomical information as priors,” IEEE Trans. Med. Imaging 12(4), 670680 (1993).
http://dx.doi.org/10.1109/42.251117
171.
171. J. Tang and A. Rahmim, “Bayesian PET image reconstruction incorporating anato-functional joint entropy,” Phys. Med. Biol. 54(23), 70637075 (2009).
http://dx.doi.org/10.1088/0031-9155/54/23/002
172.
172. M. Soret, S. L. Bacharach, and I. Buvat, “Partial-volume effect in PET tumor imaging,” J. Nucl. Med. 48(6), 932945 (2007).
http://dx.doi.org/10.2967/jnumed.106.035774
173.
173. R. M. Kessler, J. R. Ellis, and M. Eden, “Analysis of emission tomographic scan data: Limitations imposed by resolution and background,” J. Comput. Assist. Tomogr. 8(3), 514522 (1984).
http://dx.doi.org/10.1097/00004728-198406000-00028
174.
174. L. Geworski, B. O. Knoop, M. L. de Cabrejas, W. H. Knapp, and D. L. Munz, “Recovery correction for quantitation in emission tomography: A feasibility study,” Eur. J. Nucl. Med. 27(2), 161169 (2000).
http://dx.doi.org/10.1007/s002590050022
175.
175. M. Quarantelli, K. Berkouk, A. Prinster, B. Landeau, C. Svarer, L. Balkay, B. Alfano, A. Brunetti, J.-C. Baron, and M. Salvatore, “Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction,” J. Nucl. Med. 45(2), 192201 (2004).
176.
176. A. J. Da Silva, H. R. Tang, K. H. Wong, M. C. Wu, M. W. Dae, and B. H. Hasegawa, “Absolute quantification of regional myocardial uptake of 99mTc-sestamibi with SPECT: Experimental validation in a porcine model,” J. Nucl. Med. 42, 772779 (2001).
177.
177. H. Matsuda, T. Ohnishi, T. Asada, Z. J. Li, H. Kanetaka, E. Imabayashi, F. Tanaka, and S. Nakano, “Correction for partial-volume effects on brain perfusion SPECT in healthy men,” J. Nucl. Med. 44(8), 12431252 (2003).
178.
178. M. Shidahara, C. Tsoumpas, A. Hammers, N. Boussion, D. Visvikis, T. Suhara, I. Kanno, and F. E. Turkheimer, “Functional and structural synergy for resolution recovery and partial volume correction in brain PET,” Neuroimage 44(2), 340348 (2009).
http://dx.doi.org/10.1016/j.neuroimage.2008.09.012
179.
179. K. Baete, J. Nuyts, K. V. Laere, W. Van Paesschen, S. Ceyssens, L. De Ceuninck, O. Gheysens, A. Kelles, J. Van den Eynden, P. Suetens, and P. Dupont, “Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-PET,” Neuroimage 23(1), 305317 (2004).
http://dx.doi.org/10.1016/j.neuroimage.2004.04.041
180.
180. A. Rahmim, O. Rousset, and H. Zaidi, “Strategies for motion tracking and correction in PET,” PET Clin. 2(2), 251266 (2007).
http://dx.doi.org/10.1016/j.cpet.2007.08.002
181.
181. A. J. van der Kouwe, T. Benner, and A. M. Dale, “Real-time rigid body motion correction and shimming using cloverleaf navigators,” Magn. Reson. Med. 56(5), 10191032 (2006).
http://dx.doi.org/10.1002/mrm.v56:5
182.
182. C. Tsoumpas, J. E. Mackewn, P. Halsted, A. P. King, C. Buerger, J. J. Totman, T. Schaeffter, and P. K. Marsden, “Simultaneous PET-MR acquisition and MR-derived motion fields for correction of non-rigid motion in PET,” Ann. Nucl. Med. 24(10), 745750 (2010).
http://dx.doi.org/10.1007/s12149-010-0418-2
183.
183. P. Kellman, C. Chefd’hotel, C. H. Lorenz, C. Mancini, A. E. Arai, and E. R. McVeigh, “Fully automatic, retrospective enhancement of real-time acquired cardiac cine MR images using image-based navigators and respiratory motion-corrected averaging,” Magn. Reson. Med. 59(4), 771778 (2008).
http://dx.doi.org/10.1002/mrm.v59:4
184.
184. A. H. Davarpanah, Y. P. Chen, A. Kino, C. T. Farrelly, A. N. Keeling, J. J. Sheehan, A. B. Ragin, P. J. Weale, S. Zuehlsdorff, and J. C. Carr, “Accelerated two- and three-dimensional cine MR imaging of the heart by using a 32-channel coil,” Radiology 254(1), 98108 (2010).
http://dx.doi.org/10.1148/radiol.2541090545
185.
185. J. Czernin, M. Allen-Auerbach, and H. R. Schelbert, “Improvements in cancer staging with PET/CT: Literature-based evidence as of September 2006,” J. Nucl. Med. 48 (Suppl 1), 78S88S (2007).
186.
186. M. F. Di Carli, S. Dorbala, J. Meserve, G. El Fakhri, A. Sitek, and S. C. Moore, “Clinical myocardial perfusion PET/CT,” J. Nucl. Med. 48(5), 783793 (2007).
http://dx.doi.org/10.2967/jnumed.106.032789
187.
187. P. A. Kaufmann and M. F. Di Carli, “Hybrid SPECT/CT and PET/CT imaging: The next step in noninvasive cardiac imaging,” Semin. Nucl. Med. 39(5), 341347 (2009).
http://dx.doi.org/10.1053/j.semnuclmed.2009.03.007
188.
188. D. C. Costa, L. S. Pilowsky, and P. J. Ell, “Nuclear medicine in neurology and psychiatry,” Lancet 354(9184), 11071111 (1999).
http://dx.doi.org/10.1016/S0140-6736(99)06095-X
189.
189. K. Tatsch and P. J. Ell, “PET and SPECT in common neuropsychiatric disease,” Clin. Med. 6(3), 259262 (2006).
190.
190. H.-J. Wester, “Nuclear imaging probes: From bench to bedside,” Clin. Cancer Res. 13(12), 34703481 (2007).
http://dx.doi.org/10.1158/1078-0432.CCR-07-0264
191.
191. C. A. Pelizzari, G. T. Chen, D. R. Spelbring, R. R. Weichselbaum, and C. T. Chen, “Accurate three-dimensional registration of CT, PET, and/or MR images of the brain,” J. Comput. Assist. Tomogr. 13(1), 2026 (1989).
http://dx.doi.org/10.1097/00004728-198901000-00004
192.
192. R. P. Woods, J. C. Mazziotta, and S. R. Cherry, “MRI-PET registration with automated algorithm,” J. Comput. Assist. Tomogr. 17(4), 536546 (1993).
http://dx.doi.org/10.1097/00004728-199307000-00004
193.
193. S. Gilman, “Imaging the brain. First of two parts,” N. Engl. J. Med. 338(12), 812820 (1998).
http://dx.doi.org/10.1056/NEJM199803193381207
194.
194. K. Goffin, S. Dedeurwaerdere, K. Van Laere, and W. Van Paesschen, “Neuronuclear assessment of patients with epilepsy,” Semin. Nucl. Med. 38(4), 227239 (2008).
http://dx.doi.org/10.1053/j.semnuclmed.2008.02.004
195.
195. W. Chen and D. H. S. Silverman, “Advances in evaluation of primary brain tumors,” Semin. Nucl. Med. 38(4), 240250 (2008).
http://dx.doi.org/10.1053/j.semnuclmed.2008.02.005
196.
196. H. Vees, S. Senthamizhchelvan, R. Miralbell, D. Weber, O. Ratib, and H. Zaidi, “Assessment of various strategies for 18F-FET PET-guided delineation of target volumes in high-grade glioma patients,” Eur. J. Nucl. Med. Mol. Imaging 36(2), 182193 (2009).
http://dx.doi.org/10.1007/s00259-008-0943-6
197.
197. S. Bisdas, T. Nagele, H. P. Schlemmer, A. Boss, C. D. Claussen, B. Pichler, and U. Ernemann, “Switching on the lights for real-time multimodality tumor neuroimaging: The integrated positron–emission tomography/MR imaging system,” AJNR Am. J. Neuroradiol. 31(4), 610614 (2010).
http://dx.doi.org/10.3174/ajnr.A1900
198.
198. A. Boss, S. Bisdas, A. Kolb, M. Hofmann, U. Ernemann, C. D. Claussen, C. Pfannenberg, B. J. Pichler, M. Reimold, and L. Stegger, “Hybrid PET/MRI of intracranial masses: Initial experiences and comparison to PET/CT,” J. Nucl. Med. 51(8), 11981205 (2010).
http://dx.doi.org/10.2967/jnumed.110.074773
199.
199. D. Thorwarth, G. Henke, A. C. Muller, M. Reimold, T. Beyer, A. Boss, A. Kolb, B. Pichler, and C. Pfannenberg, “Simultaneous (68)Ga-DOTATOC-PET/MRI for IMRT treatment planning for meningioma: First experience,” Int. J. Radiat. Oncol., Biol., Phys. 81(1), 277283 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2010.10.078
200.
