Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. Breedis and G. Young, “The blood supply of neoplasms in the liver,” Am. J. Pathol. 30, 969984 (1954).
2. J. Ingold, G. Reed, and H. Kaplan, “Radiation hepatitis,” Am. J. Roentgenol. 93, 200208 (1965).
3. C. C. Pan, B. D. Kavanagh, L. A. Dawson, X. A. Li, S. K. Das, M. Miften, and R. K. T. Haken, “Radiation-associated liver injury,” Int. J. Radiat. Oncol. Biol. Phys. 76, S94S100 (2010).
4. L. A. Dawson, C. J. McGinn, D. Normolle, R. K. Ten Haken, S. Walker, W. Ensminger, and T. S. Lawrence, “Escalated focal liver radiation and concurrent hepatic artery fluorodeoxyuridine for unresectable intrahepatic malignancies,” J. Clin. Oncol. 18, 22102218 (2000).
5. A. Kennedy, S. Nag, R. Salem, R. Murthy, A. J. McEwan, C. Nutting, A. Benson, 3rd, J. Espat, J. I. Bilbao, R. A. Sharma, J. P. Thomas, and D. Coldwell, “Recommendations for radioembolization of hepatic malignancies using yttrium-90 microsphere brachytherapy: A consensus panel report from the radioembolization brachytherapy oncology consortium,” Int. J. Radiat. Oncol. Biol. Phys. 68, 1323 (2007).
6. A. S. Kennedy, C. Nutting, D. Coldwell, J. Gaiser, and C. Drachenberg, “Pathologic response and microdosimetry of 90Y microspheres in man: Review of four explanted whole livers,” Int. J. Radiat. Oncol. Biol. Phys. 60, 15521563 (2004).
7. E. M. Erbe and D. E. Day, “Chemical durability of Y2O3–Al2O3–SiO2 glasses for the in vivo delivery of beta radiation,” J. Biomed. Mater. Res. 27, 13011308 (1993).
8. B. Carr et al., “Hepatic arterial yttrium labeled glass microspheres TheraSphere as treatment for unresectable HCC in 36 patients,” Proceedings of ASCO Journal of Clinical Oncology, Orlando FL, 2002.
9. B. Gray, G. Van Hazel, M. Hope, M. Burton, P. Moroz, J. Anderson, and V. Gebski, “Randomised trial of SIR-Spheres plus chemotherapy vs chemotherapy alone for treating patients with liver metastases from primary large bowel cancer,” Ann. Oncol. 12, 17111720 (2001).
10. A. S. Kennedy, W. A. Dezarn, P. McNeillie, D. Coldwell, C. Nutting, D. Carter, R. Murthy, S. Rose, R. R. P. Warner, D. Liu, H. Palmedo, C. Overton, B. Jones, and R. Salem, “Radioembolization for unresectable neuroendocrine hepatic metastases using resin 90Y-microspheres: Early results in 148 patients,” Am. J. Clin. Oncol. 31, 271279 (2008).
11. A. S. Kennedy, D. Coldwell, C. Nutting, R. Murthy, D. E. Wertman Jr., S. P. Loehr, C. Overton, S. Meranze, J. Niedzwiecki, and S. Sailer, “Resin 90Y-microsphere brachytherapy for unresectable colorectal liver metastases: Modern USA experience,” Int. J. Radiat. Oncol. Biol. Phys. 65, 412425 (2006).
12. J. E. Dancey, F. A. Shepherd, K. Paul, K. W. Sniderman, S. Houle, J. Gabrys, A. L. Hendler, and J. E. Goin, “Treatment of nonresectable hepatocellular carcinoma with intrahepatic 90Y-microspheres,” J. Nucl. Med. 41, 16731681 (2000).
13. C. Couinaud, Le Foie: Études anatomiques et chirurgicales [The Liver: Anatomical and Surgical Studies] Masson, Paris, France, 1957.
14. T. W. Leung, W. Y. Lau, S. K. Ho, S. C. Ward, J. H. Chow, M. S. Chan, C. Metreweli, P. J. Johnson, and A. K. C. Li, “Radiation pneumonitis after selective internal radiation treatment with intraarterial 90yttrium-microspheres for inoperable hepatic tumors,” Int. J. Radiat. Oncol. Biol. Phys. 33, 919924 (1995).
15. R. Chandra, J. Shamoun, P. Braunstein, and O. L. DuHov, “Clinical evaluation of an instant kit for preparation of 99mTc-MAA for lung scanning,” J. Nucl. Med. 14, 702705 (1973).
16. S. Ho, W. Y. Lau, T. W. Leung, M. Chan, K. W. Chan, W. Y. Lee, P. J. Johnson, and A. K. Li, “Tumour-to-normal uptake ratio of 90Y microspheres in hepatic cancer assessed with 99mTc macroaggregated albumin,” Br. J. Radiol. 70, 823828 (1997).
17. R. J. Lewandowski, K. T. Sato, B. Atassi, R. K. Ryu, A. A. Nemcek, Jr., L. Kulik, J. F. Geschwind, R. Murthy, W. Rilling, D. Liu, L. Bester, J. I. Bilbao, A. S. Kennedy, R. A. Omary, and R. Salem, “Radioembolization with 90Y microspheres: Angiographic and technical considerations,” Cardiovasc. Intervent. Radiol. 4, 571592 (2007).
18. J. S. Welsh, A. S. Kennedy, and B. Thomadsen, “Selective Internal Radiation Therapy (SIRT) for liver metastases secondary to colorectal adenocarcinoma,” Int. J. Radiat. Oncol. Biol. Phys. 66, S62S73 (2006).
20. Last accessed March 2011. This is the original indication. Please see manufacturer for complete current indication as given in the report.
22. Dosimetry of beta rays and low-energy photons for brachytherapy with sealed sources (Report 72),” J. ICRU 4, (2004).
23. D. J. Simpkin and T. R. Mackie, “EGS4 Monte Carlo determination of the beta dose kernel in water,” Med. Phys. 17, 179186 (1990).
24. R. G. Selwyn, R. J. Nickles, B. R. Thomadsen, L. A. DeWerd, and J. A. Micka, “A new internal pair production branching ratio of 90Y: The development of a non-destructive assay for 90Y and 90 Sr,” Appl. Radiat. Isot. 65, 318327 (2007).
25. J. A. Siegel, S. R. Thomas, J. B. Stubbs, M. G. Stabin, M. T. Hays, K. F. Koral, J. S. Robertson, R. W. Howell, B. W. Wessels, D. R. Fisher, D. A. Weber, and A. B. Brill, “MIRD pamphlet no. 16: Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates,” J. Nucl. Med. 40, 37S61S (1999).
26. A. Liu, L. E. Williams, and A. A. Raubitschek, “A CT assisted method for absolute quantitation of internal radioactivity,” Med. Phys. 23, 19191928 (1996).
27. R. Loevinger, T. Budinger, and E. Watson, MIRD Primer for Absorbed Dose Calculations, Revised Edition (Society of Nuclear Medicine, New York, 1991).
28. S. Ho, W. Y. Lau, T. W. Leung, M. Chan, P. J. Johnson, and A. K. Li, “Clinical evaluation of the partition model for estimating radiation doses from yttrium-90 microspheres in the treatment of hepatic cancer,” Eur. J. Nucl. Med. 24, 293298 (1997).
29. S. Ho, W. Y. Lau, T. W. Leung, M. Chan, Y. K. Ngar, P. J. Johnson, and A. K. Li, “Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumours,” Eur. J. Nucl. Med. 23, 947952 (1996).
30. M. G. Stabin, “Update: The case for patient-specific dosimetry in radionuclide therapy,” Cancer Biother. Radiopharm. 23, 273284 (2008).
31. K. S. Kolbert, G. Sgouros, A. M. Scott, J. E. Bronstein, R. A. Malane, J. Zhang, H. Kalaigian, S. McNamara, L. Schwartz, and S. M. Larson, “Implementation and evaluation of patient-specific three-dimensional internal dosimetry,” J. Nucl. Med. 38, 301308 (1997).
32. Y. K. Dewaraja, S. J. Wilderman, M. Ljungberg, K. F. Koral, K. Zasadny, and M. S. Kaminiski, “Accurate dosimetry in 131I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation,” J. Nucl. Med. 46, 840849 (2005).
33. A. Liu, L. E. Williams, G. Lopatin, D. M. Yamauchi, J. Y. C. Wong, and A. A. Raubitschek, “A radionuclide therapy treatment planning and dose estimation system,” J. Nucl. Med. 40, 11511153 (1999).
34. M. J. Guy, G. D. Flux, P. Papavasileiou, M. A. Flower, and R. J. Ott, “RMDP: A dedicated package for 131I SPECT quantification, registration and patient-specific dosimetry,” Cancer Biother. Radiopharm. 18, 6169 (2003).
35. I. Clairand, M. Ricard, J. Gouriou, M. Di Paola, and B. Aubert, “DOSE3D: EGS4 Monte Carlo code-based software for internal radionuclide dosimetry,” J. Nucl. Med. 40, 15171523 (1999).
36. J. Lehmann, C. H. Siantar, D. E. Wessol, C. A. Wemple, D. Nigg, J. Cogliati, T. Daly, M.-A. Descalle, T. Flickinger, D. Pletcher, and G. DeNardo, “Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system,” Phys. Med. Biol. 50, 947958 (2005).
37. T. Wareing, J. McGhee, J. Morel, and S. Pautz, “Discontinuous finite element SN methods on three-dimensional unstructured grids,” Nucl. Sci. Eng. 138, 256268 (2001).
38. J. Mikell, O. Vassiliev, W. Erwin, T. Wareing, and F. Mourtada, “Comparing a grid-based Boltzmann solver with Monte Carlo simulation for voxel-based therapeutic radionuclide dose calculations,” Med. Phys. 36, 2772 (2009).
39. A. K. Erdi, E. D. Yorke, M. H. Loew, Y. E. Erdi, M. Sarfaraz, and B. W. Wessels, “Use of the fast Hartley transform for three-dimensional dose calculation in radionuclide therapy,” Med. Phys. 25, 22262233 (1998).
40. Last accessed March 2011.
41. D. J. Simpkin, S. J. Cullom, and T. R. Mackie, “The spatial and energy dependence of bremsstrahlung production about beta point sources in H2O,” Med. Phys. 19, 105114 (1992).
42. W. E. Bolch, L. G. Bouchet, J. S. Robertson, B. W. Wessels, J. A. Siegel, R. W. Howell, A. K. Erdi, B. Aydogan, S. Costes, E. E. Watson, A. B. Brill, N. D. Charkes, D. R. Fisher, M. T. Hays, and S. R. Thomas, “MIRD pamphlet no. 17: The dosimetry of nonuniform activity distributions-radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee,” J. Nucl. Med. 40, 11S36S (1999).
43. M. Sarfaraz, A. S. Kennedy, M. A. Lodge, X. A. Li, X. Wu, and C. X. Yu, “Radiation absorbed dose distribution in a patient treated with yttrium-90 microspheres for hepatocellular carcinoma,” Med. Phys. 31, 24492453 (2004).
44. G. L. DeNardo, D. J. Macey, S. J. DeNardo, C. G. Zhang, and T. R. Custer, “Quantitative SPECT of uptake of monoclonal antibodies,” Semin. Nucl. Med. 19, 2232 (1989).
45. K. F. Koral, Y. Dewaraja, J. Li, Q. Lin, D. D. Regan, K. R. Zasadny, S. G. Rommelfanger, I. R. Francis, M. S. Kaminski, and R. L. Wahl, “Update on hybrid conjugate-view SPECT tumor dosimetry and response in 131I-Tositumomab therapy of previously untreated lymphoma patients,” J. Nucl. Med. 44, 457464 (2003).
46. B. E. Zimmerman and R. Collé, “Standardization of 63Ni by 4πβ liquid scintillation spectrometry with 3H-standard efficiency tracing,” J. Res. Natl. Inst. Stand. Technol. 102, 455477 (1997).
47. K. Kossert and H. Schrader, “Activity standardization by liquid scintillation counting and half-life measurements of 90Y,” Appl. Radiat. Isot. 60, 741749 (2004).
48. B. E. Zimmerman, R. Colle, and J. T. Cessna, “Construction and implementation of the NIST triple-to-double coincidence ratio (TDCR) spectrometer,” Appl. Radiat. Isot. 60, 433438 (2004).
49. B. E. Zimmerman and G. Ratel, “Report of the CIPM key comparison CCRI(II)-K2.Y-90,” Metrologia 42, 06001 (2005).
50. L. Mo, B. Avci, D. James, B. Simpson, W. M. Van Wyngaardt, J. T. Cessna, and C. Baldock, “Development of activity standard for90Y microspheres,” Appl. Radiat. Isot. 63, 193199 (2005).
51. R. Selwyn, J. Micka, L. DeWerd, R. Nickles, and B. Thomadsen, “Technical note: The calibration of 90Y-labeled SIR-Spheres® using a nondestructive spectroscopic assay,” Med. Phys. 35, 12781279 (2008).
52. B. M. Coursey, J. M. Calhoun, and J. T. Cessna, “Radioassays of yttrium-90 used in nuclear medicine,” Nucl. Med. Biol. 20, 693699 (1993).
53. J. A. Siegel, B. E. Zimmerman, K. Kodimer, M. A. Dell, and W. E. Simon, “Accurate dose calibrator activity measurement of 90Y-ibritumomab tiuxetan,” J. Nucl. Med. 45, 450454 (2004).
54. B. E. Zimmerman, J. T. Cessna, and M. A. Millican, “Experimental determination of calibration settings for plastic syringes containing solutions of 90Y using commercial radionuclide calibrators,” Appl. Radiat. Isot. 60, 511517 (2004).
55. W. Dezarn and A. Kennedy, “SU-FF-T-380: Significant differences exist across institutions in 90Y activities compared to reference standard,” Med. Phys. 34, 2489 (2007).
56. W. A. Dezarn and A. S. Kennedy, “Resin 90Y microsphere activity measurements for liver brachytherapy,” Med. Phys. 34, 18961900 (2007).
57. Last accessed March 2011. Follow links given under heading ‘Other Guidance’.
58. R. Salem and K. G. Thurston, “Radioembolization with 90Yttrium microspheres: A state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part1: Technical and methodologic considerations,” J. Vasc. Interv. Radiol. 17, 12511278 (2006).
59. S. Nag, R. Dobelbower, G. Glasgow, G. Gustafson, N. Syed, B. Thomadsen, and J. F. Williamson, “Inter-society standards for the performance of brachytherapy: A joint report from ABS, ACMP and ACRO,” Crit. Rev. Oncol./Hematol. 48, 117 (2003).
60. IAEA, “Quality assurance for radioactivity measurement in nuclear medicine,” International Atomic Energy Agency Technical Report Series No. 454 (2006).
62. Last accessed March 2011.
63. W. A. Dezarn, “Quality assurance issues for therapeutic application of radioactive microspheres,” Int. J. Radiat. Oncol. Biol. Phys. 71, S147S151 (2008).
64. B. R. Thomadsen, H. T. Heaton II, S. K. Jani, J. P. Masten, M. E. Napolitano, Z. Ouhib, C. S. Reft, M. J. Rivard, T. T. Robin, M. Subramanian, and O. H. Suleiman, “Off-label use of medical products in radiation therapy: Summary of the report of AAPM task group no. 121,” Med. Phys. 37, 23002311 (2010).

Data & Media loading...


Article metrics loading...



Yttrium-90 microsphere brachytherapy of the liver exploits the distinctive features of the liver anatomy to treat liver malignancies with beta radiation and is gaining more wide spread clinical use. This report provides a general overview of microsphere liver brachytherapy and assists the treatment team in creating local treatment practices to provide safe and efficient patient treatment. Suggestions for future improvements are incorporated with the basic rationale for the therapy and currently used procedures. Imaging modalities utilized and their respective quality assurance are discussed. General as well as vendor specific delivery procedures are reviewed. The current dosimetry models are reviewed and suggestions for dosimetry advancement are made. Beta activity standards are reviewed and vendor implementation strategies are discussed. Radioactive material licensing and radiation safety are discussed given the unique requirements of microsphere brachytherapy. A general, team-based quality assurance program is reviewed to provide guidance for the creation of the local procedures. Finally, recommendations are given on how to deliver the current state of the art treatments and directions for future improvements in the therapy.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd