1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/38/6/10.1118/1.3579139
1.
1. J. R. Adler, Jr., S. D. Chang, M. J. Murphy, J. Doty, P. Geis, and S. L. Hancock, “The CyberKnife®: A frameless robotic system for radiosurgery,” Stereotact. Funct. Neurosurg. 69, 124128 (1997).
http://dx.doi.org/10.1159/000099863
2.
2. J. S. Kuo, C. Yu, Z. Petrovich, and M. L. Apuzzo, “The CyberKnife® stereotactic radiosurgery system: Description, installation, and an initial evaluation of use and functionality,” Neurosurgery 53, 12351239; discussion 1239 (2003).
http://dx.doi.org/10.1227/01.NEU.0000089485.47590.05
3.
3. A. M. Quinn, “CyberKnife®: A robotic radiosurgery system,” Clin. J. Oncol. Nurs. 6, 149156, (2002).
http://dx.doi.org/10.1188/02.CJON.149
4.
4. E. E. Klein, J. Hanley, J. Bayouth, F. F. Yin, W. Simon, S. Dresser, C. Serago, F. Aguirre, L. Ma, B. Arjomandy, C. Liu, C. Sandin, and T. Holmes, “Task Group 142 report: Quality assurance of medical accelerators,” Med. Phys. 36, 41974212 (2009).
http://dx.doi.org/10.1118/1.3190392
5.
5. F. L. Macrina, “Scientific record keeping,” in Scientific Integrity (ASM, Washington, DC, 2005), pp. 269296.
6.
6. P. H. Halvorsen, J. F. Dawson, M. W. Fraser, G. S. Ibbott, and B. R. Thomadsen, The Solo Practice of Medical Physics in Radiation Oncology (American Association of Physicists in Medicine, Medical Physics Publishing, Madison, WI 53705 2003).
7.
7. G. J. Kutcher, et al., “Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40,” Med. Phys. 21, 581618 (1994).
http://dx.doi.org/10.1118/1.597316
8.
8. W. Lutz, K. R. Winston, and N. Maleki, “A system for stereotactic radiosurgery with a linear accelerator,” Int. J. Radiat. Oncol., Biol., Phys. 14, 373381 (1988).
http://dx.doi.org/10.1016/0360-3016(88)90446-4
9.
9. National Council on Radiation Protection and Measurements, Structural shielding design and evaluation for megavoltage x- and gamma-ray radiotherapy facilities: Recommendations of the National Council on Radiation Protection and Measurements (National Council on Radiation Protection and Measurements, Bethesda, MD, 2005).
10.
10. R. Nath, P. J. Biggs, F. J. Bova, C. C. Ling, J. A. Purdy, J. van de Geijn, and M. S. Weinhous, “AAPM code of practice for radiotherapy accelerators: Report of AAPM Radiation Therapy Task Group No. 45,” Med. Phys. 21, 10931121 (1994).
http://dx.doi.org/10.1118/1.597398
11.
11. D. T. B. P. Andreo, K. Hohlfeld, M. S. Huq, T. Kanai, F. Laitano, V. Smyth, and S. Vynckier, Report No. TRS –398, 2000.
12.
12. M. Schell, F. J. Bova, D. Larson, D. Leavitt, W. Lutz, E. Podgorsak, and A. , Wu, AAPM Report No. 54 Stereotactic Radiosurgery, 1995.
13.
13. P. R. Almond, P. J. Biggs, B. M. Coursey, W. F. Hanson, M. S. Huq, R. Nath, and D. W. Rogers, “AAPM’s TG–51 protocol for clinical reference dosimetry of high-energy photon and electron beams,” Med. Phys. 26, 18471870 (1999).
http://dx.doi.org/10.1118/1.598691
14.
14. I. J. Das, C. W. Cheng, R. J. Watts, A. Ahnesjo, J. Gibbons, X. A. Li, J. Lowenstein, R. K. Mitra, W. E. Simon, and T. C. Zhu, “Accelerator beam data commissioning equipment and procedures: Report of the TG–106 of the Therapy Physics Committee of the AAPM,” Med. Phys. 35, 41864215 (2008).
http://dx.doi.org/10.1118/1.2969070
15.
15. C. Antypas and E. Pantelis, “Performance evaluation of a CyberKnife® G4 image-guided robotic stereotactic radiosurgery system,” Phys. Med. Biol. 53, 46974718 (2008).
http://dx.doi.org/10.1088/0031-9155/53/17/016
16.
16. S. C. Sharma, J. T. Ott, J. B. Williams, and D. Dickow, “Commissioning and acceptance testing of a CyberKnife® linear accelerator,” J. Appl. Clin. Med. Phys. 8, 2473 (2007).
http://dx.doi.org/10.1120/jacmp.v8i3.2473
17.
17. R. Alfonso, P. Andreo, R. Capote, M. S. Huq, W. Kilby, P. Kjall, T. R. Mackie, H. Palmans, K. Rosser, J. Seuntjens, W. Ullrich, and S. Vatnitsky, “A new formalism for reference dosimetry of small and nonstandard fields,” Med. Phys. 35, 51795186 (2008).
http://dx.doi.org/10.1118/1.3005481
18.
18. T. J. Jordan, “Megavoltage X-ray beams: 2–50 MV,” BJR Suppl. 25, 62109 (1996).
19.
19. T. Kawachi, H. Saitoh, M. Inoue, T. Katayose, A. Myojoyama, and K. Hatano, “Reference dosimetry condition and beam quality correction factor for CyberKnife® beam,” Med. Phys. 35, 45914598 (2008).
http://dx.doi.org/10.1118/1.2978228
20.
20. P. Francescon, S. Cora, and C. Cavedon, “Total scatter factors of small beams: A multidetector and Monte Carlo study,” Med. Phys. 35, 504513 (2008).
http://dx.doi.org/10.1118/1.2828195
21.
21. F. Araki, “Monte Carlo study of a CyberKnife® stereotactic radiosurgery system,” Med. Phys. 33, 29552963 (2006).
http://dx.doi.org/10.1118/1.2219774
22.
22. A. S. Beddar, D. J. Mason, and P. F. O’Brien, “Absorbed dose perturbation caused by diodes for small field photon dosimetry,” Med. Phys. 21, 10751079 (1994).
http://dx.doi.org/10.1118/1.597350
23.
23. R. P. Rossi, P.-J. P. Lin, P. L. Rauch, and K. J. Strauss, “Performance Specifications and Acceptance Testing for X-Ray Generators and Exposure Control Devices” Report of AAPM Task Group No. 15, 1985.
24.
24. S. Shepard, P. Lin, J. Boone, D. Cody, J. Fisher, G. Frey, H. Glasser, J. Gray, A. Haus, L. Hefner, R. Holmes Jr., R. Kobistek, F. Ranallo, P. Rauch, R. Rossi, J. Seibert, K. Strauss, O. Suleiman, J. Schenck, and S. Thompson, Report No. 12, 2002.
25.
25. M. J. Murphy, J. Balter, S. Balter, J. A. BenComo Jr., I. J. Das, S. B. Jiang, C. M. Ma, G. H. Olivera, R. F. Rodebaugh, K. J. Ruchala, H. Shirato, and F. F. Yin, “The management of imaging dose during image-guided radiotherapy: Report of the AAPM Task Group 75,” Med. Phys. 34, 40414063 (2007).
http://dx.doi.org/10.1118/1.2775667
26.
26. B. Fraass, K. Doppke, M. Hunt, G. Kutcher, G. Starkschall, R. Stern, and J. Van Dyke, “American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning,” Med. Phys. 25, 17731829 (1998).
http://dx.doi.org/10.1118/1.598373
27.
27. E. E. Wilcox, G. M. Daskalov, H. Lincoln, R. C. Shumway, B. M. Kaplan, and J. M. Colasanto, “Comparison of planned dose distributions calculated by Monte Carlo and ray-trace algorithms for the treatment of lung tumors with CyberKnife®: A preliminary study in 33 patients,” Int. J. Radiat. Oncol. Biol. Phys. 77(1), 27784 (2009).
28.
28. S. C. Sharma, J. T. Ott, J. B. Williams, and D. Dickow, “Clinical implications of adopting Monte Carlo treatment planning for CyberKnife®,” J. Appl. Clin. Med. Phys. 11, 170175 (2010).
29.
29. S. Mutic, J. R. Palta, E. K. Butker, I. J. Das, M. S. Huq, L. N. Loo, B. J. Salter, C. H. McCollough, and J. Van Dyk, “Quality assurance for computed-tomography simulators and the computed-tomography-simulation process: Report of the AAPM Radiation Therapy Committee Task Group No. 66,” Med. Phys. 30, 27622792 (2003).
http://dx.doi.org/10.1118/1.1609271
30.
30. National Council on Radiation Protection and Measurements, Quality assurance for diagnostic imaging equipment: Recommendations of the National Council on Radiation Protection and Measurements (The Council, Bethesda, MD, 1988).
31.
31. N. Papanikolaou, J. J. Battista, A. L. Boyer, C. Kappas, E. Klein, T. R. Mackie, M. Sharpe, and J. van Dyk, AAPM Report No. 85: Tissue Inhomogeneity Corrections for Megavoltage Photon Beams, 2004.
32.
32. E. E. Wilcox and G. M. Daskalov, “Accuracy of dose measurements and calculations within and beyond heterogeneous tissues for 6 MV photon fields smaller than 4 cm produced by CyberKnife®,” Med. Phys. 35, 22592266 (2008).
http://dx.doi.org/10.1118/1.2912179
33.
33. I. J. Chetty, B. Curran, J. E. Cygler, J. J. DeMarco, G. Ezzell, B. A. Faddegon, I. Kawrakow, P. J. Keall, H. Liu, C. M. Ma, D. W. Rogers, J. Seuntjens, D. Sheikh-Bagheri, and J. V. Siebers, “Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning,” Med. Phys. 34, 48184853 (2007).
http://dx.doi.org/10.1118/1.2795842
34.
34. J. R. Adler Jr., F. Colombo, M. P. Heilbrun, and K. Winston, “Toward an expanded view of radiosurgery,” Neurosurgery 55, 13741376 (2004).
http://dx.doi.org/10.1227/01.NEU.0000143614.34986.5E
35.
35. C. F. Chuang, D. A. Larson, A. Zytkovicz, V. Smith, and P. L. Petti, “Peripheral dose measurement for CyberKnife® radiosurgery with upgraded linac shielding,” Med. Phys. 35, 14941496 (2008).
http://dx.doi.org/10.1118/1.2889620
36.
36. E. Di Betta, L. Fariselli, A. Bergantin, F. Locatelli, A. Del Vecchio, S. Broggi, and M. L. Fumagalli, “Evaluation of peripheral dose in stereotactic radiotherapy and radiosurgery treatments,” Med. Phys. 37, 35873594 (2010).
http://dx.doi.org/10.1118/1.3447724
37.
37. J. J. Poll, M. S. Hoogeman, J. B. Prevost, J. J. Nuyttens, P. C. Levendag, and B. J. Heijmen, “Reducing monitor units for robotic radiosurgery by optimized use of multiple collimators,” Med. Phys. 35, 22942299 (2008).
http://dx.doi.org/10.1118/1.2919090
38.
38. A. Schlaefer and A. Schweikard, “Stepwise multi-criteria optimization for robotic radiosurgery,” Med. Phys. 35, 20942103 (2008).
http://dx.doi.org/10.1118/1.2900716
39.
39. D. Fu and G. Kuduvalli, “A fast, accurate, and automatic 2D–3D image registration for image-guided cranial radiosurgery,” Med. Phys. 35, 21802194 (2008).
http://dx.doi.org/10.1118/1.2903431
40.
40. Z. Mu, D. Fu, and G. Kuduvally, “A probabilistic framework based on hidden Markov model for fiducial identification in image-guided radiation treatments”, IEEE Trans Med. Imaging 27, 2881300 (2008).
http://dx.doi.org/10.1118/1.2903431
41.
41. A. Muacevic, M. Staehler, C. Drexler, B. Wowra, M. Reiser, and J. C. Tonn, “Technical description, phantom accuracy, and clinical feasibility for fiducial-free frameless real-time image-guided spinal radiosurgery,” J. Neurosurg. Spine 5, 303312 (2006).
http://dx.doi.org/10.3171/spi.2006.5.4.303
42.
42. D. Fu and G. Kuduvalli, “Enhancing skeletal features in digitally reconstructed radiographs,” in Medical Imaging 2006: Image Processing, Vol. 6144, edited by J. M. Reinhardt and J. P. Pluim (The International Society for Optical Engineering, San Diego, 2006), pp. Abstract 61442M.
43.
43. M. J. Murphy, “Fiducial-based targeting accuracy for external-beam radiotherapy,” Med. Phys. 29, 334344 (2002).
http://dx.doi.org/10.1118/1.1448823
44.
44. J. B. West, J. M. Fitzpatrick, S. A. Toms, C. R. Maurer Jr., and R. J. Maciunas, “Fiducial point placement and the accuracy of point-based, rigid body registration,” Neurosurgery 48, 810816 discussion 816 –817 (2001).
http://dx.doi.org/10.1097/00006123-200104000-00023
45.
45. A. K. Ho, D. Fu, C. Cotrutz, S. L. Hancock, S. D. Chang, I. C. Gibbs, C. R. Maurer Jr., and J. R. Adler Jr., “A study of the accuracy of CyberKnife® spinal radiosurgery using skeletal structure tracking,” Neurosurgery 60, ONS147156 discussion ONS156 (2007).
http://dx.doi.org/10.1227/01.NEU.0000249248.55923.EC
46.
46. C. Yu, W. Main, D. Taylor, G. Kuduvalli, M. L. Apuzzo, and J. R. Adler Jr., “An anthropomorphic phantom study of the accuracy of CyberKnife® spinal radiosurgery,” Neurosurgery 55, 11381149 (2004).
http://dx.doi.org/10.1227/01.NEU.0000141080.54647.11
47.
47. D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, “A technique for the quantitative evaluation of dose distributions,” Med. Phys. 25, 656661 (1998).
http://dx.doi.org/10.1118/1.598248
48.
48. E. E. Wilcox and G. M. Daskalov, “Evaluation of GAFCHROMIC EBT film for CyberKnife® dosimetry,” Med. Phys. 34, 19671974 (2007).
http://dx.doi.org/10.1118/1.2734384
49.
49. P. J. Keall, G. S. Mageras, J. M. Balter, R. S. Emery, K. M. Forster, S. B. Jiang, J. M. Kapatoes, D. A. Low, M. J. Murphy, B. R. Murray, C. R. Ramsey, M. B. Van Herk, S. S. Vedam, J. W. Wong, and E. Yorke, “The management of respiratory motion in radiation oncology report of AAPM Task Group 76,” Med. Phys. 33, 38743900 (2006).
http://dx.doi.org/10.1118/1.2349696
50.
50. A. Schweikard, H. Shiomi, and J. Adler, “Respiration tracking in radiosurgery,” Med. Phys. 31, 27382741 (2004).
http://dx.doi.org/10.1118/1.1774132
51.
51. M. J. Murphy, “Tracking moving organs in real time,” Semin. Radiat. Oncol. 14, 91100 (2004).
http://dx.doi.org/10.1053/j.semradonc.2003.10.005
52.
52. K. H. Wong, S. Dieterich, J. Tang, and K. Cleary, “Quantitative measurement of CyberKnife® robotic arm steering,” Technol. Cancer. Res. Treat. 6, 589594 (2007).
53.
53. T. R. Willoughby, P. A. Kupelian, J. Pouliot, K. Shinohara, M. Aubin, M. Roach 3rd, L. L. Skrumeda, J. M. Balter, D. W. Litzenberg, S. W. Hadley, J. T. Wei, and H. M. Sandler, “Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer,” Int. J. Radiat. Oncol. Biol. Phys. 65, 528534 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2006.01.050
54.
54. J. M. Balter, J. N. Wright, L. J. Newell, B. Friemel, S. Dimmer, Y. Cheng, J. Wong, E. Vertatschitsch, and T. P. Mate, “Accuracy of a wireless localization system for radiotherapy,” Int. J. Radiat. Oncol. Biol. Phys. 61, 933937 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2004.11.009
55.
55. H. Shirato, Y. Seppenwoolde, K. Kitamura, R. Onimura, and S. Shimizu, “Intrafractional tumor motion: Lung and liver,” Semin. Radiat. Oncol. 14, 1018 (2004).
http://dx.doi.org/10.1053/j.semradonc.2003.10.008
56.
56. R. George, T. D. Chung, S. S. Vedam, V. Ramakrishnan, R. Mohan, E. Weiss, and P. J. Keall, “Audio-visual bio feedback for respiratory-gated radiotherapy: Impact of audio instruction and audio-visual biofeedback on respiratory-gated radiotherapy,” Int. J. Radiat. Oncol. Biol. Phys. 65, 924933 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2006.02.035
57.
57. R. B. Venkat, A. Sawant, Y. Suh, R. George, and P. J. Keall, “Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform,” Phys. Med. Biol. 53, N197N208 (2008).
http://dx.doi.org/10.1088/0031-9155/53/11/N01
58.
58. C. J. A. Haasbeek, F. O. B. Spoelstra, F. J. Lagerwaard, J. R. van Sörnsen de Koste, J. P. Cuijpers, B. J. Slotman, and S. Senan, “Impact of audio-coaching on the position of lung tumors,” Int. J. Radiat. Oncol. Biol. Phys. 71, 11181123 (2008).
http://dx.doi.org/10.1016/j.ijrobp.2007.11.061
59.
59. M. C. Kim and T. K. Lee, “Stereotactic lesioning for mental illness,” Acta Neurochir Suppl. (Wien) 101, 3943 (2008).
http://dx.doi.org/10.1007/978-3-211-78205-7_7
60.
60. B. E. Lippitz, P. Mindus, B. A. Meyerson, L. Kihlstrom, and C. Lindquist, “Lesion topography and outcome after thermocapsulotomy or gamma knife capsulotomy for obsessive-compulsive disorder: Relevance of the right hemisphere,” Neurosurgery 44, 452458; discussion 458–460 (1999).
http://dx.doi.org/10.1097/00006123-199903000-00005
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/38/6/10.1118/1.3579139
Loading
/content/aapm/journal/medphys/38/6/10.1118/1.3579139
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/38/6/10.1118/1.3579139
2011-05-25
2015-09-03

Abstract

The task group (TG) for quality assurance for robotic radiosurgery was formed by the American Association of Physicists in Medicine’s Science Council under the direction of the Radiation Therapy Committee and the Quality Assurance (QA) Subcommittee. The task group (TG-135) had three main charges: (1) To make recommendations on a code of practice for Robotic Radiosurgery QA; (2) To make recommendations on quality assurance and dosimetric verification techniques, especially in regard to real-time respiratory motion tracking software; (3) To make recommendations on issues which require further research and development. This report provides a general functional overview of the only clinically implemented robotic radiosurgery device, the CyberKnife®. This report includes sections on device components and their individual component QA recommendations, followed by a section on the QA requirements for integrated systems. Examples of checklists for daily, monthly, annual, and upgrade QA are given as guidance for medical physicists. Areas in which QA procedures are still under development are discussed.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/38/6/1.3579139.html;jsessionid=f3gqvpnc36xu.x-aip-live-03?itemId=/content/aapm/journal/medphys/38/6/10.1118/1.3579139&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Report of AAPM TG 135: Quality assurance for robotic radiosurgery
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/38/6/10.1118/1.3579139
10.1118/1.3579139
SEARCH_EXPAND_ITEM