1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Dosimetry tools and techniques for IMRT
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/38/3/10.1118/1.3514120
1.
1.B. Fraass, K. Doppke, M. Hunt, G. Kutcher, G. Starkschall, R. Stern, and J. Van Dyke, “American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning,” Med. Phys. 25, 17731829 (1998).
http://dx.doi.org/10.1118/1.598373
2.
2.F. M. Khan, The Physics of Radiation Therapy, 3rd ed. (Lippincott Williams & Wilkins, Philadelphia, 2003).
3.
3.G. J. Kutcher et al., “Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40,” Med. Phys. 21, 581618 (1994).
http://dx.doi.org/10.1118/1.597316
4.
4.J. Zhu, F. F. Yin, and J. H. Kim, “Point dose verification for intensity modulated radiosurgery using Clarkson’s method,” Med. Phys. 30, 22182221 (2003).
http://dx.doi.org/10.1118/1.1589495
5.
5.A. Boyer, L. Xing, C. M. Ma, B. Curran, R. Hill, A. Kania, and A. Bleier, “Theoretical considerations of monitor unit calculations for intensity modulated beam treatment planning,” Med. Phys. 26, 187195 (1999).
http://dx.doi.org/10.1118/1.598502
6.
6.Z. Chen, L. Xing, and R. Nath, “Independent monitor unit calculation for intensity modulated radiotherapy using the MIMiC multileaf collimator,” Med. Phys. 29, 20412051 (2002).
http://dx.doi.org/10.1118/1.1500397
7.
7.J. H. Kung, G. T. Chen, and F. K. Kuchnir, “A monitor unit verification calculation in intensity modulated radiotherapy as a dosimetry quality assurance,” Med. Phys. 27, 22262230 (2000).
http://dx.doi.org/10.1118/1.1286553
8.
8.J. S. Tsai, M. J. Engler, and J. Liu, “Quasi-independent monitor unit calculation for intensity modulated sequential tomotherapy,” J. Appl. Clin. Med. Phys. 3, 135153 (2002).
http://dx.doi.org/10.1120/1.1465772
9.
9.L. Xing, Y. Chen, G. Luxton, J. G. Li, and A. L. Boyer, “Monitor unit calculation for an intensity modulated photon field by a simple scatter-summation algorithm,” Phys. Med. Biol. 45, N1N7 (2000).
http://dx.doi.org/10.1088/0031-9155/45/3/401
10.
10.X. Chen, N. J. Yue, W. Chen, C. B. Saw, D. E. Heron, D. Stefanik, R. Antemann, and M. S. Huq, “A dose verification method using a monitor unit matrix for dynamic IMRT on Varian linear accelerators,” Phys. Med. Biol. 50, 56415652 (2005).
http://dx.doi.org/10.1088/0031-9155/50/23/016
11.
11.J. M. Galvin, G. Ezzell, A. Eisbrauch, C. Yu, B. Butler, Y. Xiao, I. Rosen, J. Rosenman, M. Sharpe, L. Xing, P. Xia, T. Lomax, D. A. Low, and J. Palta, “Implementing IMRT in clinical practice: A joint document of the American Society for Therapeutic Radiology and Oncology and the American Association of Physicists in Medicine,” Int. J. Radiat. Oncol., Biol., Phys. 58, 16161634 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2003.12.008
12.
12.Y. Yang, L. Xing, J. G. Li, J. Palta, Y. Chen, G. Luxton, and A. Boyer, “Independent dosimetric calculation with inclusion of head scatter and MLC transmission for IMRT,” Med. Phys. 30, 29372947 (2003).
http://dx.doi.org/10.1118/1.1617391
13.
13.G. A. Ezzell, J. M. Galvin, D. Low, J. R. Palta, I. Rosen, M. B. Sharpe, P. Xia, Y. Xiao, L. Xing, and C. X. Yu, “Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee,” Med. Phys. 30, 20892115 (2003).
http://dx.doi.org/10.1118/1.1591194
14.
14.L. Dong, J. Antolak, M. Salehpour, K. Forster, L. O’Neill, R. Kendall, and I. Rosen, “Patient-specific point dose measurement for IMRT monitor unit verification,” Int. J. Radiat. Oncol., Biol., Phys. 56, 867877 (2003).
http://dx.doi.org/10.1016/S0360-3016(03)00197-4
15.
15.D. A. Low, “Quality assurance of intensity-modulated radiotherapy,” Semin. Radiat. Oncol. 12, 219228 (2002).
http://dx.doi.org/10.1053/srao.2002.33700
16.
16.I. J. Das, C. W. Cheng, R. J. Watts, A. Ahnesjo, J. Gibbons, X. A. Li, J. Lowenstein, R. K. Mitra, W. E. Simon, and T. C. Zhu, “Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM,” Med. Phys. 35, 41864215 (2008).
http://dx.doi.org/10.1118/1.2969070
17.
17.G. A. Ezzell, J. W. Burmeister, N. Dogan, T. J. LoSasso, J. G. Mechalakos, D. Mihailidis, A. Molineu, J. R. Palta, C. R. Ramsey, B. J. Salter, J. Shi, P. Xia, N. J. Yue, and Y. Xiao, “IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119,” Med. Phys. 36, 53595373 (2009).
http://dx.doi.org/10.1118/1.3238104
18.
18.E. E. Klein, J. Hanley, J. Bayouth, F. F. Yin, W. Simon, S. Dresser, C. Serago, F. Aguirre, L. Ma, B. Arjomandy, C. Liu, C. Sandin, and T. Holmes, “Task Group 142 report: Quality assurance of medical accelerators,” Med. Phys. 36, 41974212 (2009).
http://dx.doi.org/10.1118/1.3190392
19.
19.D. A. Low, S. Mutic, J. F. Dempsey, R. L. Gerber, W. R. Bosch, C. A. Perez, and J. A. Purdy, “Quantitative dosimetric verification of an IMRT planning and delivery system,” Radiother. Oncol. 49, 305316 (1998).
http://dx.doi.org/10.1016/S0167-8140(98)00125-X
20.
20.C. Martens, C. De Wagter, and W. De Neve, “The value of the PinPoint ion chamber for characterization of small field segments used in intensity-modulated radiotherapy,” Phys. Med. Biol. 45, 25192530 (2000).
http://dx.doi.org/10.1088/0031-9155/45/9/306
21.
21.M. Bucciolini, F. B. Buonamici, S. Mazzocchi, C. De Angelis, S. Onori, and G. A. Cirrone, “Diamond detector versus silicon diode and ion chamber in photon beams of different energy and field size,” Med. Phys. 30, 21492154 (2003).
http://dx.doi.org/10.1118/1.1591431
22.
22.W. U. Laub and T. Wong, “The volume effect of detectors in the dosimetry of small fields used in IMRT,” Med. Phys. 30, 341347 (2003).
http://dx.doi.org/10.1118/1.1544678
23.
23.L. B. Leybovich, A. Sethi, and N. Dogan, “Comparison of ionization chambers of various volumes for IMRT absolute dose verification,” Med. Phys. 30, 119123 (2003).
http://dx.doi.org/10.1118/1.1536161
24.
24.D. A. Low, P. Parikh, J. F. Dempsey, S. Wahab, and S. Huq, “Ionization chamber volume averaging effects in dynamic intensity modulated radiation therapy beams,” Med. Phys. 30, 17061711 (2003).
http://dx.doi.org/10.1118/1.1582558
25.
25.H. Bouchard and J. Seuntjens, “Ionization chamber-based reference dosimetry of intensity modulated radiation beams,” Med. Phys. 31, 24542465 (2004).
http://dx.doi.org/10.1118/1.1781333
26.
26.R. Capote, F. Sanchez-Doblado, A. Leal, J. I. Lagares, R. Arrans, and G. H. Hartmann, “An EGSnrc Monte Carlo study of the microionization chamber for reference dosimetry of narrow irregular IMRT beamlets,” Med. Phys. 31, 24162422 (2004).
http://dx.doi.org/10.1118/1.1767691
27.
27.K. A. Paskalev, J. P. Seuntjens, H. J. Patrocinio, and E. B. Podgorsak, “Physical aspects of dynamic stereotactic radiosurgery with very small photon beams (1.5 and 3 mm in diameter),” Med. Phys. 30, 111118 (2003).
http://dx.doi.org/10.1118/1.1536290
28.
28.F. Sánchez-Doblado, P. Andreo, R. Capote, A. Leal, M. Perucha, R. Arráns, L. Núñez, E. Mainegra, J. I. Lagares, and E. Carrasco, “Ionization chamber dosimetry of small photon fields: A Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams,” Phys. Med. Biol. 48, 20812099 (2003).
http://dx.doi.org/10.1088/0031-9155/48/14/304
29.
29.F. Sánchez-Doblado, R. Capote, A. Leal, J. V. Roselló, J. I. Lagares, R. Arráns, and G. H. Hartmann, “Microionization chamber for reference dosimetry in IMRT verification: Clinical implications on OAR dosimetric errors,” Phys. Med. Biol. 50, 959970 (2005).
http://dx.doi.org/10.1088/0031-9155/50/5/018
30.
30.F. Sánchez-Doblado, R. Capote, J. V. Roselló, A. Leal, J. I. Lagares, R. Arráns, and G. H. Hartmann, “Micro ionization chamber dosimetry in IMRT verification: Clinical implications of dosimetric errors in the PTV,” Radiother. Oncol. 75, 342348 (2005).
http://dx.doi.org/10.1016/j.radonc.2005.04.011
31.
31.L. J. Humphries and J. A. Purdy, in Advances in Radiation Oncology Physics Dosimetry, Treatment Planning, and Brachytherapy, AAPM Monograph Vol. 19, edited by J. A. Purdy (AAPM, 1992).
32.
32.M. Westermark, J. Arndt, B. Nilsson, and A. Brahme, “Comparative dosimetry in narrow high-energy photon beams,” Phys. Med. Biol. 45, 685702 (2000).
http://dx.doi.org/10.1088/0031-9155/45/3/308
33.
33.P. D. Higgins, P. Alaei, B. J. Gerbi, and K. E. Dusenbery, “In vivo diode dosimetry for routine quality assurance in IMRT,” Med. Phys. 30, 31183123 (2003).
http://dx.doi.org/10.1118/1.1626989
34.
34.I. Griessbach, M. Lapp, J. Bohsung, G. Gademann, and D. Harder, “Dosimetric characteristics of a new unshielded silicon diode and its application in clinical photon and electron beams,” Med. Phys. 32, 37503754 (2005).
http://dx.doi.org/10.1118/1.2124547
35.
35.C. McKerracher and D. I. Thwaites, “Assessment of new small-field detectors against standard-field detectors for practical stereotactic beam data acquisition,” Phys. Med. Biol. 44, 21432160 (1999).
http://dx.doi.org/10.1088/0031-9155/44/9/303
36.
36.C. Li, L. S. Lamel, and D. Tom, “A patient dose verification program using diode detectors,” Med. Dosim. 20, 209214 (1995).
http://dx.doi.org/10.1016/0958-3947(95)00018-R
37.
37.T. Wolff, S. Carter, K. A. Langmack, N. I. Twyman, and P. P. Dendy, “Characterization and use of a commercial n-type diode system,” Br. J. Radiol. 71, 11681177 (1998).
38.
38.X. R. Zhu, “Entrance dose measurements for in-vivo diode dosimetry: Comparison of correction factors for two types of commercial silicon diode detectors,” J. Appl. Clin. Med. Phys. 1, 100107 (2000).
http://dx.doi.org/10.1120/1.308253
39.
39.G. Rikner and E. Grusell, “General specifications for silicon semiconductors for use in radiation dosimetry,” Phys. Med. Biol. 32, 11091117 (1987).
http://dx.doi.org/10.1088/0031-9155/32/9/004
40.
40.B. Nilsson, B. I. Ruden, and B. Sorcini, “Characteristics of silicon diodes as patient dosimeters in external radiation therapy,” Radiother. Oncol. 11, 279288 (1988).
http://dx.doi.org/10.1016/0167-8140(88)90011-4
41.
41.S. N. Rustgi, “Evaluation of the dosimetric characteristics of a diamond detector for photon beam measurements,” Med. Phys. 22, 567570 (1995).
http://dx.doi.org/10.1118/1.597543
42.
42.S. N. Rustgi and D. M. Frye, “Dosimetric characterization of radiosurgical beams with a diamond detector,” Med. Phys. 22, 21172121 (1995).
http://dx.doi.org/10.1118/1.597655
43.
43.C. De Angelis, S. Onori, M. Pacilio, G. A. Cirrone, G. Cuttone, L. Raffaele, M. Bucciolini, and S. Mazzocchi, “An investigation of the operating characteristics of two PTW diamond detectors in photon and electron beams,” Med. Phys. 29, 248254 (2002).
http://dx.doi.org/10.1118/1.1446101
44.
44.M. Benabdesselam, B. Serrano, P. Iacconi, F. Wrobel, D. Lapraz, J. Herault, and J. E. Butler, “Thermoluminescence properties of CVD diamond for clinical dosimetry use,” Radiat. Prot. Dosim. 120, 8790 (2006).
http://dx.doi.org/10.1093/rpd/nci595
45.
45.C. De Angelis, M. Bucciolini, M. Casati, I. Lovik, M. Bruzzi, S. Lagomarsino, S. Sciortino, and S. Onori, “Improvements in CVD diamond properties for radiotherapy dosimetry,” Radiat. Prot. Dosim. 120, 3842 (2006).
http://dx.doi.org/10.1093/rpd/nci508
46.
46.B. Marczewska, P. Olko, M. Nesladek, M. P. Waligorski, and Y. Kerremans, “CVD diamonds as thermoluminescent detectors for medical applications,” Radiat. Prot. Dosim. 101, 485488 (2002).
47.
47.M. Bruzzi, M. Bucciolini, M. Casati, C. DeAngelis, S. Lagomarsino, I. Lovik, S. Onori, and S. Sciortino, “CVD diamond particle detectors used as on-line dosimeters in clinical radiotherapy,” Nucl. Instrum. Methods Phys. Res. A 518, 421422 (2004).
http://dx.doi.org/10.1016/j.nima.2003.11.046
48.
48.C. M. Buttar, J. Conway, R. Meyfarth, G. Scarsbrook, P. J. Sellin, and A. Whitehead, “CVD diamond detectors as dosimeters for radiotherapy,” Nucl. Instrum. Methods Phys. Res. A 392, 281284 (1997).
http://dx.doi.org/10.1016/S0168-9002(97)00296-9
49.
49.G. Cuttone, L. Azario, L. B. Tonghi, E. Borchi, D. Boscarino, M. Bruzzi, M. Bucciolini, G. A. P. Cirrone, C. De Angelis, G. Della Mea, P. Fattibene, C. Gori, A. Guasti, S. Maggioni, S. Mazzocchi, S. Onori, M. Pacilio, E. Petetti, A. Piermattei, S. Pirollo, A. Quaranta, L. Raffaele, V. Rigato, A. Rovelli, M. G. Sabini, S. Sciortino, and G. Zatelli, “The CANDIDO project: Development of a CVD diamond dosimeter for applications in radiotherapy,” Nucl. Phys. B, Proc. Suppl. 78, 587591 (1999).
http://dx.doi.org/10.1016/S0920-5632(99)00609-X
50.
50.A. Fidanzio, L. Azario, R. Kalish, Y. Avigal, G. Conte, and P. Ascarelli, “A preliminary dosimetric characterization of chemical vapor deposition diamond detector prototypes in photon and electron radiotherapy beams,” Med. Phys. 32, 389395 (2005).
http://dx.doi.org/10.1118/1.1851887
51.
51.M. J. Guerrero, D. Tromson, P. Bergonzo, and R. Barrett, “Investigation of defects in CVD diamond: Influence for radiotherapy applications,” Nucl. Instrum. Methods Phys. Res. A 552, 105111 (2005).
http://dx.doi.org/10.1016/j.nima.2005.06.015
52.
52.M. Jung, J. Morel, and P. Siffert, “Real-time high intensity x-ray dosimetry diamond monitors: Response simulations compared to silicon sensitivities,” Nucl. Instrum. Methods Phys. Res. A 554, 514526 (2005).
http://dx.doi.org/10.1016/j.nima.2005.07.063
53.
53.C. Manfredotti, “CVD diamond detectors for nuclear and dosimetric applications,” Diamond Relat. Mater. 14, 531540 (2005).
http://dx.doi.org/10.1016/j.diamond.2004.11.037
54.
54.A. J. Whitehead, R. Airey, C. M. Buttar, J. Conway, G. Hill, S. Ramkumar, G. A. Scarsbrook, R. S. Sussmann, and S. Walker, “CVD diamond for medical dosimetry applications,” Nucl. Instrum. Methods Phys. Res. A 460, 2026 (2001).
http://dx.doi.org/10.1016/S0168-9002(00)01090-1
55.
55.C. Burman, C. S. Chui, G. Kutcher, S. Leibel, M. Zelefsky, T. LoSasso, S. Spirou, Q. Wu, J. Yang, J. Stein, R. Mohan, Z. Fuks, and C. C. Ling, “Planning, delivery, and quality assurance of intensity-modulated radiotherapy using dynamic multileaf collimator: A strategy for large-scale implementation for the treatment of carcinoma of the prostate,” Int. J. Radiat. Oncol., Biol., Phys. 39, 863873 (1997).
http://dx.doi.org/10.1016/S0360-3016(97)00458-6
56.
56.D. A. Low, K. S. Chao, S. Mutic, R. L. Gerber, C. A. Perez, and J. A. Purdy, “Quality assurance of serial tomotherapy for head and neck patient treatments,” Int. J. Radiat. Oncol., Biol., Phys. 42, 681692 (1998).
http://dx.doi.org/10.1016/S0360-3016(98)00273-9
57.
57.H. Parsai, M. H. Phillips, P. S. Cho, H. Kippenes, P. Gavin, and D. Axen, “Verification of dynamic intensity-modulated beam deliveries in canine subjects,” Med. Phys. 28, 21982208 (2001).
http://dx.doi.org/10.1118/1.1414010
58.
58.H. A. Al-Hallaq, C. S. Reft, and J. C. Roeske, “The dosimetric effects of tissue heterogeneities in intensity-modulated radiation therapy (IMRT) of the head and neck,” Phys. Med. Biol. 51, 11451156 (2006).
http://dx.doi.org/10.1088/0031-9155/51/5/007
59.