200. A. Boss, L. Stegger, S. Bisdas, A. Kolb, N. Schwenzer, M. Pfister, C. D. Claussen, B. J. Pichler, and C. Pfannenberg, “Feasibility of simultaneous PET/MR imaging in the head and upper neck area,” Eur. Radiol. 21(7), 14391446 (2011).
http://dx.doi.org/10.1007/s00330-011-2072-z
201.
201. Z. H. Cho, Y. D. Son, H. K. Kim, N. B. Kim, E. J. Choi, S. Y. Lee, J. G. Chi, C. W. Park, Y. B. Kim, and S. Ogawa, “Observation of glucose metabolism in the thalamic nuclei by fusion PET/MRI,” J. Nucl. Med. 52(3), 401414 (2011).
http://dx.doi.org/10.2967/jnumed.110.081281
202.
202. D. Patel, A. Kell, B. Simard, B. Xiang, H. Y. Lin, and G. Tian, “The cell labeling efficacy, cytotoxicity and relaxivity of copper-activated MRI/PET imaging contrast agents,” Biomaterials 32(4), 11671176 (2011).
http://dx.doi.org/10.1016/j.biomaterials.2010.10.013
203.
203. D. Wagenaar, O. Nalcioglu, L. Muftuler, D. Meier, K. Parnham, M. Szawlowski, M. Kapusta, S. Azman, J. Gjaerum, G. Maehlum, Y. Wang, B. Tsui, and B. Patt, “A multi-ring small animal CZT system for simultaneous SPECT/MRI imaging,” J. Nucl. Med. 48, 89P (2007).
204.
204. M. J. Hamamura, S. Ha, W. W. Roeck, L. T. Muftuler, D. J. Wagenaar, D. Meier, B. E. Patt, and O. Nalcioglu, “Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition,” Phys. Med. Biol. 55(6), 15631575 (2010).
http://dx.doi.org/10.1088/0031-9155/55/6/002
205.
205. K. S. Lee, W. W. Roeck, G. T. Gullberg, and O. Nalcioglu, “MR-based keyhole SPECT for small animal imaging,” Phys. Med. Biol. 56(3), 685702 (2011).
http://dx.doi.org/10.1088/0031-9155/56/3/010
206.
207.
207. G. Llosa, J. Barrio, C. Lacasta, M. G. Bisogni, A. Del Guerra, S. Marcatili, P. Barrillon, S. Bondil-Blin, C. de la Taille, and C. Piemonte, “Characterization of a PET detector head based on continuous LYSO crystals and monolithic, 64-pixel silicon photomultiplier matrices,” Phys. Med. Biol. 55(23), 72997315 (2010).
http://dx.doi.org/10.1088/0031-9155/55/23/008
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/38/10/10.1118/1.3633909
Loading
/content/aapm/journal/medphys/38/10/10.1118/1.3633909
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/38/10/10.1118/1.3633909
2011-09-26
2014-10-25

Abstract

Early diagnosis and therapy increasingly operate at the cellular, molecular, or even at the genetic level. As diagnostic techniques transition from the systems to the molecular level, the role of multimodality molecular imaging becomes increasingly important. Positron emission tomography(PET) and magnetic resonance imaging(MRI) are powerful techniques for in vivo molecular imaging. The inability of PET to provide anatomical information is a major limitation of standalone PETsystems. Combining PET and CT proved to be clinically relevant and successfully reduced this limitation by providing the anatomical information required for localization of metabolic abnormalities. However, this technology still lacks the excellent soft-tissue contrast provided by MRI. Standalone MRIsystems reveal structure and function but cannot provide insight into the physiology and/or the pathology at the molecular level. The combination of PET and MRI, enabling truly simultaneous acquisition, bridges the gap between molecular and systems diagnosis. MRI and PET offer richly complementary functionality and sensitivity; fusion into a combined system offering simultaneous acquisition will capitalize the strengths of each, providing a hybrid technology that is greatly superior to the sum of its parts. A combined PET/MRI system provides both the anatomical and structural description of MRI simultaneously with the quantitative capabilities of PET. In addition, such a system would allow exploiting the power of MR spectroscopy (MRS) to measure the regional biochemical content and to assess the metabolic status or the presence of neoplasia and other diseases in specific tissue areas. This paper briefly summarizes state-of-the-art developments and latest advances in dedicated hybrid PET/MRI instrumentation. Future prospects and potential clinical applications of this technology will also be discussed.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/38/10/1.3633909.html;jsessionid=60dlo1lndfea9.x-aip-live-03?itemId=/content/aapm/journal/medphys/38/10/10.1118/1.3633909&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: An outlook on future design of hybrid PET/MRI systems
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/38/10/10.1118/1.3633909
10.1118/1.3633909
SEARCH_EXPAND_ITEM