Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.B. Fraass, K. Doppke, M. Hunt, G. Kutcher, G. Starkschall, R. Stern, and J. Van Dyke, “American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning,” Med. Phys. 25, 17731829 (1998).
2.F. M. Khan, The Physics of Radiation Therapy, 3rd ed. (Lippincott Williams & Wilkins, Philadelphia, 2003).
3.G. J. Kutcher et al., “Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40,” Med. Phys. 21, 581618 (1994).
4.J. Zhu, F. F. Yin, and J. H. Kim, “Point dose verification for intensity modulated radiosurgery using Clarkson’s method,” Med. Phys. 30, 22182221 (2003).
5.A. Boyer, L. Xing, C. M. Ma, B. Curran, R. Hill, A. Kania, and A. Bleier, “Theoretical considerations of monitor unit calculations for intensity modulated beam treatment planning,” Med. Phys. 26, 187195 (1999).
6.Z. Chen, L. Xing, and R. Nath, “Independent monitor unit calculation for intensity modulated radiotherapy using the MIMiC multileaf collimator,” Med. Phys. 29, 20412051 (2002).
7.J. H. Kung, G. T. Chen, and F. K. Kuchnir, “A monitor unit verification calculation in intensity modulated radiotherapy as a dosimetry quality assurance,” Med. Phys. 27, 22262230 (2000).
8.J. S. Tsai, M. J. Engler, and J. Liu, “Quasi-independent monitor unit calculation for intensity modulated sequential tomotherapy,” J. Appl. Clin. Med. Phys. 3, 135153 (2002).
9.L. Xing, Y. Chen, G. Luxton, J. G. Li, and A. L. Boyer, “Monitor unit calculation for an intensity modulated photon field by a simple scatter-summation algorithm,” Phys. Med. Biol. 45, N1N7 (2000).
10.X. Chen, N. J. Yue, W. Chen, C. B. Saw, D. E. Heron, D. Stefanik, R. Antemann, and M. S. Huq, “A dose verification method using a monitor unit matrix for dynamic IMRT on Varian linear accelerators,” Phys. Med. Biol. 50, 56415652 (2005).
11.J. M. Galvin, G. Ezzell, A. Eisbrauch, C. Yu, B. Butler, Y. Xiao, I. Rosen, J. Rosenman, M. Sharpe, L. Xing, P. Xia, T. Lomax, D. A. Low, and J. Palta, “Implementing IMRT in clinical practice: A joint document of the American Society for Therapeutic Radiology and Oncology and the American Association of Physicists in Medicine,” Int. J. Radiat. Oncol., Biol., Phys. 58, 16161634 (2004).
12.Y. Yang, L. Xing, J. G. Li, J. Palta, Y. Chen, G. Luxton, and A. Boyer, “Independent dosimetric calculation with inclusion of head scatter and MLC transmission for IMRT,” Med. Phys. 30, 29372947 (2003).
13.G. A. Ezzell, J. M. Galvin, D. Low, J. R. Palta, I. Rosen, M. B. Sharpe, P. Xia, Y. Xiao, L. Xing, and C. X. Yu, “Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee,” Med. Phys. 30, 20892115 (2003).
14.L. Dong, J. Antolak, M. Salehpour, K. Forster, L. O’Neill, R. Kendall, and I. Rosen, “Patient-specific point dose measurement for IMRT monitor unit verification,” Int. J. Radiat. Oncol., Biol., Phys. 56, 867877 (2003).
15.D. A. Low, “Quality assurance of intensity-modulated radiotherapy,” Semin. Radiat. Oncol. 12, 219228 (2002).
16.I. J. Das, C. W. Cheng, R. J. Watts, A. Ahnesjo, J. Gibbons, X. A. Li, J. Lowenstein, R. K. Mitra, W. E. Simon, and T. C. Zhu, “Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM,” Med. Phys. 35, 41864215 (2008).
17.G. A. Ezzell, J. W. Burmeister, N. Dogan, T. J. LoSasso, J. G. Mechalakos, D. Mihailidis, A. Molineu, J. R. Palta, C. R. Ramsey, B. J. Salter, J. Shi, P. Xia, N. J. Yue, and Y. Xiao, “IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119,” Med. Phys. 36, 53595373 (2009).
18.E. E. Klein, J. Hanley, J. Bayouth, F. F. Yin, W. Simon, S. Dresser, C. Serago, F. Aguirre, L. Ma, B. Arjomandy, C. Liu, C. Sandin, and T. Holmes, “Task Group 142 report: Quality assurance of medical accelerators,” Med. Phys. 36, 41974212 (2009).
19.D. A. Low, S. Mutic, J. F. Dempsey, R. L. Gerber, W. R. Bosch, C. A. Perez, and J. A. Purdy, “Quantitative dosimetric verification of an IMRT planning and delivery system,” Radiother. Oncol. 49, 305316 (1998).
20.C. Martens, C. De Wagter, and W. De Neve, “The value of the PinPoint ion chamber for characterization of small field segments used in intensity-modulated radiotherapy,” Phys. Med. Biol. 45, 25192530 (2000).
21.M. Bucciolini, F. B. Buonamici, S. Mazzocchi, C. De Angelis, S. Onori, and G. A. Cirrone, “Diamond detector versus silicon diode and ion chamber in photon beams of different energy and field size,” Med. Phys. 30, 21492154 (2003).
22.W. U. Laub and T. Wong, “The volume effect of detectors in the dosimetry of small fields used in IMRT,” Med. Phys. 30, 341347 (2003).
23.L. B. Leybovich, A. Sethi, and N. Dogan, “Comparison of ionization chambers of various volumes for IMRT absolute dose verification,” Med. Phys. 30, 119123 (2003).
24.D. A. Low, P. Parikh, J. F. Dempsey, S. Wahab, and S. Huq, “Ionization chamber volume averaging effects in dynamic intensity modulated radiation therapy beams,” Med. Phys. 30, 17061711 (2003).
25.H. Bouchard and J. Seuntjens, “Ionization chamber-based reference dosimetry of intensity modulated radiation beams,” Med. Phys. 31, 24542465 (2004).
26.R. Capote, F. Sanchez-Doblado, A. Leal, J. I. Lagares, R. Arrans, and G. H. Hartmann, “An EGSnrc Monte Carlo study of the microionization chamber for reference dosimetry of narrow irregular IMRT beamlets,” Med. Phys. 31, 24162422 (2004).
27.K. A. Paskalev, J. P. Seuntjens, H. J. Patrocinio, and E. B. Podgorsak, “Physical aspects of dynamic stereotactic radiosurgery with very small photon beams (1.5 and 3 mm in diameter),” Med. Phys. 30, 111118 (2003).
28.F. Sánchez-Doblado, P. Andreo, R. Capote, A. Leal, M. Perucha, R. Arráns, L. Núñez, E. Mainegra, J. I. Lagares, and E. Carrasco, “Ionization chamber dosimetry of small photon fields: A Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams,” Phys. Med. Biol. 48, 20812099 (2003).
29.F. Sánchez-Doblado, R. Capote, A. Leal, J. V. Roselló, J. I. Lagares, R. Arráns, and G. H. Hartmann, “Microionization chamber for reference dosimetry in IMRT verification: Clinical implications on OAR dosimetric errors,” Phys. Med. Biol. 50, 959970 (2005).
30.F. Sánchez-Doblado, R. Capote, J. V. Roselló, A. Leal, J. I. Lagares, R. Arráns, and G. H. Hartmann, “Micro ionization chamber dosimetry in IMRT verification: Clinical implications of dosimetric errors in the PTV,” Radiother. Oncol. 75, 342348 (2005).
31.L. J. Humphries and J. A. Purdy, in Advances in Radiation Oncology Physics Dosimetry, Treatment Planning, and Brachytherapy, AAPM Monograph Vol. 19, edited by J. A. Purdy (AAPM, 1992).
32.M. Westermark, J. Arndt, B. Nilsson, and A. Brahme, “Comparative dosimetry in narrow high-energy photon beams,” Phys. Med. Biol. 45, 685702 (2000).
33.P. D. Higgins, P. Alaei, B. J. Gerbi, and K. E. Dusenbery, “In vivo diode dosimetry for routine quality assurance in IMRT,” Med. Phys. 30, 31183123 (2003).
34.I. Griessbach, M. Lapp, J. Bohsung, G. Gademann, and D. Harder, “Dosimetric characteristics of a new unshielded silicon diode and its application in clinical photon and electron beams,” Med. Phys. 32, 37503754 (2005).
35.C. McKerracher and D. I. Thwaites, “Assessment of new small-field detectors against standard-field detectors for practical stereotactic beam data acquisition,” Phys. Med. Biol. 44, 21432160 (1999).
36.C. Li, L. S. Lamel, and D. Tom, “A patient dose verification program using diode detectors,” Med. Dosim. 20, 209214 (1995).
37.T. Wolff, S. Carter, K. A. Langmack, N. I. Twyman, and P. P. Dendy, “Characterization and use of a commercial n-type diode system,” Br. J. Radiol. 71, 11681177 (1998).
38.X. R. Zhu, “Entrance dose measurements for in-vivo diode dosimetry: Comparison of correction factors for two types of commercial silicon diode detectors,” J. Appl. Clin. Med. Phys. 1, 100107 (2000).
39.G. Rikner and E. Grusell, “General specifications for silicon semiconductors for use in radiation dosimetry,” Phys. Med. Biol. 32, 11091117 (1987).
40.B. Nilsson, B. I. Ruden, and B. Sorcini, “Characteristics of silicon diodes as patient dosimeters in external radiation therapy,” Radiother. Oncol. 11, 279288 (1988).
41.S. N. Rustgi, “Evaluation of the dosimetric characteristics of a diamond detector for photon beam measurements,” Med. Phys. 22, 567570 (1995).
42.S. N. Rustgi and D. M. Frye, “Dosimetric characterization of radiosurgical beams with a diamond detector,” Med. Phys. 22, 21172121 (1995).
43.C. De Angelis, S. Onori, M. Pacilio, G. A. Cirrone, G. Cuttone, L. Raffaele, M. Bucciolini, and S. Mazzocchi, “An investigation of the operating characteristics of two PTW diamond detectors in photon and electron beams,” Med. Phys. 29, 248254 (2002).
44.M. Benabdesselam, B. Serrano, P. Iacconi, F. Wrobel, D. Lapraz, J. Herault, and J. E. Butler, “Thermoluminescence properties of CVD diamond for clinical dosimetry use,” Radiat. Prot. Dosim. 120, 8790 (2006).
45.C. De Angelis, M. Bucciolini, M. Casati, I. Lovik, M. Bruzzi, S. Lagomarsino, S. Sciortino, and S. Onori, “Improvements in CVD diamond properties for radiotherapy dosimetry,” Radiat. Prot. Dosim. 120, 3842 (2006).
46.B. Marczewska, P. Olko, M. Nesladek, M. P. Waligorski, and Y. Kerremans, “CVD diamonds as thermoluminescent detectors for medical applications,” Radiat. Prot. Dosim. 101, 485488 (2002).
47.M. Bruzzi, M. Bucciolini, M. Casati, C. DeAngelis, S. Lagomarsino, I. Lovik, S. Onori, and S. Sciortino, “CVD diamond particle detectors used as on-line dosimeters in clinical radiotherapy,” Nucl. Instrum. Methods Phys. Res. A 518, 421422 (2004).
48.C. M. Buttar, J. Conway, R. Meyfarth, G. Scarsbrook, P. J. Sellin, and A. Whitehead, “CVD diamond detectors as dosimeters for radiotherapy,” Nucl. Instrum. Methods Phys. Res. A 392, 281284 (1997).
49.G. Cuttone, L. Azario, L. B. Tonghi, E. Borchi, D. Boscarino, M. Bruzzi, M. Bucciolini, G. A. P. Cirrone, C. De Angelis, G. Della Mea, P. Fattibene, C. Gori, A. Guasti, S. Maggioni, S. Mazzocchi, S. Onori, M. Pacilio, E. Petetti, A. Piermattei, S. Pirollo, A. Quaranta, L. Raffaele, V. Rigato, A. Rovelli, M. G. Sabini, S. Sciortino, and G. Zatelli, “The CANDIDO project: Development of a CVD diamond dosimeter for applications in radiotherapy,” Nucl. Phys. B, Proc. Suppl. 78, 587591 (1999).
50.A. Fidanzio, L. Azario, R. Kalish, Y. Avigal, G. Conte, and P. Ascarelli, “A preliminary dosimetric characterization of chemical vapor deposition diamond detector prototypes in photon and electron radiotherapy beams,” Med. Phys. 32, 389395 (2005).
51.M. J. Guerrero, D. Tromson, P. Bergonzo, and R. Barrett, “Investigation of defects in CVD diamond: Influence for radiotherapy applications,” Nucl. Instrum. Methods Phys. Res. A 552, 105111 (2005).
52.M. Jung, J. Morel, and P. Siffert, “Real-time high intensity x-ray dosimetry diamond monitors: Response simulations compared to silicon sensitivities,” Nucl. Instrum. Methods Phys. Res. A 554, 514526 (2005).
53.C. Manfredotti, “CVD diamond detectors for nuclear and dosimetric applications,” Diamond Relat. Mater. 14, 531540 (2005).
54.A. J. Whitehead, R. Airey, C. M. Buttar, J. Conway, G. Hill, S. Ramkumar, G. A. Scarsbrook, R. S. Sussmann, and S. Walker, “CVD diamond for medical dosimetry applications,” Nucl. Instrum. Methods Phys. Res. A 460, 2026 (2001).
55.C. Burman, C. S. Chui, G. Kutcher, S. Leibel, M. Zelefsky, T. LoSasso, S. Spirou, Q. Wu, J. Yang, J. Stein, R. Mohan, Z. Fuks, and C. C. Ling, “Planning, delivery, and quality assurance of intensity-modulated radiotherapy using dynamic multileaf collimator: A strategy for large-scale implementation for the treatment of carcinoma of the prostate,” Int. J. Radiat. Oncol., Biol., Phys. 39, 863873 (1997).
56.D. A. Low, K. S. Chao, S. Mutic, R. L. Gerber, C. A. Perez, and J. A. Purdy, “Quality assurance of serial tomotherapy for head and neck patient treatments,” Int. J. Radiat. Oncol., Biol., Phys. 42, 681692 (1998).
57.H. Parsai, M. H. Phillips, P. S. Cho, H. Kippenes, P. Gavin, and D. Axen, “Verification of dynamic intensity-modulated beam deliveries in canine subjects,” Med. Phys. 28, 21982208 (2001).
58.H. A. Al-Hallaq, C. S. Reft, and J. C. Roeske, “The dosimetric effects of tissue heterogeneities in intensity-modulated radiation therapy (IMRT) of the head and neck,” Phys. Med. Biol. 51, 11451156 (2006).
59.P. Cadman, R. Bassalow, N. P. Sidhu, G. Ibbott, and A. Nelson, “Dosimetric considerations for validation of a sequential IMRT process with a commercial treatment planning system,” Phys. Med. Biol. 47, 30013010 (2002).
60.P. E. Engström, P. Haraldsson, T. Landberg, H. Sand Hansen, S. Aage Engelholm, and H. Nyström, “In vivo dose verification of IMRT treated head and neck cancer patients,” Acta Oncol. 44, 572578 (2005).
61.E. Gershkevitsh, C. H. Clark, J. Staffurth, D. P. Dearnaley, and K. R. Trott, “Dose to bone marrow using IMRT techniques in prostate cancer patients,” Strahlenther. Onkol. 181, 172178 (2005).
62.P. Haraldsson, T. Knoos, H. Nystrom and P. Engstrom, “Monte Carlo study of TLD measurements in air cavities,” Phys. Med. Biol. 48, N253N259 (2003).
63.N. Linthout, D. Verellen, S. Van Acker, M. De Cock, and G. Storme, “Dosimetric evaluation of partially overlapping intensity modulated beams using dynamic mini-multileaf collimation,” Med. Phys. 30, 846855 (2003).
64.D. A. Low, J. F. Dempsey, R. Venkatesan, S. Mutic, J. Markman, E. Mark Haacke, and J. A. Purdy, “Evaluation of polymer gels and MRI as a 3-D dosimeter for intensity-modulated radiation therapy,” Med. Phys. 26, 15421551 (1999).
65.D. A. Low, R. L. Gerber, S. Mutic, and J. A. Purdy, “Phantoms for IMRT dose distribution measurement and treatment verification,” Int. J. Radiat. Oncol., Biol., Phys. 40, 12311235 (1998).
66.T. Pawlicki, G. Luxton, Q. T. Le, D. Findley, and C. M. Ma, “Lens dose in MLC-based IMRT treatments of the head and neck,” Int. J. Radiat. Oncol., Biol., Phys. 59, 293299 (2004).
67.I. A. Popescu, C. P. Shaw, S. F. Zavgorodni, and W. A. Beckham, “Absolute dose calculations for Monte Carlo simulations of radiotherapy beams,” Phys. Med. Biol. 50, 33753392 (2005).
68.S. L. Richardson, W. A. Tome, N. P. Orton, T. R. McNutt, and B. R. Paliwal, “IMRT delivery verification using a spiral phantom,” Med. Phys. 30, 25532558 (2003).
69.F. Bagne, “A comprehensive study of LiF TL response to high energy photons and electrons,” Radiology 123, 753760 (1977).
70.J. Dalgleish, “Letter: TLD system for radiotherapy monitoring,” Phys. Med. Biol. 18, 465467 (1973).
71.M. J. Rossiter, “The use of precision thermoluminescence dosimetry for intercomparison of absorbed dose,” Phys. Med. Biol. 20, 735746 (1975).
72.B. I. Ruden, “Evaluation of the clinical use of TLD,” Acta Radiol. Ther. Phys. Biol. 15, 447464 (1976).
73.M. S. Tarakanath and J. Novotny, “Thermoluminescence dosimetry in clinical radiation dose measurements,” Strahlentherapie 152, 7177 (1976).
74.A. J. Troncalli and J. Chapman, “TLD linearity vs. beam energy and modality,” Med. Dosim. 27, 295296 (2002).
75.F. M. Khan, K. P. Doppke, K. R. Hogstrom, G. J. Kutcher, R. Nath, S. C. Prasad, J. A. Purdy, M. Rozenfeld, and B. L. Werner, “Clinical electron-beam dosimetry: Report of AAPM Radiation Therapy Committee Task Group No. 25,” Med. Phys. 18, 73109 (1991).
76.J. Balog, D. Lucas, C. DeSouza, and R. Crilly, “Helical tomotherapy radiation leakage and shielding considerations,” Med. Phys. 32, 710719 (2005).
77.J. F. Fowler, J. S. Welsh, and S. P. Howard, “Loss of biological effect in prolonged fraction delivery,” Int. J. Radiat. Oncol., Biol., Phys. 59, 242249 (2004).
78.S. F. Kry, M. Salehpour, D. S. Followill, M. Stovall, D. A. Kuban, R. A. White, and I. I. Rosen, “The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 62, 11951203 (2005).
79.E. A. Miles, C. H. Clark, M. T. Urbano, M. Bidmead, D. P. Dearnaley, K. J. Harrington, R. A’Hern, and C. M. Nutting, “The impact of introducing intensity modulated radiotherapy into routine clinical practice,” Radiother. Oncol. 77, 241246 (2005).
80.F. Sterzing, M. W. Munter, M. Schafer, P. Haering, B. Rhein, C. Thilmann, and J. Debus, “Radiobiological investigation of dose-rate effects in intensity-modulated radiation therapy,” Strahlenther. Onkol. 181, 4248 (2005).
81.J. Z. Wang, X. A. Li, W. D. D’Souza, and R. D. Stewart, “Impact of prolonged fraction delivery times on tumor control: A note of caution for intensity-modulated radiation therapy (IMRT),” Int. J. Radiat. Oncol., Biol., Phys. 57, 543552 (2003).
82.F. García-Vicente, J. M. Delgado, and C. Peraza, “Experimental determination of the convolution kernel for the study of the spatial response of a detector,” Med. Phys. 25, 202207 (1998).
83.G. Bednarz, M. Saiful Huq, and U. F. Rosenow, “Deconvolution of detector size effect for output factor measurement for narrow Gamma Knife radiosurgery beams,” Phys. Med. Biol. 47, 36433649 (2002).
84.D. A. Low, J. F. Dempsey, J. Markman, S. Mutic, E. E. Klein, J. W. Sohn, and J. A. Purdy, “Toward automated quality assurance for intensity-modulated radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 53, 443452 (2002).
85.A. Mack, H. Czempiel, H. J. Kreiner, G. Durr, and B. Wowra, “Quality assurance in stereotactic space. A system test for verifying the accuracy of aim in radiosurgery,” Med. Phys. 29, 561568 (2002).
86.W. L. McLaughlin, C. G. Soares, J. A. Sayeg, E. C. McCullough, R. W. Kline, A. Wu, and A. H. Maitz, “The use of a radiochromic detector for the determination of stereotactic radiosurgery dose characteristics,” Med. Phys. 21, 379388 (1994).
87.R. Ramani, A. W. Lightstone, D. L. Mason, and P. F. O’Brien, “The use of radiochromic film in treatment verification of dynamic stereotactic radiosurgery,” Med. Phys. 21, 389392 (1994).
88.H. Shiomi, T. Inoue, S. Nakamura, and T. Inoue, “Quality assurance for an image-guided frameless radiosurgery system using radiochromic film,” Radiat. Med. 18, 107113 (2000).
89.T. Yasuda, J. Beatty, P. J. Biggs, and K. Gall, “Two-dimensional dose distribution of a miniature x-ray device for stereotactic radiosurgery,” Med. Phys. 25, 12121216 (1998).
90.M. R. Arnfield, K. Otto, V. R. Aroumougame, and R. D. Alkins, “The use of film dosimetry of the penumbra region to improve the accuracy of intensity modulated radiotherapy,” Med. Phys. 32, 1218 (2005).
91.J. C. L. Chow, B. Wettlaufer, and R. Q. Jiang, “Dosimetric effects on the penumbra region of irregular multi-leaf collimated fields,” Phys. Med. Biol. 51, N31N38 (2006).
92.S. Agostinelli, S. Garelli, M. Piergentili, and F. Foppiano, “Response to high-energy photons of PTW31014 PinPoint ion chamber with a central aluminum electrode,” Med. Phys. 35, 32933301 (2008).
93.S. Pai, I. J. Das, J. F. Dempsey, K. L. Lam, T. J. Losasso, A. J. Olch, J. R. Palta, L. E. Reinstein, D. Ritt, and E. E. Wilcox, “TG-69: Radiographic film for megavoltage beam dosimetry,” Med. Phys. 34, 22282258 (2007).
94.T. M. Bogucki, W. R. Murphy, C. W. Baker, S. S. Piazza, and A. G. Haus, “Processor quality control in laser imaging systems,” Med. Phys. 24, 581584 (1997).
95.A. Niroomand-Rad, C. R. Blackwell, B. M. Coursey, K. P. Gall, J. M. Galvin, W. L. McLaughlin, A. S. Meigooni, R. Nath, J. E. Rodgers, and C. G. Soares, “Radiochromic film dosimetry: Recommendations of AAPM Radiation Therapy Committee Task Group 55. American Association of Physicists in Medicine,” Med. Phys. 25, 20932115 (1998).
96.M. J. Butson, T. Cheung, and P. K. Yu, “Spatial resolution of a stacked radiochromic film dosimeter,” Radiother. Oncol. 61, 211213 (2001).
97.M. J. Butson, J. N. Mathur, and P. E. Metcalfe, “Radiochromic film as a radiotherapy surface-dose detector,” Phys. Med. Biol. 41, 10731078 (1996).
98.T. Cheung, M. J. Butso, and P. K. Yu, “Use of multiple layers of Gafchromic film to increase sensitivity,” Phys. Med. Biol. 46, N235N240 (2001).
99.J. F. Dempsey, D. A. Low, S. Mutic, J. Markman, A. S. Kirov, G. H. Nussbaum, and J. F. Williamson, “Validation of a precision radiochromic film dosimetry system for quantitative two-dimensional imaging of acute exposure dose distributions,” Med. Phys. 27, 24622475 (2000).
100.P. O. Kellermann, A. Ertl, and E. Gornik, “A new method of readout in radiochromic film dosimetry,” Phys. Med. Biol. 43, 22512263 (1998).
101.L. E. Reinstein and G. R. Gluckman, “Comparison of dose response of radiochromic film measured with He-Ne laser, broadband, and filtered light densitometers,” Med. Phys. 24, 15311533 (1997).
102.L. E. Reinstein, G. R. Gluckman, and H. I. Amols, “Predicting optical densitometer response as a function of light source characteristics for radiochromic film dosimetry,” Med. Phys. 24, 19351942 (1997).
103.L. E. Reinstein, G. R. Gluckman, and A. G. Meek, “A rapid colour stabilization technique for radiochromic film dosimetry,” Phys. Med. Biol. 43, 27032708 (1998).
104.M. J. Butson, T. Cheung, and P. K. Yu, “Absorption spectra variations of EBT radiochromic film from radiation exposure,” Phys. Med. Biol. 50, N135N140 (2005).
105.S. A. Dini, R. A. Koona, J. R. Ashburn, and A. S. Meigoonia, “Dosimetric evaluation of GAFCHROMIC XR type T and XR type R films,” J. Appl. Clin. Med. Phys. 6, 114134 (2005).
106.T. Wiezorek, N. Banz, M. Schwedas, M. Scheithauer, H. Salz, D. Georg, and T. G. Wendt, “Dosimetric quality assurance for intensity-modulated radiotherapy feasibility study for a filmless approach,” Strahlenther. Onkol. 181, 468474 (2005).
107.S. T. Chiu-Tsao, Y. Ho, R. Shankar, L. Wang, and L. B. Harrison, “Energy dependence of response of new high sensitivity radiochromic films for megavoltage and kilovoltage radiation energies,” Med. Phys. 32, 33503354 (2005).
108.T. Cheung, M. J. Butson, and P. K. Yu, “Experimental energy response verification of XR type T radiochromic film,” Phys. Med. Biol. 49, N371N376 (2004).
109.M. J. Butson, P. K. Yu, T. Cheung, and P. Metcalfe, “High sensitivity radiochromic film dose comparisons,” Phys. Med. Biol. 47, N291N295 (2002).
110.M. J. Butson, P. K. Yu, T. Cheung, and D. Inwood, “Polarization effects on a high-sensitivity radiochromic film,” Phys. Med. Biol. 48, N207N211 (2003).
111.T. Cheung, M. J. Butson, and P. K. Yu, “Post-irradiation colouration of Gafchromic EBT radiochromic film,” Phys. Med. Biol. 50, N281N285 (2005).
112.M. J. Butson, T. Cheung, and P. K. Yu, “Visible absorption properties of radiation exposed XR type-T radiochromic film,” Phys. Med. Biol. 49, N347N351 (2004).
113.B. D. Lynch, J. Kozelka, M. K. Ranade, J. G. Li, W. E. Simon, and J. F. Dempsey, “Important considerations for radiochromic film dosimetry with flatbed CCD scanners and EBT GAFCHROMIC film,” Med. Phys. 33, 45514556 (2006).
114.C. G. Soares, “New developments in radiochromic film dosimetry,” Radiat. Prot. Dosim. 120, 100106 (2006).
115.M. Bazioglou and J. Kalef-Ezra, “Dosimetry with radiochromic films: A document scanner technique, neutron response, applications,” Appl. Radiat. Isot. 55, 339345 (2001).
116.L. Paelinck, W. De Neve, and C. De Wagter, “Precautions and strategies in using a commercial flatbed scanner for radiochromic film dosimetry,” Phys. Med. Biol. 52, 231242 (2007).
117.J. E. Bayouth, D. Wendt, and S. M. Morrill, “MLC quality assurance techniques for IMRT applications,” Med. Phys. 30, 743750 (2003).
118.M. Bucciolini, F. B. Buonamici, and M. Casati, “Verification of IMRT fields by film dosimetry,” Med. Phys. 31, 161168 (2004).
119.N. L. Childress, L. Dong, and I. I. Rosen, “Rapid radiographic film calibration for IMRT verification using automated MLC fields,” Med. Phys. 29, 23842390 (2002).
120.S. Gillis, C. De Wagter, J. Bohsung, B. Perrin, P. Williams, and B. J. Mijnheer, “An inter-centre quality assurance network for IMRT verification: Results of the ESTRO QUASIMODO project,” Radiother. Oncol. 76, 340353 (2005).
121.A. J. Olch, “Dosimetric performance of an enhanced dose range radiographic film for intensity-modulated radiation therapy quality assurance,” Med. Phys. 29, 21592168 (2002).
122.P. Tangboonduangjit, I. Wu, M. Butson, A. Rosenfeld, and P. Metcalfe, “Intensity modulated radiation therapy: Film verification of planar dose maps,” Australas. Phys. Eng. Sci. Med. 26, 194199 (2003).
123.P. Winkler, B. Zurl, H. Guss, P. Kindl, and G. Stuecklschweiger, “Performance analysis of a film dosimetric quality assurance procedure for IMRT with regard to the employment of quantitative evaluation methods,” Phys. Med. Biol. 50, 643654 (2005).
124.L. Xing and J. G. Li, “Computer verification of fluence map for intensity modulated radiation therapy,” Med. Phys. 27, 20842092 (2000).
125.Y. Yan, N. Papanikolaou, X. Weng, J. Penagaricano, and V. Ratanatharathorn, “Fast radiographic film calibration procedure for helical tomotherapy intensity modulated radiation therapy dose verification,” Med. Phys. 32, 15661570 (2005).
126.Y. Yang and L. Xing, “Using the volumetric effect of a finite-sized detector for routine quality assurance of multileaf collimator leaf positioning,” Med. Phys. 30, 433441 (2003).
127.X. R. Zhu, P. A. Jursinic, D. F. Grimm, F. Lopez, J. J. Rownd, and M. T. Gillin, “Evaluation of Kodak EDR2 film for dose verification of intensity modulated radiation therapy delivered by a static multileaf collimator,” Med. Phys. 29, 16871692 (2002).
128.J. Esthappan, S. Mutic, W. B. Harms, J. F. Dempsey, and D. A. Low, “Dosimetry of therapeutic photon beams using an extended dose range film,” Med. Phys. 29, 24382445 (2002).
129.X. R. Zhu, S. Yoo, P. A. Jursinic, D. F. Grimm, F. Lopez, J. J. Rownd, and M. T. Gillin, “Characteristics of sensitometric curves of radiographic films,” Med. Phys. 30, 912919 (2003).
130.N. L. Childress and I. I. Rosen, “Effect of processing time delay on the dose response of Kodak EDR2 film,” Med. Phys. 31, 22842288 (2004).
131.E. Y. Hirata, C. Cunningham, J. A. Micka, H. Keller, M. W. Kissick, and L. A. DeWerd, “Low dose fraction behavior of high sensitivity radiochromic film,” Med. Phys. 32, 10541060 (2005).
132.A. Mack, G. Mack, D. Weltz, S. G. Scheib, H. D. Bottcher, and V. Seifert, “High precision film dosimetry with GAFCHROMIC films for quality assurance especially when using small fields,” Med. Phys. 30, 23992409 (2003).
133.J. W. Sohn, J. F. Dempsey, T. S. Suh, and D. A. Low, “Analysis of various beamlet sizes for IMRT with 6 MV photons,” Med. Phys. 30, 24322439 (2003).
134.O. A. Zeidan, J. G. Li, D. A. Low, and J. F. Dempsey, “Comparison of small photon beams measured using radiochromic and silver-halide films in solid water phantoms,” Med. Phys. 31, 27302737 (2004).
135.M. A. Bazioglou, J. Kalef-Ezra, and C. Kappas, “Comparison of dosimetric techniques for the assessment of basic dosimetric data of stereotactic fields,” Phys. Med. Biol. 17, 123128 (2001).
136.P. Francescon, S. Cora, P. Scalchi, and F. Colombo, “Use of GAFCHROMIC(TM) film MD-55 and of a new microparallel-plate chamber in the dosimetry of small fields,” Phys. Med. Biol. 13, 9199 (1997).
137.A. Somigliana, G. M. Cattaneo, C. Fiorino, S. Borelli, A. del Vecchio, G. Zonca, E. Pignoli, G. Loi, R. Calandrino, and R. Marchesini, “Dosimetry of Gamma Knife and linac-based radiosurgery using radiochromic and diode detectors,” Phys. Med. Biol. 44, 887897 (1999).
138.P. A. Jursinic and B. E. Nelms, “A 2-D diode array and analysis software for verification of intensity modulated radiation therapy delivery,” Med. Phys. 30, 870879 (2003).
139.K. M. Langen, S. L. Meeks, D. O. Poole, T. H. Wagner, T. R. Willoughby, O. A. Zeidan, P. A. Kupelian, K. J. Ruchala, and G. H. Olivera, “Evaluation of a diode array for QA measurements on a helical tomotherapy unit,” Med. Phys. 32, 34243430 (2005).
140.D. Letourneau, M. Gulam, D. Yan, M. Oldham, and J. W. Wong, “Evaluation of a 2D diode array for IMRT quality assurance,” Radiother. Oncol. 70, 199206 (2004).
141.J. G. Li, J. F. Dempsey, L. Ding, C. Liu, and J. R. Palta, “Validation of dynamic MLC-controller log files using a two-dimensional diode array,” Med. Phys. 30, 799805 (2003).
142.S. Amerio, A. Boriano, F. Bourhaleb, R. Cirio, M. Donetti, A. Fidanzio, E. Garelli, S. Giordanengo, E. Madon, F. Marchetto, U. Nastasi, C. Peroni, A. Piermattei, C. J. Sanz Freire, A. Sardo, and E. Trevisiol, “Dosimetric characterization of a large area pixel-segmented ionization chamber,” Med. Phys. 31, 414420 (2004).
143.J. Pardo, L. Franco, F. Gomez, A. Iglesias, A. Pazos, J. Pena, R. Lobato, J. Mosquera, M. Pombar, and J. Sendon, “Development and operation of a pixel segmented liquid-filled linear array for radiotherapy quality assurance,” Phys. Med. Biol. 50, 17031716 (2005).
144.E. Spezi, A. L. Angelini, F. Romani, and A. Ferri, “Characterization of a 2D ion chamber array for the verification of radiotherapy treatments,” Phys. Med. Biol. 50, 33613373 (2005).
145.B. Poppe, A. Blechschmnidt, A. Djouguela, R. Kollhoff, A. Rubach, K. C. Willborn, and D. Harder, “Two-dimensional ionization chamber arrays for IMRT plan verification,” Med. Phys. 33, 10051015 (2006).
146.B. Poppe, P. Mehran, R. Kollhoff, and A. Rubach, “Use of a two-dimensional ionization chamber array for quality assurance in medical linear accelerators,” Z. Med. Phys. 13, 115122 (2003).
147.M. Sonoda, M. Takano, J. Miyahara, and H. Kato, “Computed radiography utilizing scanning laser stimulated luminescence,” Radiology 148, 833838 (1983).
148.A. J. Olch, “Evaluation of a computed radiography system for megavoltage photon beam dosimetry,” Med. Phys. 32, 29872999 (2005).
149.M. A. Bazioglou, K. Theodorou, C. Kappas, and J. Kalef-Ezra, “A multipurpose head phantom for stereotactic radiotherapy,” Phys. Med. Biol. 18, 121127 (2002).
150.C. M. Ma, S. B. Jiang, T. Pawlicki, Y. Chen, J. S. Li, J. Deng, and A. L. Boyer, “A quality assurance phantom for IMRT dose verification,” Phys. Med. Biol. 48, 561572 (2003).
151.B. Paliwal, W. Tome, S. Richardson, and T. R. Makie, “A spiral phantom for IMRT and tomotherapy treatment delivery verification,” Med. Phys. 27, 25032507 (2000).
152.A. Palm and T. LoSasso, “Influence of phantom material and phantom size on radiographic film response in therapy photon beams,” Med. Phys. 32, 24342442 (2005).
153.L. Xing, B. Curran, R. Hill, T. Holmes, L. Ma, K. M. Forster, and A. L. Boyer, “Dosimetric verification of a commercial inverse treatment planning system,” Phys. Med. Biol. 44, 463478 (1999).
154.J. Balog, T. Holmes, and R. Vaden, “A helical tomotherapy dynamic quality assurance,” Med. Phys. 33, 39393950 (2006).
155.M. A. MacKenzie, M. Lachaine, B. Murray, B. G. Fallone, D. Robinson, and G. C. Field, “Dosimetric verification of inverse planned step and shoot multileaf collimator fields from a commercial treatment planning system,” J. Appl. Clin. Med. Phys. 3, 97109 (2002).
156.J. S. Tsai, D. E. Wazer, M. N. Ling, J. K. Wu, M. Fagundes, T. DiPetrillo, B. Kramer, M. Koistinen, and M. J. Engler, “Dosimetric verification of the dynamic intensity-modulated radiation therapy of 92 patients,” Int. J. Radiat. Oncol., Biol., Phys. 40, 12131230 (1998).
157.D. Verellen, N. Linthout, D. van den Berge, A. Bel, and G. Storme, “Initial experience with intensity-modulated conformal radiation therapy for treatment of the head and neck region,” Int. J. Radiat. Oncol., Biol., Phys. 39, 99114 (1997).
158.S. E. Burch, K. J. Kearfott, J. H. Trueblood, W. C. Sheils, J. I. Yeo, and C. K. Wang, “A new approach to film dosimetry for high energy photon beams: Lateral scatter filtering,” Med. Phys. 24, 775783 (1997).
159.I. J. Yeo, A. Beiki-Ardakani, Y. B. Cho, M. Heydarian, T. Zhang, and M. Islam, “EDR2 film dosimetry for IMRT verification using low-energy photon filters,” Med. Phys. 31, 19601963 (2004).
160.W. B. Harms, Sr., D. A. Low, J. W. Wong, and J. A. Purdy, “A software tool for the quantitative evaluation of 3D dose calculation algorithms,” Med. Phys. 25, 18301836 (1998).
161.J. Van Dyk, R. B. Barnett, J. E. Cygler, and P. C. Shragge, “Commissioning and quality assurance of treatment planning computers,” Int. J. Radiat. Oncol., Biol., Phys. 26, 261273 (1993).
162.N. L. Childress and I. I. Rosen, “The design and testing of novel clinical parameters for dose comparison,” Int. J. Radiat. Oncol., Biol., Phys. 56, 14641479 (2003).
163.D. A. Low and J. F. Dempsey, “Evaluation of the gamma dose distribution comparison method,” Med. Phys. 30, 24552464 (2003).
164.M. Stock, B. Kroupa, and D. Georg, “Interpretation and evaluation of the gamma index and the gamma index angle for the verification of IMRT hybrid plans,” Phys. Med. Biol. 50, 399411 (2005).
165.G. J. Budgell, B. A. Perrin, J. H. L. Mott, J. Fairfoul, and R. I. Mackay, “Quantitative analysis of patient-specific dosimetric IMRT verification,” Phys. Med. Biol. 50, 103119 (2005).
166.K. T. S. Islam, J. F. Dempsey, M. K. Ranade, M. J. Maryanski, and D. A. Low, “Initial evaluation of commercial optical CT-based 3D gel dosimeter,” Med. Phys. 30, 21592168 (2003).
167.H. S. Jin, H. Chung, C. Liu, J. Palta, T. S. Suh, and S. Y. Kim, “A novel dose uncertainty model and its application for dose verification,” Med. Phys. 32, 17471756 (2005).
168.G. Nicolini, A. Fogliata, and L. Cozzi, “IMRT with the sliding window: Comparison of the static and dynamic methods. Dosimetric and spectral analysis,” Radiother. Oncol. 75, 112119 (2005).
169.K. Nygaard, O. H. Odland, Y. Kvinnsland, B. Nygaard, J. Heggdal, and L. P. Muren, “Measurements and treatment planning calculations of electron dose distributions below bolus edges,” Radiother. Oncol. 74, 217220 (2005).
170.N. Sakthi, P. Keall, I. Mihaylov, Q. W. Wu, Y. Wu, J. F. Williamson, R. Schmidt-Ullrich, and J. V. Siebers, “Monte Carlo-based dosimetry of head-and-neck patients treated with SIB-IMRT,” Int. J. Radiat. Oncol., Biol., Phys. 64, 968977 (2006).
171.P. Sandilos, A. Angelopoulos, P. Baras, K. Dardoufas, P. Karaiskos, P. Kipouros, M. Kozicki, J. M. Rosiak, L. Sakelliou, I. Seimenis, and L. Vlahos, “Dose verification in clinical IMRT prostate incidents,” Int. J. Radiat. Oncol., Biol., Phys. 59, 15401547 (2004).
172.J. Seco, E. Adams, M. Bidmead, M. Partridge, and F. Verhaegen, “Head-and-neck IMRT treatments assessed with a Monte Carlo dose calculation engine,” Phys. Med. Biol. 50, 817830 (2005).
173.S. D. Thomas, M. Mackenzie, G. C. Field, A. M. Syme, and B. G. Fallone, “Patient specific treatment verifications for helical tomotherapy treatment plans,” Med. Phys. 32, 37933800 (2005).
174.S. Vedam, A. Docef, M. Fix, M. Murphy, and P. Keall, “Dosimetric impact of geometric errors due to respiratory motion prediction on dynamic multileaf collimator-based four-dimensional radiation delivery,” Med. Phys. 32, 16071620 (2005).
175.A. Bakai, M. Alber, and F. Nusslin, “A revision of the gamma-evaluation concept for the comparison of dose distributions,” Phys. Med. Biol. 48, 35433553 (2003).
176.A. Hudson, G. Fallone, and C. Field, “A software tool to quantitatively compare dose distributions,” Med. Phys. 30, 19521952 (2003).
177.S. B. Jiang, G. C. Sharp, T. Neicu, R. I. Berbeco, S. Flampouri, and T. Bortfeld, “On dose distribution comparison,” Phys. Med. Biol. 51, 759776 (2006).
178.T. Depuydt, A. Van Esch, and D. P. Huyskens, “A quantitative evaluation of IMRT dose distributions: Refinement and clinical assessment of the gamma evaluation,” Radiother. Oncol. 62, 309319 (2002).
179.J. M. Moran, J. Radawski, and B. A. Fraass, “A dose gradient analysis tool for IMRT QA,” J. Appl. Clin. Med. Phys. 6, 6273 (2005).
180.G. J. Budgell, Q. Zhang, R. J. Trouncer, and R. I. Mackay, “Improving IMRT quality control efficiency using an amorphous silicon electronic portal imager,” Med. Phys. 32, 32673278 (2005).
181.J. Chang, C. H. Obcemea, J. Sillanpaa, J. Mechalakos, and C. Burman, “Use of EPID for leaf position accuracy QA of dynamic multi-leaf collimator (DMLC) treatment,” Med. Phys. 31, 20912096 (2004).
182.W. van Elmpt, L. McDermott, S. Nijsten, M. Wendling, P. Lambin, and B. Mijnheer, “A literature review of electronic portal imaging for radiotherapy dosimetry,” Radiother. Oncol. 88, 289309 (2008).
183.B. M. McCurdy, K. Luchka, and S. Pistorius, “Dosimetric investigation and portal dose image prediction using an amorphous silicon electronic portal imaging device,” Med. Phys. 28, 911924 (2001).
184.B. M. McCurdy and S. Pistorius, “A two-step algorithm for predicting portal dose images in arbitrary detectors,” Med. Phys. 27, 21092116 (2000).
185.A. Van Esch, T. Depuydt, and D. P. Huyskens, “The use of an aSi-based EPID for routine absolute dosimetric pre-treatment verification of dynamic IMRT fields,” Radiother. Oncol. 71, 223234 (2004).
186.K. Chytyk and B. M. McCurdy, “Comprehensive fluence model for absolute portal dose image prediction,” Med. Phys. 36, 13891398 (2009).
187.Y. Chen, J. M. Moran, D. A. Roberts, Y. El-Mohri, L. E. Antonuk, and B. A. Fraass, “Performance of a direct-detection active matrix flat panel dosimeter (AMFPD) for IMRT measurements,” Med. Phys. 34, 49114922 (2007).
188.Y. El-Mohri, L. E. Antonuk, J. Yorkston, K. W. Jee, M. Maolinbay, K. L. Lam, and J. H. Siewerdsen, “Relative dosimetry using active matrix flat-panel imager (AMFPI) technology,” Med. Phys. 26, 15301541 (1999).
189.J. M. Moran, D. A. Roberts, T. S. Nurushev, L. E. Antonuk, Y. El-Mohri, and B. A. Fraass, “An active matrix flat panel dosimeter (AMFPD) for in-phantom dosimetric measurements,” Med. Phys. 32, 466472 (2005).
190.M. Sabet, F. W. Menk, and P. B. Greer, “Evaluation of an a-Si EPID in direct detection configuration as a water-equivalent dosimeter for transit dosimetry,” Med. Phys. 37, 14591467 (2010).
191.L. N. McDermott, M. Wendling, J. J. Sonke, M. van Herk, and B. J. Mijnheer, “Replacing pretreatment verification with in vivo EPID dosimetry for prostate IMRT,” Int. J. Radiat. Oncol., Biol., Phys. 67, 15681577 (2007).
192.L. N. McDermott, M. Wendling, B. van Asselen, J. Stroom, J. J. Sonke, M. van Herk, and B. J. Mijnheer, “Clinical experience with EPID dosimetry for prostate IMRT pre-treatment dose verification,” Med. Phys. 33, 39213930 (2006).
193.M. Wendling, R. J. Louwe, L. N. McDermott, J. J. Sonke, M. van Herk, and B. J. Mijnheer, “Accurate two-dimensional IMRT verification using a back-projection EPID dosimetry method,” Med. Phys. 33, 259273 (2006).
194.J. V. Siebers, J. O. Kim, L. Ko, P. J. Keall, and R. Mohan, “Monte Carlo computation of dosimetric amorphous silicon electronic portal images,” Med. Phys. 31, 21352146 (2004).
195.R. M. Howell, I. P. Smith, and C. S. Jarrio, “Establishing action levels for EPID-based QA for IMRT,” J. Appl. Clin. Med. Phys. 9, 2721 (2008).
196.M. D’Andrea, G. Laccarino, S. Carpino, L. Strigari, and M. Benassi, “Primary photon fluence extraction from portal images acquired with an amorphous silicon flat panel detector: Experimental determination of a scatter filter,” J. Exp. Clin. Cancer Res. 26, 125132 (2007).
197.A. F. Monti and G. Frigerio, “Dosimetric verification of 6 and 18 MV intensity modulated photon beams using a dedicated fluoroscopic electronic portal imaging device (EPID),” Radiother. Oncol. 81, 8896 (2006).
198.C. Talamonti, M. Casati, and M. Bucciolini, “Pretreatment verification of IMRT absolute dose distributions using a commercial a-Si EPID,” Med. Phys. 33, 43674378 (2006).
199.M. van Zijtveld, M. L. Dirkx, H. C. de Boer, and B. J. Heijmen, “3D dose reconstruction for clinical evaluation of IMRT pretreatment verification with an EPID,” Radiother. Oncol. 82, 201207 (2007).
200.P. Winkler, A. Hefner, and D. Georg, “Dose-response characteristics of an amorphous silicon EPID,” Med. Phys. 32, 30953105 (2005).
201.W. van Elmpt, S. Petit, D. De Ruysscher, P. Lambin, and A. Dekker, “3D dose delivery verification using repeated cone-beam imaging and EPID dosimetry for stereotactic body radiotherapy of non-small cell lung cancer,” Radiother. Oncol. 94, 188194 (2010).
202.G. S. Ibbott, “QA in radiation therapy: The RPC perspective,” J. Phys.: Conf. Ser. 250, 012001 (2010).
203.M. Oldham, J. H. Siewerdsen, A. Shetty, and D. A. Jaffray, “High resolution gel-dosimetry by optical-CT and MR scanning,” Med. Phys. 28, 14361445 (2001).
204.R. G. Kelly, K. J. Jordan, and J. J. Battista, “Optical CT reconstruction of 3D dose distributions using the ferrous-benzoic-xylenol (FBX) gel dosimeter,” Med. Phys. 25, 17411750 (1998).
205.P. Guo, J. Adamovics, and M. Oldham, “Characterization of a new radiochromic three-dimensional dosimeter,” Med. Phys. 33, 13381345 (2006).
206.M. J. Maryanski, J. C. Gore, R. P. Kennan, and R. J. Schulz, “NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: A new approach to 3D dosimetry by MRI,” Magn. Reson. Imaging 11, 253258 (1993).
207.I. C. Baustert, M. Oldham, T. A. Smith, C. Hayes, S. Webb, and M. O. Leach, “Optimized MR imaging for polyacrylamide gel dosimetry,” Phys. Med. Biol. 45, 847858 (2000).
208.Y. De Deene, “How to scan polymer gels with MRI,” J. Phys.: Conf. Ser. 250, 012015 (2010).
209.J. C. Gore, M. Ranade, M. J. Maryanski, and R. J. Schulz, “Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: I. Development of an optical scanner,” Phys. Med. Biol. 41, 26952704 (1996).
210.C. Baldock, Y. De Deene, S. Doran, G. Ibbott, A. Jirasek, M. Lepage, K. B. McAuley, M. Oldham, and L. J. SchreimerTopical Review: Polymer gel dosimetry,” Phys. Med. Biol. 55, R1R63 (2010).
211.M. Lepage, A. K. Whittaker, L. Rintoul, S. A. Back, and C. Baldock, “Modelling of post-irradiation events in polymer gel dosimeters,” Phys. Med. Biol. 46, 28272839 (2001).
212.A. Ertl, A. Berg, M. Zehetmayer, and P. Frigo, “High-resolution dose profile studies based on MR imaging with polymer BANG(TM) gels in stereotactic radiation techniques,” Magn. Reson. Imaging 18, 343349 (2000).
213.G. S. Ibbott, M. J. Maryanski, P. Eastman, S. D. Holcomb, Y. Zhang, R. G. Avison, M. Sanders, and J. C. Gore, “Three-dimensional visualization and measurement of conformal dose distributions using magnetic resonance imaging of BANG polymer gel dosimeters,” Int. J. Radiat. Oncol., Biol., Phys. 38, 10971103 (1997).
214.M. Oldham, G. R. Gluckman, and L. H. Kim, “3D verification of a prostate IMRT treatment by polymer gel-dosimetry and optical-CT scanning,” J. Phys.: Conf. Ser. 3, 293296 (2004).
215.S. G. Scheib and S. Gianolini, “Three-dimensional dose verification using BANG gel: A clinical example,” J. Neurosurg. 97, 582587 (2002).
216.K. Vergote, Y. De Deene, F. Claus, W. De Gersem, B. Van Duyse, L. Paelinck, E. Achten, W. De Neve, and C. De Wagter, “Application of monomer/polymer gel dosimetry to study the effects of tissue inhomogeneities on intensity-modulated radiation therapy (IMRT) dose distributions,” Radiother. Oncol. 67, 119128 (2003).
217.Y. Xu, C. S. Wuu, and M. J. Maryanski, “Performance of a commercial optical CT scanner and polymer gel dosimeters for 3-D dose verification,” Med. Phys. 31, 30243033 (2004).
218.J. C. Gore, Y. S. Kang, and R. J. Schulz, “Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging,” Phys. Med. Biol. 29, 11891197 (1984).
219.H. Fricke and E. J. Hart, in Radiation Dosimetry, edited by F. H. Attix and W. C. Roesch (Academic Press, New York, 1966), Vol. 2.
220.H. Fricke and E. L. Hart, “The chemical action of roentgen rays on dilute ferrosulphate solutions as a measure of dose,” Am. J. Roentgenol., Radium Ther. Nucl. Med. 18, 430432 (1927).
221.B. J. Balcom, T. J. Lees, A. R. Sharp, N. S. Kulkarni, and G. S. Wagner, “Diffusion in Fe(II/III) radiation dosimetry gels measured by magnetic resonance imaging,” Phys. Med. Biol. 40, 16651676 (1995).
222.C. Baldock, P. J. Harris, A. R. Piercy, and B. Healy, “Experimental determination of the diffusion coefficient in two-dimensions in ferrous sulphate gels using the finite element method,” Australas. Phys. Eng. Sci. Med. 24, 1930 (2001).
223.J. Adamovics and M. J. Maryanski, “Characterisation of PRESAGETM: A new 3-D radiochromic solid polymer dosimeter for ionising radiation,” Radiat. Prot. Dosim. 120, 107112 (2006).
224.H. S. Sakhalkar, J. Adamovics, G. Ibbott, and M. Oldham, “A comprehensive evaluation of the PRESAGE optical-CT 3D dosimetry system,” Med. Phys. 36, 7182 (2009).
225.M. Oldham, “Optical-CT scanning of polymer gels,” J. Phys.: Conf. Ser. 3, 122135 (2004).
226.M. Oldham and L. Kim, “A study of geometrical and reconstruction artifacts in 3D gel-dosimetry utilizing optical-CT,” Med. Phys. 30, 1426 (2003).
227.M. Oldham and L. Kim, “Optical-CT gel-dosimetry. II: Optical artifacts and geometrical distortion,” Med. Phys. 31, 10931104 (2004).
228.Y. De Deene and C. De Wagter, “Artefacts in multi-echo imaging for high-precision gel dosimetry: III. Effects of temperature drift during scanning,” Phys. Med. Biol. 46, 26972711 (2001).
229.Y. De Deene, C. De Wagter, W. De Neve, and E. Achten, “Artefacts in multi-echo imaging for high-precision gel dosimetry: I. Analysis and compensation of eddy currents,” Phys. Med. Biol. 45, 18071823 (2000).
230.Y. De Deene, C. De Wagter, W. De Neve, and E. Achten, “Artefacts in multi-echo imaging for high-precision gel dosimetry: II. Analysis of -field inhomogeneity,” Phys. Med. Biol. 45, 18251839 (2000).
231.M. A. Bero, W. B. Gilboy, and P. M. Glover, “An optical method for three-dimensional dosimetry,” J. Radiol. Prot. 20, 287294 (2000).
232.S. J. Doran, K. K. Koerkamp, M. A. Bero, P. Jenneson, E. J. Morton, and W. B. Gilboy, “A CCD-based optical CT scanner for high-resolution 3D imaging of radiation dose distributions: Equipment specifications, optical simulations and preliminary results,” Phys. Med. Biol. 46, 31913213 (2001).
233.M. J. Maryañski, Y. Z. Zastavker, and J. C. Gore, “Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: II. Optical properties of the BANG polymer gel,” Phys. Med. Biol. 41, 27052717 (1996).
234.M. Oldham, J. H. Siewerdsen, S. Kumar, J. Wong, and D. A. Jaffray, “Optical-CT gel-dosimetry I: Basic investigations,” Med. Phys. 30, 623634 (2003).
235.Y. Xu, C. S. Wuu, and M. J. Maryanski, “Determining optimal gel sensitivity in optical CT scanning of gel dosimeters,” Med. Phys. 30, 22572263 (2003).
236.C. S. Wuu and Y. Xu, “Three-dimensional dose verification for intensity modulated radiation therapy using optical CT based polymer gel dosimetry,” Med. Phys. 33, 14121419 (2006).
237.T. Olding, O. Holmes, and L. J. Schreiner, “Cone-beam optical computed tomography for gel dosimetry I: Scanner characterizations,” Phys. Med. Biol. 55, 28192840 (2010).
238.A. Thomas, M. Pierquet, and M. Oldham, “Achieving accurate radiochromic optical-CT imaging which using a polychromatic light source,” J. Phys.: Conf. Ser. 250, 012045 (2010).
239.K. Jordan, J. Snir, and J. Battista, “Multiple slot array collimator to minimize stray light in optical cone-beam CT,” J. Phys.: Conf. Ser. 250, 012062 (2010).
240.T. Ju, T. Simpson, J. Deasy, and D. Low, “Geometric interpretation of the distribution comparison technique: Interpolation free calculations,” Med. Phys. 35, 879887 (2008).
241.D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, “A technique for the quantitative evaluation of dose distributions,” Med. Phys. 25, 656661 (1998).

Data & Media loading...


Article metrics loading...



Intensity modulated radiation therapy (IMRT) poses a number of challenges for properly measuring commissioning data and quality assurance (QA) radiation dose distributions. This report provides a comprehensive overview of how dosimeters, phantoms, and dose distribution analysis techniques should be used to support the commissioning and quality assurance requirements of an IMRT program. The proper applications of each dosimeter are described along with the limitations of each system. Point detectors, arrays, film, and electronic portal imagers are discussed with respect to their proper use, along with potential applications of 3D dosimetry. Regardless of the IMRT technique utilized, some situations require the use of multiple detectors for the acquisition of accurate commissioning data. The overall goal of this task group report is to provide a document that aids the physicist in the proper selection and use of the dosimetry tools available for IMRT QA and to provide a resource for physicists that describes dosimetry measurement techniques for purposes of IMRT commissioning and measurement-based characterization or verification of IMRT treatment plans. This report is not intended to provide a comprehensive review of commissioning and QA procedures for IMRT. Instead, this report focuses on the aspects of metrology, particularly the practical aspects of measurements that are unique to IMRT. The metrology of IMRT concerns the application of measurement instruments and their suitability, calibration, and quality control of measurements. Each of the dosimetry measurement tools has limitations that need to be considered when incorporating them into a commissioning process or a comprehensive QA program. For example, routine quality assurance procedures require the use of robust field dosimetry systems. These often exhibit limitations with respect to spatial resolution or energy response and need to themselves be commissioned against more established dosimeters. A chain of dosimeters, from secondary standards to field instruments, is established to assure the quantitative nature of the tests. This report is intended to describe the characteristics of the components of these systems; dosimeters, phantoms, and dose evaluation algorithms. This work is the report of AAPM Task Group 120.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd