Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. A. Mistretta, O. Wieben, J. Velikina, W. Block, J. Perry, Y. Wu, K. Johnson, and Y. Wu, “Highly constrained backprojection for time-resolved MRI,” Magn. Reson. Med. 55, 3040 (2006).
2. K. M. Johnson, J. Velikina, Y. Wu, S. Kecskemeti, O. Wieben, and C. A. Mistretta, “Improved waveform fidelity using local HYPR reconstruction (HYPR LR),” Magn. Reson. Med. 59(3), 456462 (2008).
3. R. L. O’Halloran, Z. Wen, J. H. Holmes, and S. B. Fain, “Iterative reconstruction of time-resolved images using highly constrained back-projection (HYPR),” Magn. Reson. Med. 59, 132139 (2008).
4. A. A. Samsonov, O. Wieben, and W. F. Block, “HYPRIT: Generalized HYPR reconstruction by iterative estimation,” Abstract, ISMRM Workshop on Non-Cartesian MRI Sedona, Arizona (2007).
5. M. Griswold et al., “More optimal HYPR reconstructions using a combination of HYPR and conjugate-gradient minimization,” Abstract, 18th International Workshop on MR Angiography, Basel, Switzerland (2006).
6. B. G. Ziedses Des Plantes, “Planigraphieen subtractie. Röntgenographische differentiatie methoden thesis,” Kemink en Zoon, Utrecht, 1934, p. 112.
7. R. A. Kruger, C. A. Mistretta, J. Lancaster, T. L. Houk, M. M. Goodsitt, S. J. Riederer, J. Hicks, J. F. Sackett, A. B. Crummy, and D. Flemming, “A digital video image processor for real-time subtraction imaging,” Opt. Eng. 17(6), 652657 (1978).
8. A. B. Crummy, C. A. Mistretta, R. Cline, W. Terry, M. G. Ort, F. Kelcz, and J. R. Cameron, “An inexpensive storage system for selective catheterization procedures,” Radiology 110, 369372 (1973). 79
9. A. B. Crummy, C. A. Mistretta, M. G. Ort, F. Kelcz, J. R. Cameron, and M. P. Siedband, “Absorption edge fluoroscopy using quasi-monoenergetic x-ray beams,” Invest. Radiol. 8, 402412 (1973).
10. F. Kelcz and C. A. Mistretta, “Absorption edge fluoroscopy using a 3-spectrum technique,” Med. Phys. 3(3), 159168 (1977).
11. T. W. Ovitt et al., “Development of a digital subtraction system for intravenous angiography,” Proc. SPIE, 206, 183189 (1979).
12. R. Brennecke et al., “Computerized video-image preprocessing with applications to cardio-angiographic roentgen-image series,” in Digital Image Processing, edited by H. H Nagel (Springer-Verlag, Berlin, 1977), pp. 244262.
13. J. R. Waugh and N. Sacharias, “Arteriographic complications in the DSA era,” Radiology 182, 243246 (1992).
14. W. R. Brody, “Hybrid subtraction for improved arteriography,” Radiology 141(3), 828831 (1981).
15. R. Fahrig, A. J. Fox, S. Lownie, and D. W. Holdsworth, “Use of a C-arm system to generate true three-dimensional computed rotational angiograms: preliminary in vitro and in vivo results,” AJNR Am J Neuroradiol. 18(8), 15071514 (1997).
16. R. Fahrig, M. Moreau, and D. W. Holdsworth, “Three-dimensional computed tomographic reconstruction using a C-arm mounted XRII: Correction of image intensifier distortion,” Med. Phys. 24(7), 109710106 (1997)
17. R. Fahrig and D. W. Holdsworth, “Three-dimensional computed tomographic reconstruction using a C-arm mounted XRII: Image-based correction of gantry motion non-idealities,” Med. Phys. 27, 3038 (2000).
18. J. Van Vaals et al., “Keyhole method for accelerating imaging of contrast agent uptake,” J. Magn. Reson. Imaging 3, 671675 (1993).
19. F. R. Korosec, R. Frayne, T. M. Grist, and C. A. Mistretta, “Time-resolved contrast-enhanced 3D MR angiography,” Magn. Reson. Med. 36, 345351 (1996).
20. C. R. Haider, J. Glockner, A. W. Stanson, and S. Reiderer, “Peripheral vasculature: High temporal- and spatial-resolution three-dimensional contrast-enhnaced MR Angiography,” Radiology 253, 831843 (2009).
21. C. P. Johnson, C. R. Haider, E. A. Borish, J. F. Glockner, and S. J. Riederer, “Time-resolved bolus chase MR angiography with real-time triggering of table motion,” Magn. Reson. Med. 64, 629637 (2010).
22. K. Wang et al., “Interleaved variable density sampling with ARC parallel imaging and Cartesian HYPR for dynamic MR angiography,” Proceedings of the Joint Annual Meeting of ISMRM-ESMRMB (abstract), Stockholm, 2010.
23. V. Rasche, R. W. deBoer, D. Holz, and R. Proska, “Continuous radial acquisition for dynamic MRI,” Magn. Reson. Med. 34, 754761 (1995).
24. K. Scheffler and J. Hennig, “Reduced circular field of view imaging,” Magn. Reson. Med. 40, 474480 (1998).
25. D. C. Peters et al., Undersampled projection reconstruction applied to MR angiography,” Magn. Reson. Med. 43(1), 91101 (2000).<91::AID-MRM11>3.0.CO;2-4
26. A. V. Barger, W. F. Block, Y. Toropov, T. M. Grist, and C. A. Mistretta, “Time-resolved contrast-enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory,” Magn. Reson. Med. 48, 297305 (2002).
27. D. P. Lum, K. M. Johnson, R. K. Paul, A. S. Turk, D. W. Consigny, J. R. Grinde, C. A. Mistretta, and T. M. Grist, “Measurement of trans-stenotic pressure gradients in swine: Comparison between retrospective ECG-gated 3D phase-contrast MRA and endovascular pressure-sensing guidewires,” Radiology 245, 751760 (2007).
28. R. Moftakhar, B. Aagaard-Kienitz, K. M. Johnson, P. A. Turski, D. Consigny, J. Grinde, A. S. Turk, D. B. Niemann, and C. A. Mistretta, “Non-invasive measurement of intra-aneurysmal pressure and flow velocity using phase contrast vastly undersampled projection imaging (PC VIPR),” AJNR Am. J. Neuroradiol. 28(9), 17101714 (2007).
29. A. S. Turk, K. M. Johnson, L. D. Niemann, B. Aagaard-Kienitz, D. Consigny, J. Grinde, P. Turski, V. Haughton, and C. A. Mistretta, “Physiological and anatomic assessment of a canine artery stenosis model with phase contrast with vastly undersampled isotropic projection imaging,” AJNR Am. J. Neuroradiol. 28, 111115 (2007).
30. T. A. Bley, K. M. Johnson, C. J. Francois, S. B. Reeder, M. Schiebler, B. Landgraf, D. W. Consigny, T. M. Grist, and O. Wieben, “Non-invasive assessment of transstenotic pressure gradients in porcine renal artery stenoses using phase contrast MRA,” Radiology (2010).
31. E. T. Bieging, A. Frydrychowicz, B. R. Landgraf, K. M. Johnson, O. Wieben, and C. J. François, “In vivo 3-dimensional magnetic resonance wall shear stress estimation in ascending aortic dilatation,” J. Magn. Reson. Imaging 33(3), 589597 (2011).
32. M. R. Prince, “Science to practice: Is there a replacement for percentage stenosisn characterizing occlusive vascular disease?,” Radiology 245(3) 617618 (2007).
33. W. Chang, B. Landgraf, K. M. Johnson, S. Kecskemeti, Y. Wu, J. Velikina, H. Rowley, O. Wieben, C. Mistretta, and P. Turski, “Velocity measurements in the middle cerebral arteries of healthy volunteers using 3D radial phase-contrast HYPRFlow: Comparison with transcranial doppler sonography and 2D phase-contrast MR imaging,” AJNR Am J Neuroradiol. 32(1), 5459 (2010).
34. C. J. Francois, D. P. Lum, K. M. Johnson, B. R. Landgraf, T. A. Bley, S. B. Reeder, M. L. Schiebler, T. M. Grist, and O. Wieben, “Renal arteries: Isotropic, high-spatial-resolution, unenhanced MR angiography with three-dimensional radial phase contrast,” Radiology 258(1), 254260 (2011).
35. J. Xie, P. Lai, H. Bhat, and D. J. Li, “Whole-heart coronary magnetic resonance angiography at 3.0T using short-TR steady-state free precession, vastly undersampled isotropic projection reconstruction,” Magn. Reson. Imaging 31(5), 12301235 (2010).
36. A. Frydrychowicz, B. Landgraf, O. Wieben, and C. J. Francois, “Images in cardiovascular medicine. Scimitar syndrome: Added value by isotropic flow-sensitive four-dimensional magnetic resonance imaging with PC-VIPR (phase-contrast vastly undersampled isotropic projection reconstruction),” Circulation 121, e4346 (2010).
37. R. Kijowski, D. G. Blankenbaker, J. L. Klaers, K. Shinki, A. A. De Smet, and W. F. Block, “Vastly undersampled isotropic projection steady-state free precession imaging of the knee: Diagnostic performance compared with conventional MR,” Radiology 251(1), 185194. (2009).
38. J. Du, T. J. Carroll, E. Brodsky, A. Lu, T. M. Grist, C. A. Mistretta, and W. F. Block, “Contrast-enhanced peripheral magnetic resonance angiography using time-resolved vastly undersampled isotropic projection reconstruction,” J. Magn. Reson. Imaging 20(5), 894900 (2004).
39. S. B. Fain, F. J. Browning, J. A. Polzin, J. Du, Y. Zhou, W. F. Block, T. M. Grist, and C. A. Mistretta, “Floating table isotropic projection (FLIPR) acquisition: A time-resolved 3D method for extended field-of-view MRI during continuous table motion,” Magn. Reson. Med. 52(5), 109310102 (2004).
40. A. G. Webb, Z. P. Liang, R. I. Magin, and P. C. Lauterbur, “Applications of reduced encoding MR imaging with generalized series reconstruction (RIGR),” J. Magn. Reson. Imaging 3(6), 925928 (1993).
41. J. Tsao, P. Boesiger, and K. P. Pruessmann, “k-t BLAST and k-t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations,” Magn. Reson. Med. 50(5), 10311042 (2003).
42. O. Wieben, J. Velikina, W. F. Block, J. Perry, Y. Wu, K. M. Johnson, Y. Wu, F. R. Korosec, and C. A. Mistretta, “Highly constrained back projection (HYPR): Theory and potential applications,” 14th Proceedings of the ISMRM (Seattle, Washington, DC, 2006), p. 688.
43. J. V. Velikina, K. M. Johnson, Y. J. Wu, P. A. Turski, and C. A. Mistretta, “PC HYPR FLOW,” Magn. Reson. Imaging 31, 447456 (2010).
44. Y. Wu et al., “Fast whole-brain 4D contrast-enhanced MR angiography with velocity encoding using undersampled radial acquisition and highly constrained projection reconstruction: Image-quality assessment in volunteer subjects,” AJNR Am. J. Neuroradiol. 32, E47E50 (2011).
45. R. Fahrig, A. Ganguly, J. Starman, and N. Strobel, “C-arm CT with XRIIs and digital flat panels: A review,” Invited Paper at SPIE 49th Annual Meeting, Denver, Colorado, 5535 (2004).
46. R. A. Kruger, J. A. Nelson, D. Ghosh-Roy, F. J. Miller, R. E. Anderson, and P. L. Liu, “Dynamic tomographic DSA using temporal filtration,” Radiology 147, 863867 (1983).
47. R. E. Anderson, R. A. Kruger, P. G. Sherry, J. A. Nelson, and P. Y. Liu, “Tomographic DSA using temporal filtration. Initial neurovascular applications,” AJNR 5, 277280 (1984).
48. N. DeVries, F. J. Miller, M. M. Wojtowycz, P. R. Brown, D. R. Yandow, J. A. Nelson, and R. A. Kruger, “Tomographic digital subtraction angiography: Initial clinical studies using tomosynthesis,” Radiology 157, 239241 (1985).
49. R. Ning and R. A. Kruger, “Computer simulation of image intensifier-based CTdetector: Vascular application,” Med. Phys. 15(2), 188192 (1988).
50. C. T. Badea, L. W. Hedlund, M. D. Lin, J. S. Boslego Mackel, E. Samei, G. Allan, and G. A. Johnson, “Tomographic digital subtraction angiography for lung perfusion estimation in Rodents,” Med. Phys. 34(5), 15461555 (2007).
51. S. I. Pollmann, C. J. D. Norley, D. M. Pelz, S. P Lownie, and D. W. Holdsworth, “Four dimensional intravenous cone-beam computed tomographic subtraction angiography: In vitro study of feasibility,” Invest. Radiol. 43(11), 753761 (2008).
52. C. A. Mistretta, “The use of a general description of the radiological transmission image for categorizing imaging enhancement procedures,” Opt. Eng. 13(2), 134137 (1974).
53. M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58, 11821195 (2007).
54. D. K. Sodickson, M. A. Griswold, and P. M. Jakob, “SMASH imaging,” Magn. Reson. Imaging Clin. N Am. 7(2), 237254 (1999).
55. K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, “SENSE: Sensitivity encoding for fast MRI,” Magn. Reson. Med. 42(5), 952962 (1999).<952::AID-MRM16>.0.CO;2-S
56. M. A. Griswold, and P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, and A. Haase, “Generalized autocalibrating partially parallel acquisitions (GRAPPA),” Magn. Reson. Med. 47(6), 12021210, (2002).
57. G. H. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (PICCS): A method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. 35(2), 660663 (2008).
58. J. Tang, J. Hsieh, and G. H. Chen, “Temporal resolution improvement in cardiac CT using PICCS (TRI-PICCS): Performance studies,” Med. Phys. 37(8), 43774388 (2010).
59. E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489509 (2006).
60. C. A. Mistretta, “Undersampled radial MR acquisition and highly constrained back projection (HYPR) reconstruction: Potential medical imaging applications in the post-Nyquist era,” Magn. Reson. Imaging 29(3), 501516 (2009).
61. K. Wang, J. Du, R. O’Halloran, S. Fain, S. Kecskemeti, O. Wieben, K. M. Johnson, and C. Mistretta, “Ultrashort TE spectroscopic imaging (UTESI) using complex highly-constrained backprojection with local reconstruction (HYPR LR),” Magn. Reson. Med. 62(1), 127134 (2009).
62. K. Wang, “Application of Accelerated Acquisition and highly constrained reconstruction methods to MR,” Ph.D. thesis, Department of Medical Physics, University of Wisconsin, Madison, 2010.
63. J. H. Holmes, R. L. O’Halloran, E. K. Brodsky, T. A. Bley, C. J. Francois, J. V. Velikina, R. L. Sorkness, W. W. Busse, and S. B. Fain, “Three dimensional imaging of ventilation dynamics in asthmatics using multi-echo projection acquisition with constrained reconstruction,” Magn. Reson. Med. 62(6), 15431556 (2009).
64. B. T. Christian, N. T. Vandehey, J. M. Floberg, and C. A. Mistretta, “Dynamic PET denoising with HYPR processing,” J. Nucl. Med. 51, 11471154 (2010).
65. C. J. Anderson, J. M. Connett, S. W. Schwarz, P. A. Rocque, L. W. Guo, G. W. Philpott, K. R. Zinn, C. F. Meares, and M. J. Welch, “Copper-64-labeled antibodies for PET imaging,” J. Nucl. Med. 33, 16851691 (1992).
66. H. Herzog, L. Tellman, S. M. Qaim, S. Spellerberg, A. Schmid, and H. H. Coenen, “PET quantitation and imaging of the non-pure positron-emitting iodine isotope 124I,” Appl. Radiat. Isot. 56, 673679 (2002).
67. J. M. Floberg et al., “Improving SNR in dynamic PET imaging of copper-64 and iodine-124 using HYPR,” Proceedings of the 2009 ISNM Meeting. Toronto, Canada
68. M. P. Supanich, H. A. Rowley, A. S. Turk, J. Hsieh, M. Speidel, K. Pulfer Supanich1, G. H. Chen, and C. A. Mistretta, “Low radiation dose neurovascular HYPR CT: Combined CT perfusion and time-resolved CT angiography from a single dynamic injection,” Abstract, RSNA (2007).
69. X. Liu, A. N. Primak, J. D. Krier, L. Yu, L. O. Lerman, and C. H. McCollough, “Accurate, in vivo determination of renal perfusion and hemodynamics using HYPR noise reduction and a ten-fold decrease in radiation dose,” Abstract, RSNA (2008).
70. D. Ertel, R. Brauweiler, M. A. Speidel, C. A. Mistretta, and W. A. Kalender, Accurate, “In vivo determination of renal perfusion and hemodynamics using HYPR noise reduction and a ten-fold decrease in radiation dose,” Abstract, RSNA (2008).
71. R. Krissak, C. A. Mistretta, T. Henzler, M. Reichert, S. O. Schoenberg, and C. Fink, “Noise reduction and image quality improvement of low Dose and ultra low dose brain perfusion CT by using the HYPR algorithm,” Poster Number: LL-NRS-SU3A, RSNA, 2010.

Data & Media loading...


Article metrics loading...



In 1980 DSA provided a real time series of digitally processed angiographic images that facilitated and reduced the risk of angiographic procedures. This technique has become an enabling technology for interventional radiology. Initially it was hoped that intravenous DSA could eliminate the need for arterial injections. However the 2D nature of the images resulted in overlap of vessels and repeat injections were often required. Ultimately the use of smaller arterial catheters and reduced iodine injections resulted in significant reduction in complications. During the next two decades time resolved MR DSA angiographic methods were developed that produced time series of 3D images. These 4D displays were initially limited by tradeoffs in temporal and spatial resolution when acquisitions obeying the Nyquist criteria were employed. Then substantial progress was made in the implementation of undersampled non-Cartesian acquisitions such as VIPR and constrained reconstruction methods such as HYPR, which removed this tradeoff and restored SNR usually lost by accelerated techniques. Recently, undersampled acquisition and constrained reconstruction have been applied to generate time series of 3D x-ray DSA volumes reconstructed using rotational C-arm acquisition completing a 30 year evolution from DSA to 4D DSA. These 4D DSA volumes provide a flexible series of roadmaps for interventional procedures and solve the problem of vessel overlap for intravenous angiography. Full time-dependent behavior can be visualized in three dimensions. When a biplane system is used, 4D fluoroscopy is also possible, enabling the interventionalist to track devices in vascular structures from any angle without moving the C-arm gantrys. Constrained reconstruction methods have proved useful in a broad range of medical imaging applications, where substantial acquisition accelerations and dose reductions have been reported.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd