Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and T. J. Purcell, “A survey of general-purpose computation on graphics hardware,” Comput. Graph. Forum 26(1), 2151 (2008).
2. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips, “GPU computing,” Proc. IEEE 96(5), 879899 (2008).
3. M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips, Y. Zhang, and V. Volkov, “Parallel computing experiences with CUDA,” IEEE MICRO 28(4), 1327 (2008).
4. S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron, “A performance study of general-purpose applications on graphics processors using CUDA,” J. Parallel Distrib. Comput. 68(10), 13701380 (2008).
5. B. Cabral, N. Cam, and J. Foran, “Accelerated volume rendering and tomographic reconstruction using texture mapping hardware,” in Proceedings of the Volume Visualization (ACM, New York, USA, 1994), pp. 9198.
6. K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer, D. Patterson, W. Plishker, J. Shalf, S. Williams, and K. Yelick, “The landscape of parallel computing research: A view from Berkeley,” Technical Report, 2006 (UCB/EECS-2006-183).
7. J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming with CUDA,” in Comp. Graph (ACM, New York, USA, 2008), pp. 114.
8. J. Li, C. Papachristou, and R. Shekhar, “An FPGA-based computing platform for real-time 3D medical imaging and its application to cone-beam CT reconstruction,” J. Imaging Sci. Technol. 49, 237245 (2005).
9. S. Roujol, B. D. de Senneville, E. Vahala, T. Sorensen, C. Moonen, and M. Ries, “Online real-time reconstruction of adaptive TSENSE with commodity CPU/GPU hardware,” Magn. Reson. Med. 62(6), 16581664 (2009).
10. L. Xing, L. Lee, and R. Timmerman, “Adaptive radiation therapy and clinical perspectives,” in Image Guided and Adaptive Radiation Therapy, edited by R. Timmerman and L. Xing (Lippincott Williams & Wilkins, Baltimore, MD, 2009), pp. 1640.
11. M. Hansen, D. Atkinson, and T. Sorensen, “Cartesian SENSE and k-t SENSE reconstruction using commodity graphics hardware,” Magn. Reson. Med. 59(3), 463468 (2008).
12. G. Dasika, A. Sethia, V. Robby, T. Mudge, and S. Mahlke, “Medics: Ultra-portable processing for medical image reconstruction,” in Proceedings of the PACT’10, (ACM, New York, NY, 2010), pp. 181192.
13. R. A. Neri-Calderon, S. Alcaraz-Corona, and R. M. Rodriguez-Dagnino, “Cache-optimized implementation of the filtered backprojection algorithm on a digital signal processor,” J. Electron. Imaging 16(4), 043010 (2007).
14. K. Mueller and R. Yagel, “Rapid 3-D cone-beam reconstruction with the simultaneous algebraic reconstruction technique (SART) using 2-D texture mapping hardware,” IEEE Trans. Med. Imaging 19(12), 12271237 (2000).
15. F. Xu and K. Mueller, “Accelerating popular tomographic reconstruction algorithms on commodity PC graphics hardware,” IEEE Trans. Nucl. Sci. 52(3), 654663 (2005).
16. F. Xu and K. Mueller, “Real-time 3D computed tomographic reconstruction using commodity graphics hardware,” Phys. Med. Biol. 52(12), 34053419 (2007).
17. X. Zhao, J.-J. Hu, and P. Zhang, “GPU-based 3D cone-beam CT image reconstruction for large data volume,” Int. J. Biomed. Imaging 2009, 1 (2009).
18. G. Yan, J. Tian, S. Zhu, C. Qin, Y. Dai, F. Yang, D. Dong, and P. Wu, “Fast Katsevich algorithm based on GPU for helical cone-beam computed tomography,” IEEE Trans. Inf. Technol. Biomed. 14(4), 10531061 (2010).
19. G. C. Sharp, N. Kandasamy, H. Singh, and M. Folkert, “GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration,” Phys. Med. Biol. 52(19), 57715783 (2007).
20. P. B. Noel, A. M. Walczak, J. Xu, J. J. Corso, K. R. Hoffmann, and S. Schafer, “GPU-based cone beam computed tomography,” Comput. Methods Programs Biomed. 98(3), 271277 (2010).
21. Y. Okitsu, F. Ino, and K. Hagihara, “High-performance cone beam reconstruction using CUDA compatible GPUs,” Parallel Comput. 36(2–3), 129141 (2010).
22. H. Yan, D. J. Godfrey, and F.-F. Yin, “Fast reconstruction of digital tomosynthesis using on-board images,” Med. Phys. 35(5), 21622169 (2008).
23. H. Yan, L. Ren, D. J. Godfrey, and F.-F. Yin, “Accelerating reconstruction of reference digital tomosynthesis using graphics hardware,” Med. Phys. 34(10), 37683776 (2007).
24. K. Chidlow and T. Moller, “Rapid emission tomography reconstruction,” in Proceedings of the Eurographics (ACM, New York, USA, 2003), pp. 1526.
25. F. Xu, W. Xu, M. Jones, B. Keszthelyi, J. Sedat, D. Agard, and K. Mueller, “On the efficiency of iterative ordered subset reconstruction algorithms for acceleration on GPUs,” Comput. Methods Programs Biomed. 98(3), 261270 (2010).
26. J. S. Kole and F. J. Beekman, “Evaluation of accelerated iterative x-ray CT image reconstruction using floating point graphics hardware,” Phys. Med. Biol. 51(4),875889 (2006).
27. X. Jia, Y. Lou, R. Li, W. Y. Song, and S. B. Jiang, “GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation,” Med. Phys. 37(4), 17571760 (2010).
28. G. Pratx, G. Chinn, P. Olcott, and C. Levin, “Accurate and shift-varying line projections for iterative reconstruction using the GPU,” IEEE Trans. Med. Imaging 28(3), 415422 (2009).
29. G. Pratx, S. Surti, and C. Levin, “Fast list-mode reconstruction for time-of-flight PET using graphics hardware,” IEEE Trans. Nucl. Sci. 58(1), 105109 (2011). (Place: San Francisco, CA)
30. G. Pratx, J.-Y. Cui, S. Prevrhal, and C. S. Levin, “3-D tomographic image reconstruction from randomly ordered lines with CUDA,” in GPU Computing Gems Emerald Edition, edited by W. mei Hwu (Morgan Kaufmann, San Francisco, CA 2011), pp. 679691.
31. T. Schiwietz, T. C. Chang, P. Speier, and R. Westermann, “MR image reconstruction using the GPU,” Proc. SPIE 6142, 61423T (2006).
32. T. Sorensen, T. Schaeffter, K. Noe, and M. Hansen, “Accelerating the nonequispaced fast Fourier transform on commodity graphics hardware,” IEEE Trans. Med. Imaging 27(4), 538547 (2008).
33. S. Stone, J. Haldar, S. Tsao, W. W. Hwu, B. Sutton, and Z.-P. Liang, “Accelerating advanced MRI reconstructions on GPUs,” J. Parallel Distrib. Comput. 68(10), 13071318 (2008).
34. T. Sorensen, D. Atkinson, T. Schaeffter, and M. Hansen, “Real-time reconstruction of sensitivity encoded radial magnetic resonance imaging using a graphics processing unit,” IEEE Trans. Med. Imaging 28(12), 19741985 (2009).
35. D. Johnson, S. Narayan, C. A. Flask, and D. L. Wilson, “Improved fat–water reconstruction algorithm with graphics hardware acceleration,” J. Magn. Reson. Imaging 31(2), 457465 (2010).
36. Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt. 14(6), 060506 (2009).
37. C. Vinegoni, L. Fexon, P. F. Feruglio, M. Pivovarov, J.-L. Figueiredo, M. Nahrendorf, A. Pozzo, A. Sbarbati, and R. Weissleder, “High throughput transmission optical projection tomography using low cost graphics processing unit,” Opt. Express 17(25), 2232022332 (2009).
38. L. W. Chang, K. H. Hsu, and P. C. Li, “Graphics processing unit-based high-frame-rate color doppler ultrasound processing,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56(9), 18561860 (2009).
39. D. Liu and E. Ebbini, “Real-time two-dimensional temperature imaging using ultrasound,” IEEE Trans. Biomed. Eng. 57(1), 1216 (2010).
40. P. Coupé, P. Hellier, N. Azzabou, and C. Barillot, “3D freehand ultrasound reconstruction based on probe trajectory,” Lecture Notes in Computer Science (Springer, Berlin, Germany, 2005), Vol. 3749, pp. 597604.
41. I. Goddard, T. Wu, S. Thieret, A. Berman, and H. Bartsch, “Implementing an iterative reconstruction algorithm for digital breast tomosynthesis on graphics processing hardware,” Proc SPIE 6142(1), 61424V (2006).
42. M. de Greef, J. Crezee, J. C. van Eijk, R. Pool, and A. Bel, “Accelerated ray tracing for radiotherapy dose calculations on a GPU,” Med. Phys. 36(9), 40954102 (2009).
43. A. Badal and A. Badano, “Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit,” Med. Phys. 36(11), 48784880 (2009).
44. X. Jia, X. Gu, J. Sempau, D. Choi, A. Majumdar, and S. B. Jiang, “Development of a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport,” Phys. Med. Biol. 55(11), 30773086 (2010).
45. S. Hissoiny, B. Ozell, H. Bouchard, and P. Despres, “GPUMCD: A new GPU-oriented Monte Carlo dose calculation platform,” Med. Phys. 38(2), 754764 (2011).
46. E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).
47. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 2017820190 (2009).
48. W. Lo, T. Han, J. Rose, and L. Lilge, “GPU-accelerated Monte Carlo simulation for photodynamic therapy treatment planning,” Proc. SPIE 7373, 737313 (2009).
49. H. Shen and G. Wang, “A tetrahedron-based inhomogeneous Monte Carlo optical simulator,” Phys. Med. Biol. 55(4), 947962 (2010).
50. S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke, D. McAllister, M. McGuire, K. Morley, A. Robison, and M. Stich, “Optix: A general purpose ray tracing engine,” ACM Trans. Graphics 29(4), 113 (2010).
51. X. Gu, D. Choi, C. Men, H. Pan, A. Majumdar, and S. B. Jiang, “GPU-based ultra-fast dose calculation using a finite size pencil beam model,” Phys. Med. Biol. 54(20), 62876297 (2009).
52. R. Jacques, R. Taylor, J. Wong, and T. McNutt, “Towards real-time radiation therapy: GPU accelerated superposition/convolution,” Comput. Methods Programs Biomed. 98(3), 285292 (2010).
53. S. Hissoiny, B. Ozell, and P. Despres, “A convolution-superposition dose calculation engine for GPUs,” Med. Phys. 37(3), 10291037 (2010).
54. W. Lu, “A non-voxel-based broad-beam (NVBB) framework for IMRT treatment planning,” Phys. Med. Biol. 55(23), 71757210 (2010).
55. S. Hissoiny, B. Ozell, and P. Despres, “Fast convolution-superposition dose calculation on graphics hardware,” Med. Phys. 36(6), 19982005 (2009).
56. R. Jacques, J. Wong, R. Taylor, and T. McNutt, “Real-time dose computation: GPU-accelerated source modeling and superposition/convolution,” Med. Phys. 38(1), 294305 (2011).
57. B. Zhou, C. X. Yu, D. Z. Chen, and X. S. Hu, “GPU-accelerated Monte Carlo convolution/superposition implementation for dose calculation,” Med. Phys. 37(11), 55935603 (2010).
58. Q. Chen, M. Chen, and W. Lu, “Ultrafast convolution/superposition using tabulated and exponential cumulative-cumulative-kernels on GPU,” in Proceedings of the 16th International Conference on the Use of Computers in Radio Therapy, edited by J.-J. Sonke (2010).
59. C. Men, X. Gu, D. Choi, A. Majumdar, Z. Zheng, K. Mueller, and S. B. Jiang, “GPU-based ultrafast IMRT plan optimization,” Phys. Med. Biol. 54(21), 65656573 (2009).
60. C. Cotrutz and L. Xing, “Segment-based dose optimization using a genetic algorithm,” Phys. Med. Biol. 48(18), 29872998 (2003).
61. C. Men, X. Jia, and S. Jiang, “GPU-based ultra-fast direct aperture optimization for online adaptive radiation therapy,” Phys. Med. Biol. 55, 43094319 (2010).
62. C. Men, H. E. Romeijn, X. Jia, and S. B. Jiang, “Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT),” Med. Phys. 37(11), 57875791 (2010).
63. R. Shams, P. Sadeghi, R. Kennedy, and R. Hartley, “A survey of medical image registration on multicore and the GPU,” IEEE Signal Process. Mag. 27(2), 5060 (2010).
64. R. Strzodka, M. Droske, and M. Rumpf, “Image registration by a regularized gradient flow. A streaming implementation in DX9 graphics hardware,” Computing 73, 373389 (2004).
65. T. ur Rehman, E. Haber, G. Pryor, J. Melonakos, and A. Tannenbaum, “3D nonrigid registration via optimal mass transport on the GPU,” Med. Image Anal. 13(6), 931940 (2009).
66. G. Soza, M. Bauer, P. Hastreiter, C. Nimsky, and G. Greiner, “Non-rigid registration with use of hardware-based 3D Bezier functions,” Lecture Notes in Computer Science (Springer, Berlin, Germany, 2002), Vol. 2489, pp. 549556.
67. D. Levin, D. Dey, and P. Slomka, “Acceleration of 3D, nonlinear warping using standard video graphics hardware: Implementation and initial validation,” Comput. Med. Imaging Graph. 28(8), 471483 (2004).
68. J. A. Shackleford, N. Kandasamy, and G. C. Sharp, “On developing B-spline registration algorithms for multi-core processors,” Phys. Med. Biol. 55(21), 63296351 (2010).
69. M. Modat, G. R. Ridgway, Z. A. Taylor, M. Lehmann, J. Barnes, D. J. Hawkes, N. C. Fox, and S. Ourselin, “Fast free-form deformation using graphics processing units,” Comput. Methods Programs Biomed. 98(3), 278284 (2010).
70. S. S. Samant, J. Xia, P. Muyan-Ozcelik, and J. D. Owens, “High performance computing for deformable image registration: Towards a new paradigm in adaptive radiotherapy,” Med. Phys. 35(8), 35463553 (2008).
71. X. Gu, H. Pan, Y. Liang, R. Castillo, D. Yang, D. Choi, E. Castillo, A. Majumdar, T. Guerrero, and S. B. Jiang, “Implementation and evaluation of various demons deformable image registration algorithms on a GPU,” Phys. Med. Biol. 55(1), 207219 (2010).
72. P. Muyan-Ozcelik, J. D. Owens, J. Xia, and S. S. Samant, “Fast deformable registration on the GPU: A CUDA implementation of Demons,” in Proceedings of the International Conference on Computational Sciences and Its Applications (IEEE Computer Society Washington, DC, USA, 2008), pp. 223233.
73. G. R. Joldes, A. Wittek, and K. Miller, “Real-time nonlinear finite element computations on GPU—Application to neurosurgical simulation,” Comput. Methods Appl. Mech. Eng. 199(49–52), 33053314 (2010).
74. Y. Liu, A. Fedorov, R. Kikinis, and N. Chrisochoides, “Real-time non-rigid registration of medical images on a cooperative parallel architecture,” in Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (IEEE Computer Society Washington, DC, USA, 2009), pp. 401404.
75. R. Shams, P. Sadeghi, R. Kennedy, and R. Hartley, “Parallel computation of mutual information on the GPU with application to real-time registration of 3D medical images,” Comput. Methods Programs Biomed. 99(2), 133146 (2010).
76. M. Rumpf and R. Strzodka, “Level set segmentation in graphics hardware,” in Proceedings of IEEE International Conference on Image Processing (IEEE Computer Society Washington, DC, USA, 2001), Vol. 3, pp. 11031106.
77. A. E. Lefohn, J. M. Kniss, C. D. Hansen, and R. T. Whitaker, “Interactive deformation and visualization of level set surfaces using graphics hardware,” in Proceedings of the IEEE Visualization (IEEE Computer Society Washington, DC, USA, 2003), p. 11.
78. A. Sherbondy, M. Houston, and S. Napel, “Fast volume segmentation with simultaneous visualization using programmable graphics hardware,” in Proceedings of the IEEE Visualization (IEEE Computer Society Washington, DC, USA, 2003), pp. 171176.
79. J. E. Cates, A. E. Lefohn, and R. T. Whitaker, “GIST: An interactive, GPU-based level set segmentation tool for 3D medical images,” Med. Image Anal. 8(3), 217231 (2004).
80. W.-K. Jeong, J. Beyer, M. Hadwiger, A. Vazquez, H. Pfister, and R. Whitaker, “Scalable and interactive segmentation and visualization of neural processes in EM datasets,” IEEE Trans. Vis. Comput. Graph. 15(6), 15051514 (2009).
81. A. Narayanaswamy, S. Dwarakapuram, C. Bjornsson, B. Cutler, W. Shain, and B. Roysam, “Robust adaptive 3-D segmentation of vessel laminae from fluorescence confocal microscope images and parallel GPU implementation,” IEEE Trans. Med. Imaging 29(3), 583597 (2010).
82. J. Spoerk, H. Bergmann, F. Wanschitz, S. Dong, and W. Birkfellner, “Fast DRR splat rendering using common consumer graphics hardware,” Med. Phys. 34(11), 43024308 (2007).
83. Q. Zhang, R. Eagleson, and T. M. Peters, “Dynamic real-time 4D cardiac MDCT image display using GPU-accelerated volume rendering,” Comput. Med. Imaging Graph. 33(6), 461476 (2009).
84. D. Levin, U. Aladl, G. Germano, and P. Slomka, “Techniques for efficient, real-time, 3D visualization of multi-modality cardiac data using consumer graphics hardware,” Comput. Med. Imaging Graph. 29(6), 463475 (2005).
85. T.-H. Lee, J. Lee, H. Lee, H. Kye, Y. G. Shin, and S. H. Kim, “Fast perspective volume ray casting method using GPU-based acceleration techniques for translucency rendering in 3D endoluminal CT colonography,” Comput. Biol. Med. 39(8), 657666 (2009).
86. A. Kruger, C. Kubisch, G. Strauss, and B. Preim, “Sinus endoscopy—Application of advanced GPU volume rendering for virtual endoscopy,” IEEE Trans. Vis. Comput. Graph. 14(6), 14911498 (2008).
87. C. Kubisch, C. Tietjen, and B. Preim, “GPU-based smart visibility techniques for tumor surgery planning,” Int. J. Comput. Assist. Radiol. Surg. 5(6), 667678 (2010).
88. Z. Taylor, M. Cheng, and S. Ourselin, “High-speed nonlinear finite element analysis for surgical simulation using graphics processing units,” IEEE Trans. Med. Imaging 27(5), 650663 (2008).

Data & Media loading...


Article metrics loading...



The graphics processing unit (GPU) has emerged as a competitive platform for computing massively parallel problems. Many computing applications in medical physics can be formulated as data-parallel tasks that exploit the capabilities of the GPU for reducing processing times. The authors review the basic principles of GPU computing as well as the main performance optimization techniques, and survey existing applications in three areas of medical physics, namely image reconstruction,dose calculation and treatment plan optimization, and image processing.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd