Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/38/S1/10.1118/1.3577758
1.
1. J. Stonestrom, R. E. Alvarez, and A. Mackowski, “A framework for spectral artifact corrections in x-ray CT,” IEEE Trans. Biomed. Eng. 28, 128141 (1981).
http://dx.doi.org/10.1109/TBME.1981.324786
2.
2. R. Alvarez and A. Macowski, “Energy-selective reconstructions in x-ray computerized tomography,” Phys. Med. Biol. 21, 733744 (1976).
http://dx.doi.org/10.1088/0031-9155/21/5/002
3.
3. F. Kelcz, P. Joseph, and S. Hilal, “Noise considerations in dual energy CT scanning,” Med. Phys. 6, 418425 (1979).
http://dx.doi.org/10.1118/1.594520
4.
4. W. A. Kalender, D. Felsenberg, H. K. Genant, M. Fischer, J. Dequeker, and F. Reeve, “The European Spine Phantom—a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT,” Eur. J. Radiol. 20, 8392 (1995).
http://dx.doi.org/10.1016/0720-048X(95)00631-Y
5.
5. G. Lu, S. Wu, B. Yeh, and L. Zhang, “Dual-energy computed tomography in pulmonary embolism,” Br. J. Radiol. 83, 707718 (2010).
http://dx.doi.org/10.1259/bjr/16337436
6.
6. G. Bastarrika, Y. Lee, W. Huda, B. Ruzsics, P. Costello, and U. Schoepf, “CT of Coronary Artery Disease,” Radiology 253, 317338 (2009).
http://dx.doi.org/10.1148/radiol.2532081738
7.
7. I. Elbakri and J. Fessler, “Segmentation-free statistical image reconstruction for polyenergetic x-ray computed tomography with experimental validation,” Phys. Med. Biol. 48, 24532477 (2003).
http://dx.doi.org/10.1088/0031-9155/48/15/314
8.
8. N. Menvielle, Y. Goussard, D. Orban, and G. Soulez, “Reduction of beam-hardening artifacts in x-ray CT,” in IEEE-EMBS 2005, 27th Annual International Conference of the Engineering in Medicine and Biology Society (2005), pp. 18651868 (available URL: http:==ieeexplore:ieee:org=xpl=freeabs all:jsp?arnumber = 1616814).
9.
9. B. De Man, J. Nuyts, P. Dupont, G. Marchal, and P. Suetens, “An iterative maximum-likelihood polychromatic algorithm for CT,” IEEE Trans. Med. Imaging 20, 9991008 (2001).
http://dx.doi.org/10.1109/42.959297
10.
10. J. O’Sullivan and J. Benac, “Alternating minimization algorithms for transmission tomography,” IEEE Trans. Med. Imaging 26, 283297 (2007).
http://dx.doi.org/10.1109/TMI.2006.886806
11.
11. E. Van de Casteele, D. Van Dyck, J. Sijbers, and E. Raman, “An energy-based beam hardening model in tomography,” Phys. Med. Biol. 47, 41814190 (2002).
http://dx.doi.org/10.1088/0031-9155/47/23/305
12.
12. G. Herman, “Correction for beam hardening in computed tomography,” Phys. Med. Biol. 24, 81106 (1979).
http://dx.doi.org/10.1088/0031-9155/24/1/008
13.
13. M. Kachelriess, K. Sourbelle, and W. Kalender, “Empirical cupping correction: a first-order raw data precorrection for cone-beam computed tomography,” Med. Phys. 33, 12691274 (2006).
http://dx.doi.org/10.1118/1.2188076
14.
14. Y. Censor, T. Elfving, and G. Herman, “A method of iterative data refinement and its applications,” Math. Models Meth. Appl. Sci. 7, 108123 (1985).
15.
15. P. Joseph and R. Spital, “A method for correcting bone induced artifacts in computed tomography scanners,” J. Comput. Assist. Tomogr. 2, 100109 (1978).
http://dx.doi.org/10.1097/00004728-197801000-00017
16.
16. G. Herman and S. Trivedi, “A comparative study of two postreconstruction beam hardening correction methods,” IEEE Trans. Med. Imaging 2, 128135 (1983).
http://dx.doi.org/10.1109/TMI.1983.4307626
17.
17. P. Kijewski and B. Bjärngard, “Correction for beam hardening in computed tomography,” Med. Phys. 5, 209214 (1978).
http://dx.doi.org/10.1118/1.594429
18.
18. P. Joseph and C. Ruth, “A method for simultaneous correction of spectrum hardening artifacts in CT images containing both bone and iodine,” Med. Phys. 24, 16291634 (1997).
http://dx.doi.org/10.1118/1.597970
19.
19. J. Hsieh, R. Molthen, C. Dawson, and R. Johnson, “An iterative approach to the beam hardening correction in cone beam CT,” Med. Phys. 27, 2329 (2000).
http://dx.doi.org/10.1118/1.598853
20.
20. V. Vedula and P. Munshi, “An improved algorithm for beam-hardening corrections in experimental x-ray tomography,” NDT & E Int. 41, 2531 (2008).
http://dx.doi.org/10.1016/j.ndteint.2007.06.002
21.
21. J. Meagher, C. Mote, and H. Skinner, “CT image correction for beam hardening using simulated projection data,” IEEE Trans. Nucl. Sci. 37, 15201524 (1990).
http://dx.doi.org/10.1109/23.55865
22.
22. T. Fuchs, “Strahlaufhärtungskorrekturen in der computer-tomographie,” Ph.D. thesis, Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany, 1998.
23.
23. E. Van de Casteele, D. Van Dyck, J. Sijbers, and E. Raman, “A model-based correction method for beam hardening artefacts in x-ray microtomography,” J. X-ray Sci. Technol. 12, 4357 (2004).
24.
24. H. Gao, L. Zhang, Z. Chen, Y. Xing, and L. Shuanglei, “Beam hardening correction for middle-energy industrial computerized tomography,” IEEE Trans. Nucl. Sci. 53, 27962807 (2006).
http://dx.doi.org/10.1109/TNS.2006.879825
25.
25. X. Mou, S. Tang, and H. Yu, “Comparison on beam hardening correction of CT based on H-L consistency and normal water phantom experiment,” Proc. SPIE6318, 63181V (2006).
26.
26. M. Krumm, S. Kasperl, and M. Franz, “Reducing non-linear artifacts of multi-material objects in industrial 3D computed tomography,” Nondestr. Test. Eval. 41, 242251 (2008).
27.
27. O. Nalcioglu and R. Lou, “Post-reconstruction method for beam hardening in computerised tomography,” Phys. Med. Biol. 24, 333340 (1979).
http://dx.doi.org/10.1088/0031-9155/24/2/009
28.
28. L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. 1, 612619 (1984).
http://dx.doi.org/10.1364/JOSAA.1.000612
29.
29. A. Katsevitch, “Theoretically exact filtered backprojection-type inversion algorithm for spiral CT,” SIAM J. Appl. Math. 62, 20122026 (2002).
http://dx.doi.org/10.1137/S0036139901387186
30.
30. J. A. Hartigan, Clustering Algorithms (John Wiley & Sons, New York, 1975).
31.
31. H. Hudson and R. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging 13, 601609 (1994).
http://dx.doi.org/10.1109/42.363108
32.
32. R. Birch, M. Marshall, and G. Adran, Catalogue of Spectral Data for Diagnostic X-Rays (The Hospital Physicists’ Association, London, 1979).
33.
33. International Commission on Radiation Units and Measurements, “Tissue substitutes in radiation dosimetry and measurement,” ICRU Report No. 44 (ICRU Publications, Bethesda, MD, 1989).
34.
34. K. Batenburg and J. Sijbers, “Optimal threshold selection for tomogram segmentation by projection distance minimization,” IEEE Trans. Med. Imaging 28, 676686 (2009).
http://dx.doi.org/10.1109/TMI.2008.2010437
35.
35. A. De Pierro, “A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography,” IEEE Trans. Med. Imaging 14, 132137 (1995).
http://dx.doi.org/10.1109/42.370409
36.
36. J. Nuyts, S. Stroobants, P. Dupont, S. Vleugels, P. Flamen, and L. Mortelmans, “Reducing loss of image quality because of the attenuation artifact in uncorrected PET whole-body images,” J. Nucl. Med. 43, 10541062 (2002).
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/38/S1/10.1118/1.3577758
Loading
/content/aapm/journal/medphys/38/S1/10.1118/1.3577758
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/38/S1/10.1118/1.3577758
2011-07-20
2016-08-27

Abstract

Purpose:

To reduce beam hardening artifacts in CT in case of an unknown x-ray spectrum and unknown material properties.

Methods:

The authors assume that the object can be segmented into a few materials with different attenuation coefficients, and parameterize the spectrum using a small number of energy bins. The corresponding unknown spectrum parameters and material attenuation values are estimated by minimizing the difference between the measured sinogram data and a simulated polychromatic sinogram. Three iterative algorithms are derived from this approach: two reconstruction algorithms IGR and IFR, and one sinogram precorrection method ISP.

Results:

The methods are applied on real x-ray data of a high and a low-contrast phantom. All three methods successfully reduce the cupping artifacts caused by the beam polychromaticity in such a way that the reconstruction of each homogeneous region is to good accuracy homogeneous, even in case the segmentation of the preliminary reconstruction image is poor. In addition, the results show that the three methods tolerate relatively large variations in uniformity within the segments.

Conclusions:

We show that even without prior knowledge about materials or spectrum, effective beam hardening correction can be obtained.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/38/S1/1.3577758.html;jsessionid=1I_Wk1IZkTI8fx4My4HDCQrS.x-aip-live-06?itemId=/content/aapm/journal/medphys/38/S1/10.1118/1.3577758&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/38/S1/10.1118/1.3577758&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/38/S1/10.1118/1.3577758'
Right1,Right2,Right3,