1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Sub-Nyquist acquisition and constrained reconstruction in time resolved angiography
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/38/6/10.1118/1.3589132
1.
1. C. A. Mistretta, O. Wieben, J. Velikina, W. Block, J. Perry, Y. Wu, K. Johnson, and Y. Wu, “Highly constrained backprojection for time-resolved MRI,” Magn. Reson. Med. 55, 3040 (2006).
http://dx.doi.org/10.1002/mrm.v55:1
2.
2. K. M. Johnson, J. Velikina, Y. Wu, S. Kecskemeti, O. Wieben, and C. A. Mistretta, “Improved waveform fidelity using local HYPR reconstruction (HYPR LR),” Magn. Reson. Med. 59(3), 456462 (2008).
http://dx.doi.org/10.1002/mrm.v59:3
3.
3. R. L. O’Halloran, Z. Wen, J. H. Holmes, and S. B. Fain, “Iterative reconstruction of time-resolved images using highly constrained back-projection (HYPR),” Magn. Reson. Med. 59, 132139 (2008).
http://dx.doi.org/10.1002/mrm.v59:1
4.
4. A. A. Samsonov, O. Wieben, and W. F. Block, “HYPRIT: Generalized HYPR reconstruction by iterative estimation,” Abstract, ISMRM Workshop on Non-Cartesian MRI Sedona, Arizona (2007).
5.
5. M. Griswold et al., “More optimal HYPR reconstructions using a combination of HYPR and conjugate-gradient minimization,” Abstract, 18th International Workshop on MR Angiography, Basel, Switzerland (2006).
6.
6. B. G. Ziedses Des Plantes, “Planigraphieen subtractie. Röntgenographische differentiatie methoden thesis,” Kemink en Zoon, Utrecht, 1934, p. 112.
7.
7. R. A. Kruger, C. A. Mistretta, J. Lancaster, T. L. Houk, M. M. Goodsitt, S. J. Riederer, J. Hicks, J. F. Sackett, A. B. Crummy, and D. Flemming, “A digital video image processor for real-time subtraction imaging,” Opt. Eng. 17(6), 652657 (1978).
8.
8. A. B. Crummy, C. A. Mistretta, R. Cline, W. Terry, M. G. Ort, F. Kelcz, and J. R. Cameron, “An inexpensive storage system for selective catheterization procedures,” Radiology 110, 369372 (1973).
http://dx.doi.org/10.1148/110.2.3 79
9.
9. A. B. Crummy, C. A. Mistretta, M. G. Ort, F. Kelcz, J. R. Cameron, and M. P. Siedband, “Absorption edge fluoroscopy using quasi-monoenergetic x-ray beams,” Invest. Radiol. 8, 402412 (1973).
10.
10. F. Kelcz and C. A. Mistretta, “Absorption edge fluoroscopy using a 3-spectrum technique,” Med. Phys. 3(3), 159168 (1977).
http://dx.doi.org/10.1118/1.594219
11.
11. T. W. Ovitt et al., “Development of a digital subtraction system for intravenous angiography,” Proc. SPIE, 206, 183189 (1979).
12.
12. R. Brennecke et al., “Computerized video-image preprocessing with applications to cardio-angiographic roentgen-image series,” in Digital Image Processing, edited by H. H Nagel (Springer-Verlag, Berlin, 1977), pp. 244262.
13.
13. J. R. Waugh and N. Sacharias, “Arteriographic complications in the DSA era,” Radiology 182, 243246 (1992).
14.
14. W. R. Brody, “Hybrid subtraction for improved arteriography,” Radiology 141(3), 828831 (1981).
15.
15. R. Fahrig, A. J. Fox, S. Lownie, and D. W. Holdsworth, “Use of a C-arm system to generate true three-dimensional computed rotational angiograms: preliminary in vitro and in vivo results,” AJNR Am J Neuroradiol. 18(8), 15071514 (1997).
16.
16. R. Fahrig, M. Moreau, and D. W. Holdsworth, “Three-dimensional computed tomographic reconstruction using a C-arm mounted XRII: Correction of image intensifier distortion,” Med. Phys. 24(7), 109710106 (1997)
http://dx.doi.org/10.1118/1.598013
17.
17. R. Fahrig and D. W. Holdsworth, “Three-dimensional computed tomographic reconstruction using a C-arm mounted XRII: Image-based correction of gantry motion non-idealities,” Med. Phys. 27, 3038 (2000).
http://dx.doi.org/10.1118/1.598854
18.
18. J. Van Vaals et al., “Keyhole method for accelerating imaging of contrast agent uptake,” J. Magn. Reson. Imaging 3, 671675 (1993).
http://dx.doi.org/10.1002/jmri.v3:4
19.
19. F. R. Korosec, R. Frayne, T. M. Grist, and C. A. Mistretta, “Time-resolved contrast-enhanced 3D MR angiography,” Magn. Reson. Med. 36, 345351 (1996).
http://dx.doi.org/10.1002/mrm.v36:3
20.
20. C. R. Haider, J. Glockner, A. W. Stanson, and S. Reiderer, “Peripheral vasculature: High temporal- and spatial-resolution three-dimensional contrast-enhnaced MR Angiography,” Radiology 253, 831843 (2009).
http://dx.doi.org/10.1148/radiol.2533081744
21.
21. C. P. Johnson, C. R. Haider, E. A. Borish, J. F. Glockner, and S. J. Riederer, “Time-resolved bolus chase MR angiography with real-time triggering of table motion,” Magn. Reson. Med. 64, 629637 (2010).
http://dx.doi.org/10.1002/mrm.22537
22.
22. K. Wang et al., “Interleaved variable density sampling with ARC parallel imaging and Cartesian HYPR for dynamic MR angiography,” Proceedings of the Joint Annual Meeting of ISMRM-ESMRMB (abstract), Stockholm, 2010.
23.
23. V. Rasche, R. W. deBoer, D. Holz, and R. Proska, “Continuous radial acquisition for dynamic MRI,” Magn. Reson. Med. 34, 754761 (1995).
http://dx.doi.org/10.1002/mrm.v34:5
24.
24. K. Scheffler and J. Hennig, “Reduced circular field of view imaging,” Magn. Reson. Med. 40, 474480 (1998).
http://dx.doi.org/10.1002/mrm.v40:3
25.
25. D. C. Peters et al., Undersampled projection reconstruction applied to MR angiography,” Magn. Reson. Med. 43(1), 91101 (2000).
http://dx.doi.org/10.1002/(SICI)1522-2594(200001)43:1<91::AID-MRM11>3.0.CO;2-4
26.
26. A. V. Barger, W. F. Block, Y. Toropov, T. M. Grist, and C. A. Mistretta, “Time-resolved contrast-enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory,” Magn. Reson. Med. 48, 297305 (2002).
http://dx.doi.org/10.1002/mrm.v48:2
27.
27. D. P. Lum, K. M. Johnson, R. K. Paul, A. S. Turk, D. W. Consigny, J. R. Grinde, C. A. Mistretta, and T. M. Grist, “Measurement of trans-stenotic pressure gradients in swine: Comparison between retrospective ECG-gated 3D phase-contrast MRA and endovascular pressure-sensing guidewires,” Radiology 245, 751760 (2007).
http://dx.doi.org/10.1148/radiol.2453061946
28.
28. R. Moftakhar, B. Aagaard-Kienitz, K. M. Johnson, P. A. Turski, D. Consigny, J. Grinde, A. S. Turk, D. B. Niemann, and C. A. Mistretta, “Non-invasive measurement of intra-aneurysmal pressure and flow velocity using phase contrast vastly undersampled projection imaging (PC VIPR),” AJNR Am. J. Neuroradiol. 28(9), 17101714 (2007).
http://dx.doi.org/10.3174/ajnr.A0648
29.
29. A. S. Turk, K. M. Johnson, L. D. Niemann, B. Aagaard-Kienitz, D. Consigny, J. Grinde, P. Turski, V. Haughton, and C. A. Mistretta, “Physiological and anatomic assessment of a canine artery stenosis model with phase contrast with vastly undersampled isotropic projection imaging,” AJNR Am. J. Neuroradiol. 28, 111115 (2007).
http://dx.doi.org/10.3174/ajnr.A0713
30.
30. T. A. Bley, K. M. Johnson, C. J. Francois, S. B. Reeder, M. Schiebler, B. Landgraf, D. W. Consigny, T. M. Grist, and O. Wieben, “Non-invasive assessment of transstenotic pressure gradients in porcine renal artery stenoses using phase contrast MRA,” Radiology (2010).
31.
31. E. T. Bieging, A. Frydrychowicz, B. R. Landgraf, K. M. Johnson, O. Wieben, and C. J. François, “In vivo 3-dimensional magnetic resonance wall shear stress estimation in ascending aortic dilatation,” J. Magn. Reson. Imaging 33(3), 589597 (2011).
http://dx.doi.org/10.1002/jmri.22485
32.
32. M. R. Prince, “Science to practice: Is there a replacement for percentage stenosisn characterizing occlusive vascular disease?,” Radiology 245(3) 617618 (2007).
http://dx.doi.org/10.1148/radiol.2453071331
33.
33. W. Chang, B. Landgraf, K. M. Johnson, S. Kecskemeti, Y. Wu, J. Velikina, H. Rowley, O. Wieben, C. Mistretta, and P. Turski, “Velocity measurements in the middle cerebral arteries of healthy volunteers using 3D radial phase-contrast HYPRFlow: Comparison with transcranial doppler sonography and 2D phase-contrast MR imaging,” AJNR Am J Neuroradiol. 32(1), 5459 (2010).
34.
34. C. J. Francois, D. P. Lum, K. M. Johnson, B. R. Landgraf, T. A. Bley, S. B. Reeder, M. L. Schiebler, T. M. Grist, and O. Wieben, “Renal arteries: Isotropic, high-spatial-resolution, unenhanced MR angiography with three-dimensional radial phase contrast,” Radiology 258(1), 254260 (2011).
http://dx.doi.org/10.1148/radiol.10100443
35.
35. J. Xie, P. Lai, H. Bhat, and D. J. Li, “Whole-heart coronary magnetic resonance angiography at 3.0T using short-TR steady-state free precession, vastly undersampled isotropic projection reconstruction,” Magn. Reson. Imaging 31(5), 12301235 (2010).
http://dx.doi.org/10.1002/jmri.22140
36.
36. A. Frydrychowicz, B. Landgraf, O. Wieben, and C. J. Francois, “Images in cardiovascular medicine. Scimitar syndrome: Added value by isotropic flow-sensitive four-dimensional magnetic resonance imaging with PC-VIPR (phase-contrast vastly undersampled isotropic projection reconstruction),” Circulation 121, e4346 (2010).
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.931857
37.
37. R. Kijowski, D. G. Blankenbaker, J. L. Klaers, K. Shinki, A. A. De Smet, and W. F. Block, “Vastly undersampled isotropic projection steady-state free precession imaging of the knee: Diagnostic performance compared with conventional MR,” Radiology 251(1), 185194. (2009).
http://dx.doi.org/10.1148/radiol.2511081133
38.
38. J. Du, T. J. Carroll, E. Brodsky, A. Lu, T. M. Grist, C. A. Mistretta, and W. F. Block, “Contrast-enhanced peripheral magnetic resonance angiography using time-resolved vastly undersampled isotropic projection reconstruction,” J. Magn. Reson. Imaging 20(5), 894900 (2004).
http://dx.doi.org/10.1002/jmri.v20:5
39.
39. S. B. Fain, F. J. Browning, J. A. Polzin, J. Du, Y. Zhou, W. F. Block, T. M. Grist, and C. A. Mistretta, “Floating table isotropic projection (FLIPR) acquisition: A time-resolved 3D method for extended field-of-view MRI during continuous table motion,” Magn. Reson. Med. 52(5), 109310102 (2004).
http://dx.doi.org/10.1002/mrm.v52:5
40.
40. A. G. Webb, Z. P. Liang, R. I. Magin, and P. C. Lauterbur, “Applications of reduced encoding MR imaging with generalized series reconstruction (RIGR),” J. Magn. Reson. Imaging 3(6), 925928 (1993).
http://dx.doi.org/10.1002/jmri.v3:6
41.
41. J. Tsao, P. Boesiger, and K. P. Pruessmann, “k-t BLAST and k-t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations,” Magn. Reson. Med. 50(5), 10311042 (2003).
http://dx.doi.org/10.1002/mrm.v50:5
42.
42. O. Wieben, J. Velikina, W. F. Block, J. Perry, Y. Wu, K. M. Johnson, Y. Wu, F. R. Korosec, and C. A. Mistretta, “Highly constrained back projection (HYPR): Theory and potential applications,” 14th Proceedings of the ISMRM (Seattle, Washington, DC, 2006), p. 688.
43.
43. J. V. Velikina, K. M. Johnson, Y. J. Wu, P. A. Turski, and C. A. Mistretta, “PC HYPR FLOW,” Magn. Reson. Imaging 31, 447456 (2010).
http://dx.doi.org/10.1002/jmri.22035
44.
44. Y. Wu et al., “Fast whole-brain 4D contrast-enhanced MR angiography with velocity encoding using undersampled radial acquisition and highly constrained projection reconstruction: Image-quality assessment in volunteer subjects,” AJNR Am. J. Neuroradiol. 32, E47E50 (2011).
http://dx.doi.org/10.3174/ajnr.A2022
45.
45. R. Fahrig, A. Ganguly, J. Starman, and N. Strobel, “C-arm CT with XRIIs and digital flat panels: A review,” Invited Paper at SPIE 49th Annual Meeting, Denver, Colorado, 5535 (2004).
46.
46. R. A. Kruger, J. A. Nelson, D. Ghosh-Roy, F. J. Miller, R. E. Anderson, and P. L. Liu, “Dynamic tomographic DSA using temporal filtration,” Radiology 147, 863867 (1983).
47.
47. R. E. Anderson, R. A. Kruger, P. G. Sherry, J. A. Nelson, and P. Y. Liu, “Tomographic DSA using temporal filtration. Initial neurovascular applications,” AJNR 5, 277280 (1984).
48.
48. N. DeVries, F. J. Miller, M. M. Wojtowycz, P. R. Brown, D. R. Yandow, J. A. Nelson, and R. A. Kruger, “Tomographic digital subtraction angiography: Initial clinical studies using tomosynthesis,” Radiology 157, 239241 (1985).
49.
49. R. Ning and R. A. Kruger, “Computer simulation of image intensifier-based CTdetector: Vascular application,” Med. Phys. 15(2), 188192 (1988).
http://dx.doi.org/10.1118/1.596250
50.
50. C. T. Badea, L. W. Hedlund, M. D. Lin, J. S. Boslego Mackel, E. Samei, G. Allan, and G. A. Johnson, “Tomographic digital subtraction angiography for lung perfusion estimation in Rodents,” Med. Phys. 34(5), 15461555 (2007).
http://dx.doi.org/10.1118/1.2717384
51.
51. S. I. Pollmann, C. J. D. Norley, D. M. Pelz, S. P Lownie, and D. W. Holdsworth, “Four dimensional intravenous cone-beam computed tomographic subtraction angiography: In vitro study of feasibility,” Invest. Radiol. 43(11), 753761 (2008).
http://dx.doi.org/10.1097/RLI.0b013e3181812c4c
52.
52. C. A. Mistretta, “The use of a general description of the radiological transmission image for categorizing imaging enhancement procedures,” Opt. Eng. 13(2), 134137 (1974).
53.
53. M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58, 11821195 (2007).
http://dx.doi.org/10.1002/mrm.v58:6
54.
54. D. K. Sodickson, M. A. Griswold, and P. M. Jakob, “SMASH imaging,” Magn. Reson. Imaging Clin. N Am. 7(2), 237254 (1999).
55.
55. K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, “SENSE: Sensitivity encoding for fast MRI,” Magn. Reson. Med. 42(5), 952962 (1999).
http://dx.doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>.0.CO;2-S
56.
56. M. A. Griswold, and P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, and A. Haase, “Generalized autocalibrating partially parallel acquisitions (GRAPPA),” Magn. Reson. Med. 47(6), 12021210, (2002).
http://dx.doi.org/10.1002/mrm.v47:6
57.
57. G. H. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (PICCS): A method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. 35(2), 660663 (2008).
http://dx.doi.org/10.1118/1.2836423
58.
58. J. Tang, J. Hsieh, and G. H. Chen, “Temporal resolution improvement in cardiac CT using PICCS (TRI-PICCS): Performance studies,” Med. Phys. 37(8), 43774388 (2010).
http://dx.doi.org/10.1118/1.3460318
59.
59. E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489509 (2006).
http://dx.doi.org/10.1109/TIT.2005.862083
60.
60. C. A. Mistretta, “Undersampled radial MR acquisition and highly constrained back projection (HYPR) reconstruction: Potential medical imaging applications in the post-Nyquist era,” Magn. Reson. Imaging 29(3), 501516 (2009).
http://dx.doi.org/10.1002/jmri.21683
61.
61. K. Wang, J. Du, R. O’Halloran, S. Fain, S. Kecskemeti, O. Wieben, K. M. Johnson, and C. Mistretta, “Ultrashort TE spectroscopic imaging (UTESI) using complex highly-constrained backprojection with local reconstruction (HYPR LR),” Magn. Reson. Med. 62(1), 127134 (2009).
http://dx.doi.org/10.1002/mrm.21986
62.
62. K. Wang, “Application of Accelerated Acquisition and highly constrained reconstruction methods to MR,” Ph.D. thesis, Department of Medical Physics, University of Wisconsin, Madison, 2010.
63.
63. J. H. Holmes, R. L. O’Halloran, E. K. Brodsky, T. A. Bley, C. J. Francois, J. V. Velikina, R. L. Sorkness, W. W. Busse, and S. B. Fain, “Three dimensional imaging of ventilation dynamics in asthmatics using multi-echo projection acquisition with constrained reconstruction,” Magn. Reson. Med. 62(6), 15431556 (2009).
http://dx.doi.org/10.1002/mrm.22150
64.
64. B. T. Christian, N. T. Vandehey, J. M. Floberg, and C. A. Mistretta, “Dynamic PET denoising with HYPR processing,” J. Nucl. Med. 51, 11471154 (2010).
http://dx.doi.org/10.2967/jnumed.109.073999
65.
65. C. J. Anderson, J. M. Connett, S. W. Schwarz, P. A. Rocque, L. W. Guo, G. W. Philpott, K. R. Zinn, C. F. Meares, and M. J. Welch, “Copper-64-labeled antibodies for PET imaging,” J. Nucl. Med. 33, 16851691 (1992).
66.
66. H. Herzog, L. Tellman, S. M. Qaim, S. Spellerberg, A. Schmid, and H. H. Coenen, “PET quantitation and imaging of the non-pure positron-emitting iodine isotope 124I,” Appl. Radiat. Isot. 56, 673679 (2002).
http://dx.doi.org/10.1016/S0969-8043(01)00283-4
67.
67. J. M. Floberg et al., “Improving SNR in dynamic PET imaging of copper-64 and iodine-124 using HYPR,” Proceedings of the 2009 ISNM Meeting. Toronto, Canada
68.
68. M. P. Supanich, H. A. Rowley, A. S. Turk, J. Hsieh, M. Speidel, K. Pulfer Supanich1, G. H. Chen, and C. A. Mistretta, “Low radiation dose neurovascular HYPR CT: Combined CT perfusion and time-resolved CT angiography from a single dynamic injection,” Abstract, RSNA (2007).
69.
69. X. Liu, A. N. Primak, J. D. Krier, L. Yu, L. O. Lerman, and C. H. McCollough, “Accurate, in vivo determination of renal perfusion and hemodynamics using HYPR noise reduction and a ten-fold decrease in radiation dose,” Abstract, RSNA (2008).
70.
70. D. Ertel, R. Brauweiler, M. A. Speidel, C. A. Mistretta, and W. A. Kalender, Accurate, “In vivo determination of renal perfusion and hemodynamics using HYPR noise reduction and a ten-fold decrease in radiation dose,” Abstract, RSNA (2008).
71.
71. R. Krissak, C. A. Mistretta, T. Henzler, M. Reichert, S. O. Schoenberg, and C. Fink, “Noise reduction and image quality improvement of low Dose and ultra low dose brain perfusion CT by using the HYPR algorithm,” Poster Number: LL-NRS-SU3A, RSNA, 2010.
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/38/6/10.1118/1.3589132
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Comparison of IV and intra-arterial DSA. Intravenous angiography was sensitive to soft tissue motion and marginal iodine contrast. Intra-arterial DSA permitted the use of smaller catheters and smaller amounts of iodine and resulted in reduced complication rates.

Image of FIG. 2.

Click to view

FIG. 2.

Brody’s hybrid energy—time subtraction method for tissue cancelled DSA. This technique was introduced as a product but was abandoned due to excessive image noise.

Image of FIG. 3.

Click to view

FIG. 3.

Comparison of resolution phantom using Cartesian phase encoding (left) and 4x undersampled radial acquisition (right) in same scan time. The Cartesian spatial resolution in the phase encoding direction is inferior to that of the radial acquisition.

Image of FIG. 4.

Click to view

FIG. 4.

PC VIPR images obtained with an undersampling factor of 36. PC VIPR provides flow information in addition to anatomical information. Courtesy of Kevin Johnson.

Image of FIG. 5.

Click to view

FIG. 5.

(a) 46% stenosis in a 2.6 mm left common carotid artery in a pig. (b). Pressure transducer measurement that found a 6 mm Hg pressure drop. (C) PC VIPR angiogram. (d) Pressure map indicating a 7 mm Hg pressure drop. Adapted from Lum et al. (e) Comparison of MR and guidewire pressure measurements.

Image of FIG. 6.

Click to view

FIG. 6.

Comparison of conventional filtered back projection reconstruction and HYPR reconstruction using 16 projections per time frame in a “stack of stars” geometry. The Nyquist requirement was 800 projections. From Wieben (Ref. 42).

Image of FIG. 7.

Click to view

FIG. 7.

Selected Hybrid phase contrast HYPR/ VIPR time frames. The contrast-enhanced time frames were acquired with an angular undersampling factor of 800.

Image of FIG. 8.

Click to view

FIG. 8.

Hybrid phase contrast HYPR /VIPR images obtained with 1 cc of gadolinium contrast. The use of small amounts of contrast improves artery/vein separation.

Image of FIG. 9.

Click to view

FIG. 9.

Schematic of the 4D DSA reconstruction using two projections per 3D time frame. Following multiplication by the first projection, streaks appear when the volume is viewed in directions not along the projection direction. These are removed by the second multiplication.

Image of FIG. 10.

Click to view

FIG. 10.

Illustration of the data acquisition and multiplicative reconstruction step for 4D DSA. For each time frame two projections and the reconstructed 3D DSA volume are used. In the gray areas where vessels are not present the volume is zero. Where the detected rays cross the vessels in the 3D volume signal is deposited in the backprojection step (circles) Where the 3D volume is zero the multiplication produces zero signal (squares). In arterial phase projections, veins are still zero and the projection multiplies the vein in the 3D DSA volume by zero.

Image of FIG. 11.

Click to view

FIG. 11.

Early filling of the vein of Galen. Two projections from a 3D DSA (left) and MIPS through a 4D DSA(right) derived by using two of the 220 projections used to form the 3D volume. Dynamic filling of the vascular structures is clearly seen on the rotating 4D DSA volume as indicated by the arrows

Image of FIG. 12.

Click to view

FIG. 12.

4D fluoroscopic views created at several angles without gantry motion. Top row, coil placement in aneurysm. Bottom row-catheter tracking. Images were generated in matlab at reduced resolution. The 4D fluoroscopic mode requires biplane fluoroscopy.

Image of FIG. 13.

Click to view

FIG. 13.

Progression of images involved in the formation of the time/energy subtracted CT angiographic volume. Shown are MIPs through the 3D DSA volumes at 60 and 125 kVp, a tissue subtracted MIP at one point in time, and a time-energy 4D DSA MIP. Note that unlike the previous mode introduced by Brody (Ref. 14) signal to noise ratio is adequate. The derivatives refer to the image classification scheme defined in Ref. 52.

Image of FIG. 14.

Click to view

FIG. 14.

Progression of techniques in the development of 4D DSA and several accelerated or dose reduced medical imaging applications that have emerged as a result of the use of undersampled acquisition and/or constrained reconstruction.

Loading

Article metrics loading...

/content/aapm/journal/medphys/38/6/10.1118/1.3589132
2011-05-27
2014-04-19

Abstract

In 1980 DSA provided a real time series of digitally processed angiographic images that facilitated and reduced the risk of angiographic procedures. This technique has become an enabling technology for interventional radiology. Initially it was hoped that intravenous DSA could eliminate the need for arterial injections. However the 2D nature of the images resulted in overlap of vessels and repeat injections were often required. Ultimately the use of smaller arterial catheters and reduced iodine injections resulted in significant reduction in complications. During the next two decades time resolved MR DSA angiographic methods were developed that produced time series of 3D images. These 4D displays were initially limited by tradeoffs in temporal and spatial resolution when acquisitions obeying the Nyquist criteria were employed. Then substantial progress was made in the implementation of undersampled non-Cartesian acquisitions such as VIPR and constrained reconstruction methods such as HYPR, which removed this tradeoff and restored SNR usually lost by accelerated techniques. Recently, undersampled acquisition and constrained reconstruction have been applied to generate time series of 3D x-ray DSA volumes reconstructed using rotational C-arm acquisition completing a 30 year evolution from DSA to 4D DSA. These 4D DSA volumes provide a flexible series of roadmaps for interventional procedures and solve the problem of vessel overlap for intravenous angiography. Full time-dependent behavior can be visualized in three dimensions. When a biplane system is used, 4D fluoroscopy is also possible, enabling the interventionalist to track devices in vascular structures from any angle without moving the C-arm gantrys. Constrained reconstruction methods have proved useful in a broad range of medical imaging applications, where substantial acquisition accelerations and dose reductions have been reported.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/38/6/1.3589132.html;jsessionid=242jhj80k8b1g.x-aip-live-01?itemId=/content/aapm/journal/medphys/38/6/10.1118/1.3589132&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Sub-Nyquist acquisition and constrained reconstruction in time resolved angiography
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/38/6/10.1118/1.3589132
10.1118/1.3589132
SEARCH_EXPAND_ITEM