59.P. Cadman, R. Bassalow, N. P. Sidhu, G. Ibbott, and A. Nelson, “Dosimetric considerations for validation of a sequential IMRT process with a commercial treatment planning system,” Phys. Med. Biol. 47, 30013010 (2002).
http://dx.doi.org/10.1088/0031-9155/47/16/314
60.
60.P. E. Engström, P. Haraldsson, T. Landberg, H. Sand Hansen, S. Aage Engelholm, and H. Nyström, “In vivo dose verification of IMRT treated head and neck cancer patients,” Acta Oncol. 44, 572578 (2005).
http://dx.doi.org/10.1080/02841860500218983
61.
61.E. Gershkevitsh, C. H. Clark, J. Staffurth, D. P. Dearnaley, and K. R. Trott, “Dose to bone marrow using IMRT techniques in prostate cancer patients,” Strahlenther. Onkol. 181, 172178 (2005).
http://dx.doi.org/10.1007/s00066-005-1360-4
62.
62.P. Haraldsson, T. Knoos, H. Nystrom and P. Engstrom, “Monte Carlo study of TLD measurements in air cavities,” Phys. Med. Biol. 48, N253N259 (2003).
http://dx.doi.org/10.1088/0031-9155/48/18/401
63.
63.N. Linthout, D. Verellen, S. Van Acker, M. De Cock, and G. Storme, “Dosimetric evaluation of partially overlapping intensity modulated beams using dynamic mini-multileaf collimation,” Med. Phys. 30, 846855 (2003).
http://dx.doi.org/10.1118/1.1562170
64.
64.D. A. Low, J. F. Dempsey, R. Venkatesan, S. Mutic, J. Markman, E. Mark Haacke, and J. A. Purdy, “Evaluation of polymer gels and MRI as a 3-D dosimeter for intensity-modulated radiation therapy,” Med. Phys. 26, 15421551 (1999).
http://dx.doi.org/10.1118/1.598650
65.
65.D. A. Low, R. L. Gerber, S. Mutic, and J. A. Purdy, “Phantoms for IMRT dose distribution measurement and treatment verification,” Int. J. Radiat. Oncol., Biol., Phys. 40, 12311235 (1998).
http://dx.doi.org/10.1016/S0360-3016(97)00910-3
66.
66.T. Pawlicki, G. Luxton, Q. T. Le, D. Findley, and C. M. Ma, “Lens dose in MLC-based IMRT treatments of the head and neck,” Int. J. Radiat. Oncol., Biol., Phys. 59, 293299 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.01.019
67.
67.I. A. Popescu, C. P. Shaw, S. F. Zavgorodni, and W. A. Beckham, “Absolute dose calculations for Monte Carlo simulations of radiotherapy beams,” Phys. Med. Biol. 50, 33753392 (2005).
http://dx.doi.org/10.1088/0031-9155/50/14/013
68.
68.S. L. Richardson, W. A. Tome, N. P. Orton, T. R. McNutt, and B. R. Paliwal, “IMRT delivery verification using a spiral phantom,” Med. Phys. 30, 25532558 (2003).
http://dx.doi.org/10.1118/1.1603965
69.
69.F. Bagne, “A comprehensive study of LiF TL response to high energy photons and electrons,” Radiology 123, 753760 (1977).
70.
70.J. Dalgleish, “Letter: TLD system for radiotherapy monitoring,” Phys. Med. Biol. 18, 465467 (1973).
http://dx.doi.org/10.1088/0031-9155/18/3/013
71.
71.M. J. Rossiter, “The use of precision thermoluminescence dosimetry for intercomparison of absorbed dose,” Phys. Med. Biol. 20, 735746 (1975).
http://dx.doi.org/10.1088/0031-9155/20/5/004
72.
72.B. I. Ruden, “Evaluation of the clinical use of TLD,” Acta Radiol. Ther. Phys. Biol. 15, 447464 (1976).
73.
73.M. S. Tarakanath and J. Novotny, “Thermoluminescence dosimetry in clinical radiation dose measurements,” Strahlentherapie 152, 7177 (1976).
74.
74.A. J. Troncalli and J. Chapman, “TLD linearity vs. beam energy and modality,” Med. Dosim. 27, 295296 (2002).
http://dx.doi.org/10.1016/S0958-3947(02)00152-8
75.
75.F. M. Khan, K. P. Doppke, K. R. Hogstrom, G. J. Kutcher, R. Nath, S. C. Prasad, J. A. Purdy, M. Rozenfeld, and B. L. Werner, “Clinical electron-beam dosimetry: Report of AAPM Radiation Therapy Committee Task Group No. 25,” Med. Phys. 18, 73109 (1991).
http://dx.doi.org/10.1118/1.596695
76.
76.J. Balog, D. Lucas, C. DeSouza, and R. Crilly, “Helical tomotherapy radiation leakage and shielding considerations,” Med. Phys. 32, 710719 (2005).
http://dx.doi.org/10.1118/1.1861521
77.
77.J. F. Fowler, J. S. Welsh, and S. P. Howard, “Loss of biological effect in prolonged fraction delivery,” Int. J. Radiat. Oncol., Biol., Phys. 59, 242249 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.01.004
78.
78.S. F. Kry, M. Salehpour, D. S. Followill, M. Stovall, D. A. Kuban, R. A. White, and I. I. Rosen, “The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 62, 11951203 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2005.03.053
79.
79.E. A. Miles, C. H. Clark, M. T. Urbano, M. Bidmead, D. P. Dearnaley, K. J. Harrington, R. A’Hern, and C. M. Nutting, “The impact of introducing intensity modulated radiotherapy into routine clinical practice,” Radiother. Oncol. 77, 241246 (2005).
http://dx.doi.org/10.1016/j.radonc.2005.10.011
80.
80.F. Sterzing, M. W. Munter, M. Schafer, P. Haering, B. Rhein, C. Thilmann, and J. Debus, “Radiobiological investigation of dose-rate effects in intensity-modulated radiation therapy,” Strahlenther. Onkol. 181, 4248 (2005).
http://dx.doi.org/10.1007/s00066-005-1290-1
81.
81.J. Z. Wang, X. A. Li, W. D. D’Souza, and R. D. Stewart, “Impact of prolonged fraction delivery times on tumor control: A note of caution for intensity-modulated radiation therapy (IMRT),” Int. J. Radiat. Oncol., Biol., Phys. 57, 543552 (2003).
http://dx.doi.org/10.1016/S0360-3016(03)00499-1
82.
82.F. García-Vicente, J. M. Delgado, and C. Peraza, “Experimental determination of the convolution kernel for the study of the spatial response of a detector,” Med. Phys. 25, 202207 (1998).
http://dx.doi.org/10.1118/1.598182
83.
83.G. Bednarz, M. Saiful Huq, and U. F. Rosenow, “Deconvolution of detector size effect for output factor measurement for narrow Gamma Knife radiosurgery beams,” Phys. Med. Biol. 47, 36433649 (2002).
http://dx.doi.org/10.1088/0031-9155/47/20/306
84.
84.D. A. Low, J. F. Dempsey, J. Markman, S. Mutic, E. E. Klein, J. W. Sohn, and J. A. Purdy, “Toward automated quality assurance for intensity-modulated radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 53, 443452 (2002).
http://dx.doi.org/10.1016/S0360-3016(01)02818-8
85.
85.A. Mack, H. Czempiel, H. J. Kreiner, G. Durr, and B. Wowra, “Quality assurance in stereotactic space. A system test for verifying the accuracy of aim in radiosurgery,” Med. Phys. 29, 561568 (2002).
http://dx.doi.org/10.1118/1.1463062
86.
86.W. L. McLaughlin, C. G. Soares, J. A. Sayeg, E. C. McCullough, R. W. Kline, A. Wu, and A. H. Maitz, “The use of a radiochromic detector for the determination of stereotactic radiosurgery dose characteristics,” Med. Phys. 21, 379388 (1994).
http://dx.doi.org/10.1118/1.597384
87.
87.R. Ramani, A. W. Lightstone, D. L. Mason, and P. F. O’Brien, “The use of radiochromic film in treatment verification of dynamic stereotactic radiosurgery,” Med. Phys. 21, 389392 (1994).
http://dx.doi.org/10.1118/1.597385
88.
88.H. Shiomi, T. Inoue, S. Nakamura, and T. Inoue, “Quality assurance for an image-guided frameless radiosurgery system using radiochromic film,” Radiat. Med. 18, 107113 (2000).
89.
89.T. Yasuda, J. Beatty, P. J. Biggs, and K. Gall, “Two-dimensional dose distribution of a miniature x-ray device for stereotactic radiosurgery,” Med. Phys. 25, 12121216 (1998).
http://dx.doi.org/10.1118/1.598298
90.
90.M. R. Arnfield, K. Otto, V. R. Aroumougame, and R. D. Alkins, “The use of film dosimetry of the penumbra region to improve the accuracy of intensity modulated radiotherapy,” Med. Phys. 32, 1218 (2005).
http://dx.doi.org/10.1118/1.1829246
91.
91.J. C. L. Chow, B. Wettlaufer, and R. Q. Jiang, “Dosimetric effects on the penumbra region of irregular multi-leaf collimated fields,” Phys. Med. Biol. 51, N31N38 (2006).
http://dx.doi.org/10.1088/0031-9155/51/3/N01
92.
92.S. Agostinelli, S. Garelli, M. Piergentili, and F. Foppiano, “Response to high-energy photons of PTW31014 PinPoint ion chamber with a central aluminum electrode,” Med. Phys. 35, 32933301 (2008).
http://dx.doi.org/10.1118/1.2940190
93.
93.S. Pai, I. J. Das, J. F. Dempsey, K. L. Lam, T. J. Losasso, A. J. Olch, J. R. Palta, L. E. Reinstein, D. Ritt, and E. E. Wilcox, “TG-69: Radiographic film for megavoltage beam dosimetry,” Med. Phys. 34, 22282258 (2007).
http://dx.doi.org/10.1118/1.2736779
94.
94.T. M. Bogucki, W. R. Murphy, C. W. Baker, S. S. Piazza, and A. G. Haus, “Processor quality control in laser imaging systems,” Med. Phys. 24, 581584 (1997).
http://dx.doi.org/10.1118/1.597940
95.
95.A. Niroomand-Rad, C. R. Blackwell, B. M. Coursey, K. P. Gall, J. M. Galvin, W. L. McLaughlin, A. S. Meigooni, R. Nath, J. E. Rodgers, and C. G. Soares, “Radiochromic film dosimetry: Recommendations of AAPM Radiation Therapy Committee Task Group 55. American Association of Physicists in Medicine,” Med. Phys. 25, 20932115 (1998).
http://dx.doi.org/10.1118/1.598407
96.
96.M. J. Butson, T. Cheung, and P. K. Yu, “Spatial resolution of a stacked radiochromic film dosimeter,” Radiother. Oncol. 61, 211213 (2001).
http://dx.doi.org/10.1016/S0167-8140(01)00442-X
97.
97.M. J. Butson, J. N. Mathur, and P. E. Metcalfe, “Radiochromic film as a radiotherapy surface-dose detector,” Phys. Med. Biol. 41, 10731078 (1996).
http://dx.doi.org/10.1088/0031-9155/41/6/011
98.
98.T. Cheung, M. J. Butso, and P. K. Yu, “Use of multiple layers of Gafchromic film to increase sensitivity,” Phys. Med. Biol. 46, N235N240 (2001).
http://dx.doi.org/10.1088/0031-9155/46/10/401
99.
99.J. F. Dempsey, D. A. Low, S. Mutic, J. Markman, A. S. Kirov, G. H. Nussbaum, and J. F. Williamson, “Validation of a precision radiochromic film dosimetry system for quantitative two-dimensional imaging of acute exposure dose distributions,” Med. Phys. 27, 24622475 (2000).
http://dx.doi.org/10.1118/1.1290488
100.
100.P. O. Kellermann, A. Ertl, and E. Gornik, “A new method of readout in radiochromic film dosimetry,” Phys. Med. Biol. 43, 22512263 (1998).
http://dx.doi.org/10.1088/0031-9155/43/8/018
101.
101.L. E. Reinstein and G. R. Gluckman, “Comparison of dose response of radiochromic film measured with He-Ne laser, broadband, and filtered light densitometers,” Med. Phys. 24, 15311533 (1997).
http://dx.doi.org/10.1118/1.598043
102.
102.L. E. Reinstein, G. R. Gluckman, and H. I. Amols, “Predicting optical densitometer response as a function of light source characteristics for radiochromic film dosimetry,” Med. Phys. 24, 19351942 (1997).
http://dx.doi.org/10.1118/1.598107
103.
103.L. E. Reinstein, G. R. Gluckman, and A. G. Meek, “A rapid colour stabilization technique for radiochromic film dosimetry,” Phys. Med. Biol. 43, 27032708 (1998).
http://dx.doi.org/10.1088/0031-9155/43/10/001
104.
104.M. J. Butson, T. Cheung, and P. K. Yu, “Absorption spectra variations of EBT radiochromic film from radiation exposure,” Phys. Med. Biol. 50, N135N140 (2005).
http://dx.doi.org/10.1088/0031-9155/50/13/N02
105.
105.S. A. Dini, R. A. Koona, J. R. Ashburn, and A. S. Meigoonia, “Dosimetric evaluation of GAFCHROMIC XR type T and XR type R films,” J. Appl. Clin. Med. Phys. 6, 114134 (2005).
http://dx.doi.org/10.1120/jacmp.2023.25329
106.
106.T. Wiezorek, N. Banz, M. Schwedas, M. Scheithauer, H. Salz, D. Georg, and T. G. Wendt, “Dosimetric quality assurance for intensity-modulated radiotherapy feasibility study for a filmless approach,” Strahlenther. Onkol. 181, 468474 (2005).
http://dx.doi.org/10.1007/s00066-005-1381-z
107.
107.S. T. Chiu-Tsao, Y. Ho, R. Shankar, L. Wang, and L. B. Harrison, “Energy dependence of response of new high sensitivity radiochromic films for megavoltage and kilovoltage radiation energies,” Med. Phys. 32, 33503354 (2005).
http://dx.doi.org/10.1118/1.2065467
108.
108.T. Cheung, M. J. Butson, and P. K. Yu, “Experimental energy response verification of XR type T radiochromic film,” Phys. Med. Biol. 49, N371N376 (2004).
http://dx.doi.org/10.1088/0031-9155/49/21/N02
109.
109.M. J. Butson, P. K. Yu, T. Cheung, and P. Metcalfe, “High sensitivity radiochromic film dose comparisons,” Phys. Med. Biol. 47, N291N295 (2002).
http://dx.doi.org/10.1088/0031-9155/47/22/402
110.
110.M. J. Butson, P. K. Yu, T. Cheung, and D. Inwood, “Polarization effects on a high-sensitivity radiochromic film,” Phys. Med. Biol. 48, N207N211 (2003).
http://dx.doi.org/10.1088/0031-9155/48/15/401
111.
111.T. Cheung, M. J. Butson, and P. K. Yu, “Post-irradiation colouration of Gafchromic EBT radiochromic film,” Phys. Med. Biol. 50, N281N285 (2005).
http://dx.doi.org/10.1088/0031-9155/50/20/N04
112.
112.M. J. Butson, T. Cheung, and P. K. Yu, “Visible absorption properties of radiation exposed XR type-T radiochromic film,” Phys. Med. Biol. 49, N347N351 (2004).
http://dx.doi.org/10.1088/0031-9155/49/19/N04
113.
113.B. D. Lynch, J. Kozelka, M. K. Ranade, J. G. Li, W. E. Simon, and J. F. Dempsey, “Important considerations for radiochromic film dosimetry with flatbed CCD scanners and EBT GAFCHROMIC film,” Med. Phys. 33, 45514556 (2006).
http://dx.doi.org/10.1118/1.2370505
114.
114.C. G. Soares, “New developments in radiochromic film dosimetry,” Radiat. Prot. Dosim. 120, 100106 (2006).
http://dx.doi.org/10.1093/rpd/nci698
115.
115.M. Bazioglou and J. Kalef-Ezra, “Dosimetry with radiochromic films: A document scanner technique, neutron response, applications,” Appl. Radiat. Isot. 55, 339345 (2001).
http://dx.doi.org/10.1016/S0969-8043(01)00060-4
116.
116.L. Paelinck, W. De Neve, and C. De Wagter, “Precautions and strategies in using a commercial flatbed scanner for radiochromic film dosimetry,” Phys. Med. Biol. 52, 231242 (2007).
http://dx.doi.org/10.1088/0031-9155/52/1/015
117.
117.J. E. Bayouth, D. Wendt, and S. M. Morrill, “MLC quality assurance techniques for IMRT applications,” Med. Phys. 30, 743750 (2003).
http://dx.doi.org/10.1118/1.1564091
118.
118.M. Bucciolini, F. B. Buonamici, and M. Casati, “Verification of IMRT fields by film dosimetry,” Med. Phys. 31, 161168 (2004).
http://dx.doi.org/10.1118/1.1631093
119.
119.N. L. Childress, L. Dong, and I. I. Rosen, “Rapid radiographic film calibration for IMRT verification using automated MLC fields,” Med. Phys. 29, 23842390 (2002).
http://dx.doi.org/10.1118/1.1509441
120.
120.S. Gillis, C. De Wagter, J. Bohsung, B. Perrin, P. Williams, and B. J. Mijnheer, “An inter-centre quality assurance network for IMRT verification: Results of the ESTRO QUASIMODO project,” Radiother. Oncol. 76, 340353 (2005).
http://dx.doi.org/10.1016/j.radonc.2005.06.021
121.
121.A. J. Olch, “Dosimetric performance of an enhanced dose range radiographic film for intensity-modulated radiation therapy quality assurance,” Med. Phys. 29, 21592168 (2002).
http://dx.doi.org/10.1118/1.1500398
122.
122.P. Tangboonduangjit, I. Wu, M. Butson, A. Rosenfeld, and P. Metcalfe, “Intensity modulated radiation therapy: Film verification of planar dose maps,” Australas. Phys. Eng. Sci. Med. 26, 194199 (2003).
http://dx.doi.org/10.1007/BF03179181
123.
123.P. Winkler, B. Zurl, H. Guss, P. Kindl, and G. Stuecklschweiger, “Performance analysis of a film dosimetric quality assurance procedure for IMRT with regard to the employment of quantitative evaluation methods,” Phys. Med. Biol. 50, 643654 (2005).
http://dx.doi.org/10.1088/0031-9155/50/4/006
124.
124.L. Xing and J. G. Li, “Computer verification of fluence map for intensity modulated radiation therapy,” Med. Phys. 27, 20842092 (2000).
http://dx.doi.org/10.1118/1.1289374
125.
125.Y. Yan, N. Papanikolaou, X. Weng, J. Penagaricano, and V. Ratanatharathorn, “Fast radiographic film calibration procedure for helical tomotherapy intensity modulated radiation therapy dose verification,” Med. Phys. 32, 15661570 (2005).
http://dx.doi.org/10.1118/1.1924327
126.
126.Y. Yang and L. Xing, “Using the volumetric effect of a finite-sized detector for routine quality assurance of multileaf collimator leaf positioning,” Med. Phys. 30, 433441 (2003).
http://dx.doi.org/10.1118/1.1543150
127.
127.X. R. Zhu, P. A. Jursinic, D. F. Grimm, F. Lopez, J. J. Rownd, and M. T. Gillin, “Evaluation of Kodak EDR2 film for dose verification of intensity modulated radiation therapy delivered by a static multileaf collimator,” Med. Phys. 29, 16871692 (2002).
http://dx.doi.org/10.1118/1.1493781
128.
128.J. Esthappan, S. Mutic, W. B. Harms, J. F. Dempsey, and D. A. Low, “Dosimetry of therapeutic photon beams using an extended dose range film,” Med. Phys. 29, 24382445 (2002).
http://dx.doi.org/10.1118/1.1508379
129.
129.X. R. Zhu, S. Yoo, P. A. Jursinic, D. F. Grimm, F. Lopez, J. J. Rownd, and M. T. Gillin, “Characteristics of sensitometric curves of radiographic films,” Med. Phys. 30, 912919 (2003).
http://dx.doi.org/10.1118/1.1568979
130.
130.N. L. Childress and I. I. Rosen, “Effect of processing time delay on the dose response of Kodak EDR2 film,” Med. Phys. 31, 22842288 (2004).
http://dx.doi.org/10.1118/1.1774111
131.
131.E. Y. Hirata, C. Cunningham, J. A. Micka, H. Keller, M. W. Kissick, and L. A. DeWerd, “Low dose fraction behavior of high sensitivity radiochromic film,” Med. Phys. 32, 10541060 (2005).
http://dx.doi.org/10.1118/1.1883565
132.
132.A. Mack, G. Mack, D. Weltz, S. G. Scheib, H. D. Bottcher, and V. Seifert, “High precision film dosimetry with GAFCHROMIC films for quality assurance especially when using small fields,” Med. Phys. 30, 23992409 (2003).
http://dx.doi.org/10.1118/1.1593634
133.
133.J. W. Sohn, J. F. Dempsey, T. S. Suh, and D. A. Low, “Analysis of various beamlet sizes for IMRT with 6 MV photons,” Med. Phys. 30, 24322439 (2003).
http://dx.doi.org/10.1118/1.1596785
134.
134.O. A. Zeidan, J. G. Li, D. A. Low, and J. F. Dempsey, “Comparison of small photon beams measured using radiochromic and silver-halide films in solid water phantoms,” Med. Phys. 31, 27302737 (2004).
http://dx.doi.org/10.1118/1.1788931
135.
135.M. A. Bazioglou, J. Kalef-Ezra, and C. Kappas, “Comparison of dosimetric techniques for the assessment of basic dosimetric data of stereotactic fields,” Phys. Med. Biol. 17, 123128 (2001).
136.
136.P. Francescon, S. Cora, P. Scalchi, and F. Colombo, “Use of GAFCHROMIC(TM) film MD-55 and of a new microparallel-plate chamber in the dosimetry of small fields,” Phys. Med. Biol. 13, 9199 (1997).
137.
137.A. Somigliana, G. M. Cattaneo, C. Fiorino, S. Borelli, A. del Vecchio, G. Zonca, E. Pignoli, G. Loi, R. Calandrino, and R. Marchesini, “Dosimetry of Gamma Knife and linac-based radiosurgery using radiochromic and diode detectors,” Phys. Med. Biol. 44, 887897 (1999).
http://dx.doi.org/10.1088/0031-9155/44/4/006
138.
138.P. A. Jursinic and B. E. Nelms, “A 2-D diode array and analysis software for verification of intensity modulated radiation therapy delivery,” Med. Phys. 30, 870879 (2003).
http://dx.doi.org/10.1118/1.1567831
139.
139.K. M. Langen, S. L. Meeks, D. O. Poole, T. H. Wagner, T. R. Willoughby, O. A. Zeidan, P. A. Kupelian, K. J. Ruchala, and G. H. Olivera, “Evaluation of a diode array for QA measurements on a helical tomotherapy unit,” Med. Phys. 32, 34243430 (2005).
http://dx.doi.org/10.1118/1.2089547
140.
140.D. Letourneau, M. Gulam, D. Yan, M. Oldham, and J. W. Wong, “Evaluation of a 2D diode array for IMRT quality assurance,” Radiother. Oncol. 70, 199206 (2004).
http://dx.doi.org/10.1016/j.radonc.2003.10.014
141.
141.J. G. Li, J. F. Dempsey, L. Ding, C. Liu, and J. R. Palta, “Validation of dynamic MLC-controller log files using a two-dimensional diode array,” Med. Phys. 30, 799805 (2003).
http://dx.doi.org/10.1118/1.1567951
142.
142.S. Amerio, A. Boriano, F. Bourhaleb, R. Cirio, M. Donetti, A. Fidanzio, E. Garelli, S. Giordanengo, E. Madon, F. Marchetto, U. Nastasi, C. Peroni, A. Piermattei, C. J. Sanz Freire, A. Sardo, and E. Trevisiol, “Dosimetric characterization of a large area pixel-segmented ionization chamber,” Med. Phys. 31, 414420 (2004).
http://dx.doi.org/10.1118/1.1639992
143.
143.J. Pardo, L. Franco, F. Gomez, A. Iglesias, A. Pazos, J. Pena, R. Lobato, J. Mosquera, M. Pombar, and J. Sendon, “Development and operation of a pixel segmented liquid-filled linear array for radiotherapy quality assurance,” Phys. Med. Biol. 50, 17031716 (2005).
http://dx.doi.org/10.1088/0031-9155/50/8/006
144.
144.E. Spezi, A. L. Angelini, F. Romani, and A. Ferri, “Characterization of a 2D ion chamber array for the verification of radiotherapy treatments,” Phys. Med. Biol. 50, 33613373 (2005).
http://dx.doi.org/10.1088/0031-9155/50/14/012
145.
145.B. Poppe, A. Blechschmnidt, A. Djouguela, R. Kollhoff, A. Rubach, K. C. Willborn, and D. Harder, “Two-dimensional ionization chamber arrays for IMRT plan verification,” Med. Phys. 33, 10051015 (2006).
http://dx.doi.org/10.1118/1.2179167
146.
146.B. Poppe, P. Mehran, R. Kollhoff, and A. Rubach, “Use of a two-dimensional ionization chamber array for quality assurance in medical linear accelerators,” Z. Med. Phys. 13, 115122 (2003).
147.
147.M. Sonoda, M. Takano, J. Miyahara, and H. Kato, “Computed radiography utilizing scanning laser stimulated luminescence,” Radiology 148, 833838 (1983).
148.
148.A. J. Olch, “Evaluation of a computed radiography system for megavoltage photon beam dosimetry,” Med. Phys. 32, 29872999 (2005).
http://dx.doi.org/10.1118/1.2012787
149.
149.M. A. Bazioglou, K. Theodorou, C. Kappas, and J. Kalef-Ezra, “A multipurpose head phantom for stereotactic radiotherapy,” Phys. Med. Biol. 18, 121127 (2002).
150.
150.C. M. Ma, S. B. Jiang, T. Pawlicki, Y. Chen, J. S. Li, J. Deng, and A. L. Boyer, “A quality assurance phantom for IMRT dose verification,” Phys. Med. Biol. 48, 561572 (2003).
http://dx.doi.org/10.1088/0031-9155/48/5/301
151.
151.B. Paliwal, W. Tome, S. Richardson, and T. R. Makie, “A spiral phantom for IMRT and tomotherapy treatment delivery verification,” Med. Phys. 27, 25032507 (2000).
http://dx.doi.org/10.1118/1.1319523
152.
152.A. Palm and T. LoSasso, “Influence of phantom material and phantom size on radiographic film response in therapy photon beams,” Med. Phys. 32, 24342442 (2005).
http://dx.doi.org/10.1118/1.1949747
153.
153.L. Xing, B. Curran, R. Hill, T. Holmes, L. Ma, K. M. Forster, and A. L. Boyer, “Dosimetric verification of a commercial inverse treatment planning system,” Phys. Med. Biol. 44, 463478 (1999).
http://dx.doi.org/10.1088/0031-9155/44/2/013
154.
154.J. Balog, T. Holmes, and R. Vaden, “A helical tomotherapy dynamic quality assurance,” Med. Phys. 33, 39393950 (2006).
http://dx.doi.org/10.1118/1.2351952
155.
155.M. A. MacKenzie, M. Lachaine, B. Murray, B. G. Fallone, D. Robinson, and G. C. Field, “Dosimetric verification of inverse planned step and shoot multileaf collimator fields from a commercial treatment planning system,” J. Appl. Clin. Med. Phys. 3, 97109 (2002).
http://dx.doi.org/10.1120/1.1459524
156.
156.J. S. Tsai, D. E. Wazer, M. N. Ling, J. K. Wu, M. Fagundes, T. DiPetrillo, B. Kramer, M. Koistinen, and M. J. Engler, “Dosimetric verification of the dynamic intensity-modulated radiation therapy of 92 patients,” Int. J. Radiat. Oncol., Biol., Phys. 40, 12131230 (1998).
http://dx.doi.org/10.1016/S0360-3016(98)00009-1
157.
157.D. Verellen, N. Linthout, D. van den Berge, A. Bel, and G. Storme, “Initial experience with intensity-modulated conformal radiation therapy for treatment of the head and neck region,” Int. J. Radiat. Oncol., Biol., Phys. 39, 99114 (1997).
http://dx.doi.org/10.1016/S0360-3016(97)00304-0
158.
158.S. E. Burch, K. J. Kearfott, J. H. Trueblood, W. C. Sheils, J. I. Yeo, and C. K. Wang, “A new approach to film dosimetry for high energy photon beams: Lateral scatter filtering,” Med. Phys. 24, 775783 (1997).
http://dx.doi.org/10.1118/1.597999
159.
159.I. J. Yeo, A. Beiki-Ardakani, Y. B. Cho, M. Heydarian, T. Zhang, and M. Islam, “EDR2 film dosimetry for IMRT verification using low-energy photon filters,” Med. Phys. 31, 19601963 (2004).
http://dx.doi.org/10.1118/1.1760190
160.
160.W. B. Harms, Sr., D. A. Low, J. W. Wong, and J. A. Purdy, “A software tool for the quantitative evaluation of 3D dose calculation algorithms,” Med. Phys. 25, 18301836 (1998).
http://dx.doi.org/10.1118/1.598363
161.
161.J. Van Dyk, R. B. Barnett, J. E. Cygler, and P. C. Shragge, “Commissioning and quality assurance of treatment planning computers,” Int. J. Radiat. Oncol., Biol., Phys. 26, 261273 (1993).
http://dx.doi.org/10.1016/0360-3016(93)90206-B
162.
162.N. L. Childress and I. I. Rosen, “The design and testing of novel clinical parameters for dose comparison,” Int. J. Radiat. Oncol., Biol., Phys. 56, 14641479 (2003).
http://dx.doi.org/10.1016/S0360-3016(03)00430-9
163.
163.D. A. Low and J. F. Dempsey, “Evaluation of the gamma dose distribution comparison method,” Med. Phys. 30, 24552464 (2003).
http://dx.doi.org/10.1118/1.1598711
164.
164.M. Stock, B. Kroupa, and D. Georg, “Interpretation and evaluation of the gamma index and the gamma index angle for the verification of IMRT hybrid plans,” Phys. Med. Biol. 50, 399411 (2005).
http://dx.doi.org/10.1088/0031-9155/50/3/001
165.
165.G. J. Budgell, B. A. Perrin, J. H. L. Mott, J. Fairfoul, and R. I. Mackay, “Quantitative analysis of patient-specific dosimetric IMRT verification,” Phys. Med. Biol. 50, 103119 (2005).
http://dx.doi.org/10.1088/0031-9155/50/1/009
166.
166.K. T. S. Islam, J. F. Dempsey, M. K. Ranade, M. J. Maryanski, and D. A. Low, “Initial evaluation of commercial optical CT-based 3D gel dosimeter,” Med. Phys. 30, 21592168 (2003).
http://dx.doi.org/10.1118/1.1593636
167.
167.H. S. Jin, H. Chung, C. Liu, J. Palta, T. S. Suh, and S. Y. Kim, “A novel dose uncertainty model and its application for dose verification,” Med. Phys. 32, 17471756 (2005).
http://dx.doi.org/10.1118/1.1924329
168.
168.G. Nicolini, A. Fogliata, and L. Cozzi, “IMRT with the sliding window: Comparison of the static and dynamic methods. Dosimetric and spectral analysis,” Radiother. Oncol. 75, 112119 (2005).
http://dx.doi.org/10.1016/j.radonc.2005.03.009
169.
169.K. Nygaard, O. H. Odland, Y. Kvinnsland, B. Nygaard, J. Heggdal, and L. P. Muren, “Measurements and treatment planning calculations of electron dose distributions below bolus edges,” Radiother. Oncol. 74, 217220 (2005).
http://dx.doi.org/10.1016/j.radonc.2004.12.014
170.
170.N. Sakthi, P. Keall, I. Mihaylov, Q. W. Wu, Y. Wu, J. F. Williamson, R. Schmidt-Ullrich, and J. V. Siebers, “Monte Carlo-based dosimetry of head-and-neck patients treated with SIB-IMRT,” Int. J. Radiat. Oncol., Biol., Phys. 64, 968977 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2005.09.049
171.
171.P. Sandilos, A. Angelopoulos, P. Baras, K. Dardoufas, P. Karaiskos, P. Kipouros, M. Kozicki, J. M. Rosiak, L. Sakelliou, I. Seimenis, and L. Vlahos, “Dose verification in clinical IMRT prostate incidents,” Int. J. Radiat. Oncol., Biol., Phys. 59, 15401547 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.04.029
172.
172.J. Seco, E. Adams, M. Bidmead, M. Partridge, and F. Verhaegen, “Head-and-neck IMRT treatments assessed with a Monte Carlo dose calculation engine,” Phys. Med. Biol. 50, 817830 (2005).
http://dx.doi.org/10.1088/0031-9155/50/5/007
173.
173.S. D. Thomas, M. Mackenzie, G. C. Field, A. M. Syme, and B. G. Fallone, “Patient specific treatment verifications for helical tomotherapy treatment plans,” Med. Phys. 32, 37933800 (2005).
http://dx.doi.org/10.1118/1.2134929
174.
174.S. Vedam, A. Docef, M. Fix, M. Murphy, and P. Keall, “Dosimetric impact of geometric errors due to respiratory motion prediction on dynamic multileaf collimator-based four-dimensional radiation delivery,” Med. Phys. 32, 16071620 (2005).
http://dx.doi.org/10.1118/1.1915017
175.
175.A. Bakai, M. Alber, and F. Nusslin, “A revision of the gamma-evaluation concept for the comparison of dose distributions,” Phys. Med. Biol. 48, 35433553 (2003).
http://dx.doi.org/10.1088/0031-9155/48/21/006
176.
176.A. Hudson, G. Fallone, and C. Field, “A software tool to quantitatively compare dose distributions,” Med. Phys. 30, 19521952 (2003).
177.
177.S. B. Jiang, G. C. Sharp, T. Neicu, R. I. Berbeco, S. Flampouri, and T. Bortfeld, “On dose distribution comparison,” Phys. Med. Biol. 51, 759776 (2006).
http://dx.doi.org/10.1088/0031-9155/51/4/001
178.
178.T. Depuydt, A. Van Esch, and D. P. Huyskens, “A quantitative evaluation of IMRT dose distributions: Refinement and clinical assessment of the gamma evaluation,” Radiother. Oncol. 62, 309319 (2002).
http://dx.doi.org/10.1016/S0167-8140(01)00497-2
179.
179.J. M. Moran, J. Radawski, and B. A. Fraass, “A dose gradient analysis tool for IMRT QA,” J. Appl. Clin. Med. Phys. 6, 6273 (2005).
http://dx.doi.org/10.1120/jacmp.2024.25338
180.
180.G. J. Budgell, Q. Zhang, R. J. Trouncer, and R. I. Mackay, “Improving IMRT quality control efficiency using an amorphous silicon electronic portal imager,” Med. Phys. 32, 32673278 (2005).
http://dx.doi.org/10.1118/1.2074227
181.
181.J. Chang, C. H. Obcemea, J. Sillanpaa, J. Mechalakos, and C. Burman, “Use of EPID for leaf position accuracy QA of dynamic multi-leaf collimator (DMLC) treatment,” Med. Phys. 31, 20912096 (2004).
http://dx.doi.org/10.1118/1.1760187
182.
182.W. van Elmpt, L. McDermott, S. Nijsten, M. Wendling, P. Lambin, and B. Mijnheer, “A literature review of electronic portal imaging for radiotherapy dosimetry,” Radiother. Oncol. 88, 289309 (2008).
http://dx.doi.org/10.1016/j.radonc.2008.07.003
183.
183.B. M. McCurdy, K. Luchka, and S. Pistorius, “Dosimetric investigation and portal dose image prediction using an amorphous silicon electronic portal imaging device,” Med. Phys. 28, 911924 (2001).
http://dx.doi.org/10.1118/1.1374244
184.
184.B. M. McCurdy and S. Pistorius, “A two-step algorithm for predicting portal dose images in arbitrary detectors,” Med. Phys. 27, 21092116 (2000).
http://dx.doi.org/10.1118/1.1289375
185.
185.A. Van Esch, T. Depuydt, and D. P. Huyskens, “The use of an aSi-based EPID for routine absolute dosimetric pre-treatment verification of dynamic IMRT fields,” Radiother. Oncol. 71, 223234 (2004).
http://dx.doi.org/10.1016/j.radonc.2004.02.018
186.
186.K. Chytyk and B. M. McCurdy, “Comprehensive fluence model for absolute portal dose image prediction,” Med. Phys. 36, 13891398 (2009).
http://dx.doi.org/10.1118/1.3083583
187.
187.Y. Chen, J. M. Moran, D. A. Roberts, Y. El-Mohri, L. E. Antonuk, and B. A. Fraass, “Performance of a direct-detection active matrix flat panel dosimeter (AMFPD) for IMRT measurements,” Med. Phys. 34, 49114922 (2007).
http://dx.doi.org/10.1118/1.2805993
188.
188.Y. El-Mohri, L. E. Antonuk, J. Yorkston, K. W. Jee, M. Maolinbay, K. L. Lam, and J. H. Siewerdsen, “Relative dosimetry using active matrix flat-panel imager (AMFPI) technology,” Med. Phys. 26, 15301541 (1999).
http://dx.doi.org/10.1118/1.598649
189.
189.J. M. Moran, D. A. Roberts, T. S. Nurushev, L. E. Antonuk, Y. El-Mohri, and B. A. Fraass, “An active matrix flat panel dosimeter (AMFPD) for in-phantom dosimetric measurements,” Med. Phys. 32, 466472 (2005).
http://dx.doi.org/10.1118/1.1855012
190.
190.M. Sabet, F. W. Menk, and P. B. Greer, “Evaluation of an a-Si EPID in direct detection configuration as a water-equivalent dosimeter for transit dosimetry,” Med. Phys. 37, 14591467 (2010).
http://dx.doi.org/10.1118/1.3327456
191.
191.L. N. McDermott, M. Wendling, J. J. Sonke, M. van Herk, and B. J. Mijnheer, “Replacing pretreatment verification with in vivo EPID dosimetry for prostate IMRT,” Int. J. Radiat. Oncol., Biol., Phys. 67, 15681577 (2007).
http://dx.doi.org/10.1016/j.ijrobp.2006.11.047
192.
192.L. N. McDermott, M. Wendling, B. van Asselen, J. Stroom, J. J. Sonke, M. van Herk, and B. J. Mijnheer, “Clinical experience with EPID dosimetry for prostate IMRT pre-treatment dose verification,” Med. Phys. 33, 39213930 (2006).
http://dx.doi.org/10.1118/1.2230810
193.
193.M. Wendling, R. J. Louwe, L. N. McDermott, J. J. Sonke, M. van Herk, and B. J. Mijnheer, “Accurate two-dimensional IMRT verification using a back-projection EPID dosimetry method,” Med. Phys. 33, 259273 (2006).
http://dx.doi.org/10.1118/1.2147744
194.
194.J. V. Siebers, J. O. Kim, L. Ko, P. J. Keall, and R. Mohan, “Monte Carlo computation of dosimetric amorphous silicon electronic portal images,” Med. Phys. 31, 21352146 (2004).
http://dx.doi.org/10.1118/1.1764392
195.
195.R. M. Howell, I. P. Smith, and C. S. Jarrio, “Establishing action levels for EPID-based QA for IMRT,” J. Appl. Clin. Med. Phys. 9, 2721 (2008).
http://dx.doi.org/10.1120/jacmp.v9i3.2721
196.
196.M. D’Andrea, G. Laccarino, S. Carpino, L. Strigari, and M. Benassi, “Primary photon fluence extraction from portal images acquired with an amorphous silicon flat panel detector: Experimental determination of a scatter filter,” J. Exp. Clin. Cancer Res. 26, 125132 (2007).
197.
197.A. F. Monti and G. Frigerio, “Dosimetric verification of 6 and 18 MV intensity modulated photon beams using a dedicated fluoroscopic electronic portal imaging device (EPID),” Radiother. Oncol. 81, 8896 (2006).
http://dx.doi.org/10.1016/j.radonc.2006.08.008
198.
198.C. Talamonti, M. Casati, and M. Bucciolini, “Pretreatment verification of IMRT absolute dose distributions using a commercial a-Si EPID,” Med. Phys. 33, 43674378 (2006).
http://dx.doi.org/10.1118/1.2357834
199.
199.M. van Zijtveld, M. L. Dirkx, H. C. de Boer, and B. J. Heijmen, “3D dose reconstruction for clinical evaluation of IMRT pretreatment verification with an EPID,” Radiother. Oncol. 82, 201207 (2007).
http://dx.doi.org/10.1016/j.radonc.2006.12.010
200.
200.P. Winkler, A. Hefner, and D. Georg, “Dose-response characteristics of an amorphous silicon EPID,” Med. Phys. 32, 30953105 (2005).
http://dx.doi.org/10.1118/1.2040711
201.
201.W. van Elmpt, S. Petit, D. De Ruysscher, P. Lambin, and A. Dekker, “3D dose delivery verification using repeated cone-beam imaging and EPID dosimetry for stereotactic body radiotherapy of non-small cell lung cancer,” Radiother. Oncol. 94, 188194 (2010).
http://dx.doi.org/10.1016/j.radonc.2009.12.024
202.
202.G. S. Ibbott, “QA in radiation therapy: The RPC perspective,” J. Phys.: Conf. Ser. 250, 012001 (2010).
http://dx.doi.org/10.1088/1742-6596/250/1/012001
203.
203.M. Oldham, J. H. Siewerdsen, A. Shetty, and D. A. Jaffray, “High resolution gel-dosimetry by optical-CT and MR scanning,” Med. Phys. 28, 14361445 (2001).
http://dx.doi.org/10.1118/1.1380430
204.
204.R. G. Kelly, K. J. Jordan, and J. J. Battista, “Optical CT reconstruction of 3D dose distributions using the ferrous-benzoic-xylenol (FBX) gel dosimeter,” Med. Phys. 25, 17411750 (1998).
http://dx.doi.org/10.1118/1.598356
205.
205.P. Guo, J. Adamovics, and M. Oldham, “Characterization of a new radiochromic three-dimensional dosimeter,” Med. Phys. 33, 13381345 (2006).
http://dx.doi.org/10.1118/1.2192888
206.
206.M. J. Maryanski, J. C. Gore, R. P. Kennan, and R. J. Schulz, “NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: A new approach to 3D dosimetry by MRI,” Magn. Reson. Imaging 11, 253258 (1993).
http://dx.doi.org/10.1016/0730-725X(93)90030-H
207.
207.I. C. Baustert, M. Oldham, T. A. Smith, C. Hayes, S. Webb, and M. O. Leach, “Optimized MR imaging for polyacrylamide gel dosimetry,” Phys. Med. Biol. 45, 847858 (2000).
http://dx.doi.org/10.1088/0031-9155/45/4/303
208.
208.Y. De Deene, “How to scan polymer gels with MRI,” J. Phys.: Conf. Ser. 250, 012015 (2010).
http://dx.doi.org/10.1088/1742-6596/250/1/012015
209.
209.J. C. Gore, M. Ranade, M. J. Maryanski, and R. J. Schulz, “Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: I. Development of an optical scanner,” Phys. Med. Biol. 41, 26952704 (1996).
http://dx.doi.org/10.1088/0031-9155/41/12/009
210.
210.C. Baldock, Y. De Deene, S. Doran, G. Ibbott, A. Jirasek, M. Lepage, K. B. McAuley, M. Oldham, and L. J. SchreimerTopical Review: Polymer gel dosimetry,” Phys. Med. Biol. 55, R1R63 (2010).
http://dx.doi.org/10.1088/0031-9155/55/5/R01
211.
211.M. Lepage, A. K. Whittaker, L. Rintoul, S. A. Back, and C. Baldock, “Modelling of post-irradiation events in polymer gel dosimeters,” Phys. Med. Biol. 46, 28272839 (2001).
http://dx.doi.org/10.1088/0031-9155/46/11/305
212.
212.A. Ertl, A. Berg, M. Zehetmayer, and P. Frigo, “High-resolution dose profile studies based on MR imaging with polymer BANG(TM) gels in stereotactic radiation techniques,” Magn. Reson. Imaging 18, 343349 (2000).
http://dx.doi.org/10.1016/S0730-725X(99)00131-9
213.
213.G. S. Ibbott, M. J. Maryanski, P. Eastman, S. D. Holcomb, Y. Zhang, R. G. Avison, M. Sanders, and J. C. Gore, “Three-dimensional visualization and measurement of conformal dose distributions using magnetic resonance imaging of BANG polymer gel dosimeters,” Int. J. Radiat. Oncol., Biol., Phys. 38, 10971103 (1997).
http://dx.doi.org/10.1016/S0360-3016(97)00146-6
214.
214.M. Oldham, G. R. Gluckman, and L. H. Kim, “3D verification of a prostate IMRT treatment by polymer gel-dosimetry and optical-CT scanning,” J. Phys.: Conf. Ser. 3, 293296 (2004).
http://dx.doi.org/10.1088/1742-6596/3/1/050
215.
215.S. G. Scheib and S. Gianolini, “Three-dimensional dose verification using BANG gel: A clinical example,” J. Neurosurg. 97, 582587 (2002).
216.
216.K. Vergote, Y. De Deene, F. Claus, W. De Gersem, B. Van Duyse, L. Paelinck, E. Achten, W. De Neve, and C. De Wagter, “Application of monomer/polymer gel dosimetry to study the effects of tissue inhomogeneities on intensity-modulated radiation therapy (IMRT) dose distributions,” Radiother. Oncol. 67, 119128 (2003).
http://dx.doi.org/10.1016/S0167-8140(02)00376-6
217.
217.Y. Xu, C. S. Wuu, and M. J. Maryanski, “Performance of a commercial optical CT scanner and polymer gel dosimeters for 3-D dose verification,” Med. Phys. 31, 30243033 (2004).
http://dx.doi.org/10.1118/1.1803674
218.
218.J. C. Gore, Y. S. Kang, and R. J. Schulz, “Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging,” Phys. Med. Biol. 29, 11891197 (1984).
http://dx.doi.org/10.1088/0031-9155/29/10/002
219.
219.H. Fricke and E. J. Hart, in Radiation Dosimetry, edited by F. H. Attix and W. C. Roesch (Academic Press, New York, 1966), Vol. 2.
220.
220.H. Fricke and E. L. Hart, “The chemical action of roentgen rays on dilute ferrosulphate solutions as a measure of dose,” Am. J. Roentgenol., Radium Ther. Nucl. Med. 18, 430432 (1927).
221.
221.B. J. Balcom, T. J. Lees, A. R. Sharp, N. S. Kulkarni, and G. S. Wagner, “Diffusion in Fe(II/III) radiation dosimetry gels measured by magnetic resonance imaging,” Phys. Med. Biol. 40, 16651676 (1995).
http://dx.doi.org/10.1088/0031-9155/40/10/008
222.
222.C. Baldock, P. J. Harris, A. R. Piercy, and B. Healy, “Experimental determination of the diffusion coefficient in two-dimensions in ferrous sulphate gels using the finite element method,” Australas. Phys. Eng. Sci. Med. 24, 1930 (2001).
http://dx.doi.org/10.1007/BF03178282
223.
223.J. Adamovics and M. J. Maryanski, “Characterisation of PRESAGETM: A new 3-D radiochromic solid polymer dosimeter for ionising radiation,” Radiat. Prot. Dosim. 120, 107112 (2006).
http://dx.doi.org/10.1093/rpd/nci555
224.
224.H. S. Sakhalkar, J. Adamovics, G. Ibbott, and M. Oldham, “A comprehensive evaluation of the PRESAGE optical-CT 3D dosimetry system,” Med. Phys. 36, 7182 (2009).
http://dx.doi.org/10.1118/1.3005609
225.
225.M. Oldham, “Optical-CT scanning of polymer gels,” J. Phys.: Conf. Ser. 3, 122135 (2004).
http://dx.doi.org/10.1088/1742-6596/3/1/011
226.
226.M. Oldham and L. Kim, “A study of geometrical and reconstruction artifacts in 3D gel-dosimetry utilizing optical-CT,” Med. Phys. 30, 1426 (2003).
http://dx.doi.org/10.1118/1.1559835
227.
227.M. Oldham and L. Kim, “Optical-CT gel-dosimetry. II: Optical artifacts and geometrical distortion,” Med. Phys. 31, 10931104 (2004).
http://dx.doi.org/10.1118/1.1655710
228.
228.Y. De Deene and C. De Wagter, “Artefacts in multi-echo imaging for high-precision gel dosimetry: III. Effects of temperature drift during scanning,” Phys. Med. Biol. 46, 26972711 (2001).
http://dx.doi.org/10.1088/0031-9155/46/10/312
229.
229.Y. De Deene, C. De Wagter, W. De Neve, and E. Achten, “Artefacts in multi-echo imaging for high-precision gel dosimetry: I. Analysis and compensation of eddy currents,” Phys. Med. Biol. 45, 18071823 (2000).
http://dx.doi.org/10.1088/0031-9155/45/7/307
230.
230.Y. De Deene, C. De Wagter, W. De Neve, and E. Achten, “Artefacts in multi-echo imaging for high-precision gel dosimetry: II. Analysis of -field inhomogeneity,” Phys. Med. Biol. 45, 18251839 (2000).
http://dx.doi.org/10.1088/0031-9155/45/7/308
231.
231.M. A. Bero, W. B. Gilboy, and P. M. Glover, “An optical method for three-dimensional dosimetry,” J. Radiol. Prot. 20, 287294 (2000).
http://dx.doi.org/10.1088/0952-4746/20/3/303
232.
232.S. J. Doran, K. K. Koerkamp, M. A. Bero, P. Jenneson, E. J. Morton, and W. B. Gilboy, “A CCD-based optical CT scanner for high-resolution 3D imaging of radiation dose distributions: Equipment specifications, optical simulations and preliminary results,” Phys. Med. Biol. 46, 31913213 (2001).
http://dx.doi.org/10.1088/0031-9155/46/12/309
233.
233.M. J. Maryañski, Y. Z. Zastavker, and J. C. Gore, “Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: II. Optical properties of the BANG polymer gel,” Phys. Med. Biol. 41, 27052717 (1996).
http://dx.doi.org/10.1088/0031-9155/41/12/010
234.
234.M. Oldham, J. H. Siewerdsen, S. Kumar, J. Wong, and D. A. Jaffray, “Optical-CT gel-dosimetry I: Basic investigations,” Med. Phys. 30, 623634 (2003).
http://dx.doi.org/10.1118/1.1559835
235.
235.Y. Xu, C. S. Wuu, and M. J. Maryanski, “Determining optimal gel sensitivity in optical CT scanning of gel dosimeters,” Med. Phys. 30, 22572263 (2003).
http://dx.doi.org/10.1118/1.1593837
236.
236.C. S. Wuu and Y. Xu, “Three-dimensional dose verification for intensity modulated radiation therapy using optical CT based polymer gel dosimetry,” Med. Phys. 33, 14121419 (2006).
http://dx.doi.org/10.1118/1.2188820
237.
237.T. Olding, O. Holmes, and L. J. Schreiner, “Cone-beam optical computed tomography for gel dosimetry I: Scanner characterizations,” Phys. Med. Biol. 55, 28192840 (2010).
http://dx.doi.org/10.1088/0031-9155/55/10/003
238.
238.A. Thomas, M. Pierquet, and M. Oldham, “Achieving accurate radiochromic optical-CT imaging which using a polychromatic light source,” J. Phys.: Conf. Ser. 250, 012045 (2010).
http://dx.doi.org/10.1088/1742-6596/250/1/012045
239.
239.K. Jordan, J. Snir, and J. Battista, “Multiple slot array collimator to minimize stray light in optical cone-beam CT,” J. Phys.: Conf. Ser. 250, 012062 (2010).
http://dx.doi.org/10.1088/1742-6596/250/1/012062
240.
240.T. Ju, T. Simpson, J. Deasy, and D. Low, “Geometric interpretation of the distribution comparison technique: Interpolation free calculations,” Med. Phys. 35, 879887 (2008).
http://dx.doi.org/10.1118/1.2836952
241.
241.D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, “A technique for the quantitative evaluation of dose distributions,” Med. Phys. 25, 656661 (1998).
http://dx.doi.org/10.1118/1.598363
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/38/3/10.1118/1.3514120
Loading
/content/aapm/journal/medphys/38/3/10.1118/1.3514120
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/38/3/10.1118/1.3514120
2011-02-16
2015-07-30

Abstract

Intensity modulated radiation therapy (IMRT) poses a number of challenges for properly measuring commissioning data and quality assurance (QA) radiation dose distributions. This report provides a comprehensive overview of how dosimeters, phantoms, and dose distribution analysis techniques should be used to support the commissioning and quality assurance requirements of an IMRT program. The proper applications of each dosimeter are described along with the limitations of each system. Point detectors, arrays, film, and electronic portal imagers are discussed with respect to their proper use, along with potential applications of 3D dosimetry. Regardless of the IMRT technique utilized, some situations require the use of multiple detectors for the acquisition of accurate commissioning data. The overall goal of this task group report is to provide a document that aids the physicist in the proper selection and use of the dosimetry tools available for IMRT QA and to provide a resource for physicists that describes dosimetry measurement techniques for purposes of IMRT commissioning and measurement-based characterization or verification of IMRT treatment plans. This report is not intended to provide a comprehensive review of commissioning and QA procedures for IMRT. Instead, this report focuses on the aspects of metrology, particularly the practical aspects of measurements that are unique to IMRT. The metrology of IMRT concerns the application of measurement instruments and their suitability, calibration, and quality control of measurements. Each of the dosimetry measurement tools has limitations that need to be considered when incorporating them into a commissioning process or a comprehensive QA program. For example, routine quality assurance procedures require the use of robust field dosimetry systems. These often exhibit limitations with respect to spatial resolution or energy response and need to themselves be commissioned against more established dosimeters. A chain of dosimeters, from secondary standards to field instruments, is established to assure the quantitative nature of the tests. This report is intended to describe the characteristics of the components of these systems; dosimeters, phantoms, and dose evaluation algorithms. This work is the report of AAPM Task Group 120.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/38/3/1.3514120.html;jsessionid=46o3nq7pqibuc.x-aip-live-06?itemId=/content/aapm/journal/medphys/38/3/10.1118/1.3514120&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dosimetry tools and techniques for IMRT
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/38/3/10.1118/1.3514120
10.1118/1.3514120
SEARCH_EXPAND_ITEM