1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Dosimetry of 125I and 103Pd COMS eye plaques for intraocular tumors: Report of Task Group 129 by the AAPM and ABS
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/39/10/10.1118/1.4749933
1.
1. R. Moore, “Choroidal sarcoma treated by the intraocular insertion of radon seeds,” Br. J. Ophthalmol. 14, 145156 (1930).
http://dx.doi.org/10.1136/bjo.14.4.145
2.
2. H. B. Stallard, “Radiotherapy for malignant melanoma of the choroid,” Br. J. Ophthalmol. 50, 147155 (1966).
http://dx.doi.org/10.1136/bjo.50.3.147
3.
3. P. T. Finger, “Radiation therapy for choroidal melanoma,” Surv. Ophthalmol. 42, 215232 (1997).
http://dx.doi.org/10.1016/S0039-6257(97)00088-X
4.
4. K. Leonard, E. Bannon, J. Mignano, J. Duker, N. Gagne, and M. Rivard, “Eye plaque brachytherapy for the treatment of uveal melanoma: The 2010 Tufts Medical Center experience,” Int. J. Radiat. Oncol., Biol. Phys. 78S, S268 (2010).
http://dx.doi.org/10.1016/j.ijrobp.2010.07.638
5.
5. E. S. Gragoudas, M. Goitein, A. M. Koehler, L. Verhey, J. Tepper, H. D. Suit, R. Brockhurst, and I. J. Constable, “Proton irradiation of small choroidal malignant melanomas,” Am. J. Ophthalmol. 83, 665673 (1977).
6.
6. E. S. Gragoudas, M. Goitein, L. Verhey, J. Munzenreider, M. Urie, H. Suit, and A. Koehler, “Proton beam irradiation of uveal melanomas. Results of 5 1/2-year study,” Arch. Ophthalmol. 100, 928934 (1982).
http://dx.doi.org/10.1001/archopht.1982.01030030936007
7.
7. E. S. Gragoudas, A. M. Lane, J. Munzenrider, K. M. Egan, and W. Li, “Long-term risk of local failure after proton therapy for choroidal/ciliary body melanoma,” Trans. Am. Ophthalmol. Soc. 100, 4348 (discussion 48–49) (2002).
8.
8. J. L. Hungerford, A. J. Foss, I. Whelahan, R. D. Errington, A. Kacperek, and J. Kongerud, “Side effects of photon and proton radiotherapy for ocular melanoma,” Front. Radiat. Ther. Oncol. 30, 287293 (1997).
9.
9. M. W. Wilson and J. L. Hungerford, “Comparison of episcleral plaque and proton beam radiation therapy for the treatment of choroidal melanoma,” Ophthalmology 106, 15791587 (1999).
http://dx.doi.org/10.1016/S0161-6420(99)90456-6
10.
10. D. H. Char, S. M. Kroll, and J. Castro, “Ten-year follow-up of helium ion therapy for uveal melanoma,” Am. J. Ophthalmol. 125, 8189 (1998).
http://dx.doi.org/10.1016/S0002-9394(99)80238-4
11.
11. C. M. Schirmer, M. Chan, J. Mignano, J. Duker, C. S. Melhus, L. B. Williams, J. K. Wu, and K. C. Yao, “Dose de-escalation with gamma knife radiosurgery in the treatment of choroidal melanoma,” Int. J. Radiat. Oncol., Biol., Phys. 75, 170176 (2009).
http://dx.doi.org/10.1016/j.ijrobp.2008.10.077
12.
12. P. T. Finger, K. J. Chin, G. P. Yu, and N. S. Patel, “Risk factors for cataract after palladium-103 ophthalmic plaque radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 80, 800806 (2010).
http://dx.doi.org/10.1016/j.ijrobp.2010.02.051
13.
13. P. T. Finger, “Tumour location affects the incidence of cataract and retinopathy after ophthalmic plaque radiation therapy,” Br. J. Ophthalmol. 84, 10681070 (2000).
http://dx.doi.org/10.1136/bjo.84.9.1068
14.
14. P. Finger and A. Murphree, “Ophthalmic brachytherapy: Treatment of choroidal melanoma and retinoblastoma,” in Vitreoretinal Surgical Techniques, edited by G. Peyman, S. Meffert, M. Conway, and F. Chou (Martin Dunitz, London, 2001), pp. 403418.
15.
15. Collaborative Ocular Melanoma Study Group, “Design and methods of a clinical trial for a rare condition: The Collaborative Ocular Melanoma Study: COMS Report No. 3,” Control Clin. Trials 14, 362391 (1993).
http://dx.doi.org/10.1016/0197-2456(93)90052-F
16.
16. B. S. Hawkins, “The Collaborative Ocular Melanoma Study (COMS) randomized trial of pre-enucleation radiation of large choroidal melanoma: IV. Ten-year mortality findings and prognostic factors: COMS Report No. 24,” Am. J. Ophthalmol. 138, 936951 (2004).
http://dx.doi.org/10.1016/j.ajo.2004.07.006
17.
17. J. Earle, R. W. Kline, and D. M. Robertson, “Selection of iodine 125 for the Collaborative Ocular Melanoma Study,” Arch. Ophthalmol. 105, 763764 (1987).
http://dx.doi.org/10.1001/archopht.1987.01060060049030
18.
18. S. Packer, S. Stoller, M. L. Lesser, F. S. Mandel, and P. T. Finger, “Long-term results of iodine 125 irradiation of uveal melanoma,” Ophthalmology 99, 767773 (discussion 774) (1992).
19.
19. Collaborative Ocular Melanoma Study Group, “The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma: V. Twelve-year mortality rates and prognostic factors: COMS Report No. 28,” Arch. Ophthalmol. 124, 16841693 (2006).
http://dx.doi.org/10.1001/archopht.124.12.1684
20.
20. R. W. Kline and J. Earle, “Implications of TG-43 for dose prescription and calculation for I-125 eye plaques,” Med. Phys. 23, 1054 (1996).
21.
21. W. Hanson, “Implementation of the new I-125 standard and TG-43 recommendations in a cooperative clinical trial,” Med. Phys. 23, 1054 (1996).
22.
22. S. K. Ray, R. Bhatnagar, W. F. Hartsell, and G. R. Desai, “Review of eye plaque dosimetry based on AAPM Task Group 43 recommendations. American Association of Physicists in Medicine,” Int. J. Radiat. Oncol., Biol., Phys. 41, 701706 (1998).
http://dx.doi.org/10.1016/S0360-3016(97)00568-3
23.
23. R. Nath, L. L. Anderson, G. Luxton, K. A. Weaver, J. F. Williamson, and A. S. Meigooni, “Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. American Association of Physicists in Medicine,” Med. Phys. 22, 209234 (1995)
http://dx.doi.org/10.1118/1.597458
23.R. Nath, L. L. Anderson, G. Luxton, K. A. Weaver, J. F. Williamson, and A. S. Meigooni, [see comment: erratum appears in Med. Phys. 23(9), 1579 (1996)].
http://dx.doi.org/10.1118/1.597889
24.
24. Collaborative Ocular Melanoma Study Group, “Radiation therapy,” in COMS Manual of Procedures PB95-179693, edited by N. T. I. Service (National Technical Information Service, Springfield, VA, 1995), Chap. 12.
25.
25. R. W. Kline and P. D. Yeakel, “Ocular melanoma, I-125 plaques,” Med. Phys. 14, 475 (1987).
26.
26. S. T. Chiu-Tsao, L. L. Anderson, K. O’Brien, L. Stabile, and J. C. Liu, “Dosimetry for 125I seed (model 6711) in eye plaques,” Med. Phys. 20, 383389 (1993).
http://dx.doi.org/10.1118/1.597164
27.
27. M. J. Rivard, B. M. Coursey, L. A. DeWerd, W. F. Hanson, M. S. Huq, G. S. Ibbott, M. G. Mitch, R. Nath, and J. F. Williamson, “Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations,” Med. Phys. 31, 633674 (2004)
http://dx.doi.org/10.1118/1.1646040
27.M. J. Rivard, B. M. Coursey, L. A. DeWerd, W. F. Hanson, M. S. Huq, G. S. Ibbott, M. G. Mitch, R. Nath, and J. F. Williamson, [see comment: erratum appears in Med. Phys. 31(12), 35323533 (2004)].
http://dx.doi.org/10.1118/1.1812603
28.
28. J. F. Williamson, B. M. Coursey, L. A. DeWerd, W. F. Hanson, R. Nath, and G. Ibbott, “Guidance to users of Nycomed Amersham and North American Scientific, Inc., I-125 interstitial sources. Dosimetry and calibration changes: Recommendations of the American Association of Physicists in Medicine Radiation Therapy Committee Ad Hoc Subcommittee on low-energy seed dosimetry,” Med. Phys. 26, 570573 (1999).
http://dx.doi.org/10.1118/1.598570
29.
29. S. M. Seltzer, P. J. Lamperti, R. Loevinger, C. G. Soares, and J. T. Weaver, “New NIST air-kerma strength standards for I-125 and Pd-103 brachytherapy seeds,” Med. Phys. 25, A170 (1998).
30.
30. M. J. Rivard, W. M. Butler, L. A. DeWerd, M. S. Huq, G. S. Ibbott, A. S. Meigooni, C. S. Melhus, M. G. Mitch, R. Nath, and J. F. Williamson, “Supplement to the 2004 update of the AAPM Task Group No. 43 Report,” Med. Phys. 34, 21872205 (2007).
http://dx.doi.org/10.1118/1.2736790
31.
31. R. E. Taylor and D. W. Rogers, “An EGSnrc Monte Carlo-calculated database of TG-43 parameters,” Med. Phys. 35, 42284241 (2008).
http://dx.doi.org/10.1118/1.2965360
32.
32. J. Dolan, Z. Lia, and J. F. Williamson, “Monte Carlo and experimental dosimetry of an 125I brachytherapy seed,” Med. Phys. 33, 46754684 (2006).
http://dx.doi.org/10.1118/1.2388158
33.
33. J. I. Monroe and J. F. Williamson, “Monte Carlo-aided dosimetry of the theragenics TheraSeed model 200 103Pd interstitial brachytherapy seed,” Med. Phys. 29, 609621 (2002).
http://dx.doi.org/10.1118/1.1460876
34.
34. M. J. Rivard, “Monte Carlo radiation dose simulations and dosimetric comparison of the model 6711 and 9011 125I brachytherapy sources,” Med. Phys. 36, 486491 (2009).
http://dx.doi.org/10.1118/1.3056463
35.
35. R. E. Taylor and D. W. Rogers, “More accurate fitting of 125I and 103Pd radial dose functions,” Med. Phys. 35, 42424250 (2008).
http://dx.doi.org/10.1118/1.2964097
36.
36. J. F. Williamson, W. Butler, L. A. Dewerd, M. S. Huq, G. S. Ibbott, M. G. Mitch, R. Nath, M. J. Rivard, D. Todor, “Recommendations of the American Association of Physicists in Medicine regarding the impact of implementing the 2004 Task Group 43 report on dose specification for 103Pd and 125I interstitial brachytherapy,” Med. Phys. 32, 14241439 (2005).
http://dx.doi.org/10.1118/1.1884925
37.
37. J. F. Williamson, B. M. Coursey, L. A. DeWerd, W. F. Hanson, R. Nath, M. J. Rivard, and G. Ibbott, “Recommendations of the American Association of Physicists in Medicine on 103Pd interstitial source calibration and dosimetry: Implications for dose specification and prescription,” Med. Phys. 27, 634642 (2000).
http://dx.doi.org/10.1118/1.598923
38.
38. S. Nag, J. M. Quivey, J. D. Earle, D. Followill, J. Fontanesi, and P. T. Finger, “The American Brachytherapy Society recommendations for brachytherapy of uveal melanomas,” Int. J. Radiat. Oncol., Biol., Phys. 56, 544555 (2003).
http://dx.doi.org/10.1016/S0360-3016(03)00006-3
39.
39. M. Rotman, S. Packer, J. L. Bosworth, and S. T. Chiu-Tsao, “125I ophthalmic applicators in the treatment of choroidal melanoma,” Int. J. Radiat. Oncol., Biol., Phys. 10(2), 107108 (1984).
http://dx.doi.org/10.1016/0360-3016(84)90717-X
40.
40. C. Karolis, R. B. Frost, and F. A. Billson, “A thin I-125 seed eye plaque to treat intraocular tumors using an acrylic insert to precisely position the sources,” Int. J. Radiat. Oncol., Biol., Phys. 18, 12091213 (1990).
http://dx.doi.org/10.1016/0360-3016(90)90459-W
41.
41. J. C. Hill, R. Sealy, D. Shackleton, C. Stannard, J. Korrubel, E. Hering, and C. Loxton, “Improved iodine-125 plaque design in the treatment of choroidal malignant melanoma,” Br. J. Ophthalmol. 76, 9194 (1992).
http://dx.doi.org/10.1136/bjo.76.2.91
42.
42. R. Sealy, P. L. le Roux, F. Rapley, E. Hering, D. Shackleton, and D. Sevel, “The treatment of ophthalmic tumours with low-energy sources,” Br. J. Radiol. 49, 551554 (1976).
http://dx.doi.org/10.1259/0007-1285-49-582-551
43.
43. M. A. Astrahan, G. Luxton, Q. Pu, and Z. Petrovich, “Conformal episcleral plaque therapy,” Int. J. Radiat. Oncol., Biol., Phys. 39, 505519 (1997).
http://dx.doi.org/10.1016/S0360-3016(97)00118-1
44.
44. W. G. Cross, J. Hokkanen, H. Jarvinen, F. Mourtada, P. Sipila, C. G. Soares, and S. Vynckier, “Calculation of beta-ray dose distributions from ophthalmic applicators and comparison with measurements in a model eye,” Med. Phys. 28, 13851396 (2001).
http://dx.doi.org/10.1118/1.1376442
45.
45. C. G. Soares, S. Vynckier, H. Jarvinen, W. G. Cross, P. Sipila, D. Fluhs, B. Schaeken, F. A. Mourtada, G. A. Bass, and T. T. Williams, “Dosimetry of beta-ray ophthalmic applicators: Comparison of different measurement methods,” Med. Phys. 28, 13731384 (2001).
http://dx.doi.org/10.1118/1.1376441
46.
46. S. Nag, D. Wang, H. Wu, C. J. Bauer, R. B. Chambers, and F. H. Davidorf, “Custom-made “Nag” eye plaques for 125I brachytherapy,” Int. J. Radiat. Oncol., Biol., Phys. 56, 13731380 (2003).
http://dx.doi.org/10.1016/S0360-3016(03)00324-9
47.
47. C. L. Shields, M. Naseripour, J. Cater, J. A. Shields, H. Demirci, A. Youseff, and J. Freire, “Plaque radiotherapy for large posterior uveal melanomas (> or = 8-mm thick) in 354 consecutive patients,” Ophthalmology 109, 18381849 (2002).
http://dx.doi.org/10.1016/S0161-6420(02)01181-8
48.
48. I. Puusaari, J. Heikkonen, and T. Kivela, “Effect of radiation dose on ocular complications after iodine brachytherapy for large uveal melanoma: Empirical data and simulation of collimating plaques,” Invest. Ophthalmol. Visual Sci. 45, 34253434 (2004).
http://dx.doi.org/10.1167/iovs.04-0066
49.
49. D. Granero, J. Perez-Calatayud, F. Ballester, E. Casal, and J. M. de Frutos, “Dosimetric study of the 15 mm ROPES eye plaque,” Med. Phys. 31, 33303336 (2004).
http://dx.doi.org/10.1118/1.1812605
50.
50. M. A. Astrahan, A. Szechter, and P. T. Finger, “Design and dosimetric considerations of a modified COMS plaque: The reusable “seed-guide” insert,” Med. Phys. 32, 27062716 (2005).
http://dx.doi.org/10.1118/1.1993828
51.
51. P. T. Finger, “Finger's “slotted” eye plaque for radiation therapy: Treatment of juxtapapillary and circumpapillary intraocular tumours,” Br. J. Ophthalmol. 91, 891894 (2007).
http://dx.doi.org/10.1136/bjo.2007.114082
52.
52. G. Luxton, M. A. Astrahan, P. E. Liggett, D. L. Neblett, D. M. Cohen, and Z. Petrovich, “Dosimetric calculations and measurements of gold plaque ophthalmic irradiators using iridium-192 and iodine-125 seeds,” Int. J. Radiat. Oncol., Biol., Phys. 15, 167176 (1988).
http://dx.doi.org/10.1016/0360-3016(88)90362-8
53.
53. R. M. Thomson, K. M. Furutani, J. S. Pulido, S. L. Stafford, and D. W. O. Rogers, “Modified COMS plaques for 125I and 103Pd iris melanoma brachytherapy,” Int. J. Radiat. Oncol., Biol., Phys. 78, 12611269 (2010).
http://dx.doi.org/10.1016/j.ijrobp.2009.12.002
54.
54. S. Packer and M. Rotman, “Radiotherapy of choroidal melanoma with iodine-125,” Ophthalmology 87, 582590 (1980).
55.
55. M. C. Schell, K. A. Weaver, T. L. Phillips, D. H. Char, J. M. Quivey, C. Barnett, and C. C. Ling, “Design of iodine-125 eye plaques for radiation therapy,” Endocurie Hypertherm Oncol. 5, 8390 (1989).
56.
56. A. K. Vine, R. K. Randall, K. TenHaken, R. F. Diaz, B. B. Maxson, and A. S. Lichter, “A new inexpensive customized plaque for choroidal melanoma iodine-125 plaque therapy,” Ophthalmology 96, 543546 (1989).
57.
57. P. T. Finger, K. J. Chin, and L. B. Tena, “A five-year study of slotted plaque radiation therapy for choroidal melanoma: Near, touching or surrounding the optic nerve,” Ophthalmology 119, 415422 (2012).
http://dx.doi.org/10.1016/j.ophtha.2011.08.017
59.
59. R. M. Thomson, R. E. Taylor, and D. W. O. Rogers, “Monte Carlo dosimetry for 125I and 103Pd eye plaque brachytherapy,” Med. Phys. 35, 55305543 (2008).
http://dx.doi.org/10.1118/1.3002412
60.
60. A. Wu and F. Krasin, “Film dosimetry analyses on the effect of gold shielding for iodine-125 eye plaque therapy for choroidal melanoma,” Med. Phys. 17, 843846 (1990).
http://dx.doi.org/10.1118/1.596556
61.
61. R. W. Kline, “Notes regarding seed coordinates for COMS eye plaques,” 2011, see http://rpc.mdanderson.org/rpc/credentialing/Notes - COMS Eye Plaques 2002.doc.
62.
62. A. de la Zerda, S. T. Chiu-Tsao, J. Lin, L. L. Boulay, I. Kanna, J. H. Kim, and H. S. Tsao, “125I eye plaque dose distribution including penumbra characteristics,” Med. Phys. 23, 407418 (1996).
http://dx.doi.org/10.1118/1.597803
63.
63. K. A. Weaver, “The dosimetry of 125I seed eye plaques,” Med. Phys. 13, 7883 (1986).
http://dx.doi.org/10.1118/1.595926
64.
64. A. N. Harnett and E. S. Thomson, “An iodine-125 plaque for radiotherapy of the eye: Manufacture and dosimetric considerations,” Br. J. Radiol. 61, 835838 (1988).
http://dx.doi.org/10.1259/0007-1285-61-729-835
65.
65. W. Alberti, B. Pothmann, P. Tabor, K. Muskalla, K. P. Hermann, and D. Harder, “Dosimetry and physical treatment planning for iodine eye plaque therapy,” Int. J. Radiat. Oncol., Biol., Phys. 20, 10871092 (1991).
http://dx.doi.org/10.1016/0360-3016(91)90209-M
66.
66. A. Wu, E. S. Sternick, and D. J. Muise, “Effect of gold shielding on the dosimetry of an 125I seed at close range,” Med. Phys. 15, 627628 (1988).
http://dx.doi.org/10.1118/1.596218
67.
67. S. T. Chiu-Tsao, L. Bouley, I. Kanna, A. Zerda, and J. H. Kim, “Dose distribution in the eye for 103Pd COMS eye plaque,” Med. Phys. 22, 923 (1995).
68.
68. J. Cygler, J. Szanto, M. Soubra, and D. W. Rogers, “Effects of gold and silver backings on the dose rate around an 125I seed,” Med. Phys. 17, 172178 (1990).
http://dx.doi.org/10.1118/1.596588
69.
69. J. A. Meli and K. A. Motakabbir, “The effect of lead, gold, and silver backings on dose near 125I seeds,” Med. Phys. 20, 12511256 (1993).
http://dx.doi.org/10.1118/1.597166
70.
70. S. Knutsen, R. Hafslund, O. R. Monge, H. Valen, L. P. Muren, B. L. Rekstad, J. Krohn, and O. Dahl, “Dosimetric verification of a dedicated 3D treatment planning system for episcleral plaque therapy,” Int. J. Radiat. Oncol., Biol., Phys. 51, 11591166 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)01768-0
71.
71. M. P. Casebow, “The calculation and measurement of exposure distributions from 60 Co ophthalmic applicators,” Br. J. Radiol. 44, 618624 (1971).
http://dx.doi.org/10.1259/0007-1285-44-524-618
72.
72. G. Taccini, F. Cavagnetto, G. Coscia, S. Garelli, and A. Pilot, “The determination of dose characteristics of ruthenium ophthalmic applicators using radiochromic film,” Med. Phys. 24, 20342037 (1997).
http://dx.doi.org/10.1118/1.598117
73.
73. A. Krintz, W. F. Hanson, G. S. Ibbott, and D. S. Followill, “Verification of plaque simulator dose distributions using radiochromic film,” Med. Phys. 29, 12201221 (2002, abstract).
http://dx.doi.org/10.1118/1.1496319
74.
74. A. L. Krintz, W. F. Hanson, G. S. Ibbott, and D. S. Followill, “A reanalysis of the Collaborative Ocular Melanoma Study Medium Tumor Trial eye plaque dosimetry,” Int. J. Radiat. Oncol., Biol., Phys. 56, 889898 (2003).
http://dx.doi.org/10.1016/S0360-3016(03)00211-6
75.
75. H. Acar, “Verification of Plaque Simulator dose distributions using GAFCHROMIC® EBT film,” Türk Onkoloji Dergisi 25, 150156 (2010).
76.
76. D. Fluhs, M. Heintz, F. Indenkampen, and C. Wieczorek, “Direct reading measurement of absorbed dose with plastic scintillators: The general concept and applications to ophthalmic plaque dosimetry,” Med. Phys. 23, 427304 (1996).
http://dx.doi.org/10.1118/1.597736
77.
77. A. S. Kirov, J. Z. Piao, N. K. Mathur, T. R. Miller, S. Devic, S. Trichter, M. Zaider, C. G. Soares, and T. LoSasso, “The three-dimensional scintillation dosimetry method: Test for a 106Ru eye plaque applicator,” Phys. Med. Biol. 50, 30633081 (2005).
http://dx.doi.org/10.1088/0031-9155/50/13/007
78.
78. M. F. Chan, A. Y. Fung, Y. C. Hu, C. S. Chui, H. Amols, M. Zaider, and D. Abramson, “The measurement of three dimensional dose distribution of a ruthenium-106 ophthalmological applicator using magnetic resonance imaging of BANG polymer gels,” J. Appl. Clin. Med. Phys. 2, 8589 (2001).
http://dx.doi.org/10.1120/1.1351776
79.
79. M. A. Astrahan, “Improved treatment planning for COMS eye plaques,” Int. J. Radiat. Oncol., Biol., Phys. 61, 12271242 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2004.09.062
80.
80. J. Hokkanen, J. Heikkonen, and P. Holmberg, “Theoretical calculations of dose distributions for beta-ray eye applicators,” Med. Phys. 24, 211213 (1997).
http://dx.doi.org/10.1118/1.597927
81.
81. B. Chan, M. Rotman, and G. J. Randall, “Computerized dosimetry of 60Co ophthalmic applicators,” Radiology 103, 705707 (1972).
82.
82. C. S. Melhus and M. J. Rivard, “COMS eye plaque brachytherapy dosimetry simulations for 103Pd, 125I, and 131Cs,” Med. Phys. 35, 33643371 (2008).
http://dx.doi.org/10.1118/1.2940604
83.
83. R. M. Thomson and D. W. O. Rogers, “Monte Carlo dosimetry for 125I and 103Pd eye plaque brachytherapy with various seed models,” Med. Phys. 37, 368376 (2010).
http://dx.doi.org/10.1118/1.3271104
84.
84. S. T. Chiu-Tsao, K. O’Brien, R. Sanna, H. S. Tsao, C. Vialotti, Y. S. Chang, M. Rotman, and S. Packer, “Monte Carlo dosimetry for 125I and 60Co in eye plaque therapy,” Med. Phys. 13, 678682 (1986).
http://dx.doi.org/10.1118/1.595949
85.
85. F. Mourtada, N. Koch, and W. Newhauser, “106Ru/106Rh plaque and proton radiotherapy for ocular melanoma: A comparative dosimetric study,” Radiat. Prot. Dosimetry 116, 454460 (2005).
http://dx.doi.org/10.1093/rpd/nci266
86.
86. H. Zhang, D. Martin, S. T. Chiu-Tsao, A. Meigooni, and B. R. Thomadsen, “A comprehensive dosimetric comparison between 131Cs and 125I brachytherapy sources for COMS eye plaque implant,” Brachytherapy 9, 362372 (2010).
http://dx.doi.org/10.1016/j.brachy.2009.07.007
87.
87. K. Gifford, S. Kirsner, J. Horton, T. Wareing, and F. Mourtada, “Calculation of the dose distribution around a commercially available 125I brachytherapy source via a multi-group discrete ordinates,” Med. Phys. 34, 2550 (2007).
http://dx.doi.org/10.1118/1.2761355
88.
88. J. Bristol, “Comparison of eye plaque dosimetry using deterministic and Monte Carlo methods,” M.S. thesis, Oregon State University, 2010.
89.
89. M. J. Rivard, C. S. Melhus, S. Sioshansi, and J. Morr, “The impact of prescription depth, dose rate, plaque size, and source loading on the central axis using 103Pd, 125I, and 131Cs,” Brachytherapy 7, 327335 (2008).
http://dx.doi.org/10.1016/j.brachy.2008.05.002
90.
90. M. J. Rivard, S.-T. Chiu-Tsao, P. T. Finger, A. S. Meigooni, C. S. Melhus, F. Mourtada, M. E. Napolitano, D. W. O. Rogers, R. M. Thomson, and R. Nath, “Comparison of dose calculation methods for brachytherapy of intraocular tumors,” Med. Phys. 38, 306316 (2011).
http://dx.doi.org/10.1118/1.3523614
91.
91. G. Luxton, M. A. Astrahan, and Z. Petrovich, “Backscatter measurements from a single seed of 125I for opthalmic plaque dosimetry,” Med. Phys. 15, 397400 (1988).
http://dx.doi.org/10.1118/1.596238
92.
92. M. J. Rivard, C. S. Melhus, D. Granero, J. Perez-Calatayud, and F. Ballester, “An approach to using conventional brachytherapy software for clinical treatment planning of complex, Monte Carlo-based brachytherapy dose distributions,” Med. Phys. 36, 19681975 (2009).
http://dx.doi.org/10.1118/1.3121510
93.
93. M. J. Rivard, L. Beaulieu, and F. Mourtada, “Enhancements to commissioning techniques and quality assurance of brachytherapy treatment planning systems that use model-based dose calculation algorithms,” Med. Phys. 37, 26452658 (2010).
http://dx.doi.org/10.1118/1.3429131
94.
94. A. Carlsson Tedgren and A. Ahnesjo, “Optimization of the computational efficiency of a 3D, collapsed cone dose calculation algorithm for brachytherapy,” Med. Phys. 35, 16111618 (2008).
http://dx.doi.org/10.1118/1.2889777
95.
95. A. K. Tedgren and A. Ahnesjo, “Accounting for high Z shields in brachytherapy using collapsed cone superposition for scatter dose calculation,” Med. Phys. 30, 22062217 (2003).
http://dx.doi.org/10.1118/1.1587411
96.
96. B. R. Thomadsen, J. F. Williamson, M. J. Rivard, and A. S. Meigooni, “Anniversary paper: Past and current issues, and trends in brachytherapy physics,” Med. Phys. 35, 47084723 (2008).
http://dx.doi.org/10.1118/1.2981826
97.
97. M. J. Rivard, J. L. Venselaar, and L. Beaulieu, “The evolution of brachytherapy treatment planning,” Med. Phys. 36, 21362153 (2009).
http://dx.doi.org/10.1118/1.3125136
98.
98. M. J. Rivard, W. M. Butler, P. M. Devlin, J. K. Hayes Jr., R. A. Hearn, E. P. Lief, A. S. Meigooni, G. S. Merrick, and J. F. Williamson, “American Brachytherapy Society recommends no change for prostate permanent implant dose prescriptions using iodine-125 or palladium-103,” Brachytherapy 6, 3437 (2007).
http://dx.doi.org/10.1016/j.brachy.2006.11.001
102.
102. M. D. Evans, M. A. Astrahan, and R. Bate, “Tumor localization using fundus view photography for episcleral plaque therapy,” Med. Phys. 20, 769775 (1993).
http://dx.doi.org/10.1118/1.597031
103.
103. A. G. Kepka, P. M. Johnson, and R. W. Kline, “The generalized geometry of eye plaque therapy,” Med. Phys. 15, 375379 (1988).
http://dx.doi.org/10.1118/1.596234
104.
104. M. A. Astrahan, G. Luxton, G. Jozsef, T. D. Kampp, P. E. Liggett, M. D. Sapozink, and Z. Petrovich, “An interactive treatment planning system for ophthalmic plaque radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 18, 679687 (1990).
http://dx.doi.org/10.1016/0360-3016(90)90077-W
105.
105. S. Chiu-Tsao, “Episcleral eye plaques for treatment of intraocular malignancies,” in Brachytherapy Physics, edited by B. Thomadsen, M. Rivard, and W. Butler (Medical Physics Publishing, Madison, WI, 2005), pp. 673705.
106.
106. Collaborative Ocular Melanoma Study Group, “Echography (ultrasound) procedures for the Collaborative Ocular Melanoma Study Report No. 12,” J. Ophthalmic Nurs. Technol. 18, 219232 (1999).
107.
107. J. M. Romero, P. T. Finger, R. B. Rosen, and R. Iezzi, “Three-dimensional ultrasound for the measurement of choroidal melanomas,” Arch. Ophthalmol. 119, 12751282 (2001).
http://dx.doi.org/10.1001/archopht.119.9.1275
108.
108. P. Schueller, A. Dogan, J. E. Panke, O. Micke, and N. Willich, “Does the imaging method have an influence on the measured tumor height in ruthenium plaque therapy of uveal melanoma?Strahlenther. Onkol. 181, 320325 (2005).
http://dx.doi.org/10.1007/s00066-005-1342-6
109.
109. P. V. Houdek, J. G. Schwade, A. J. Medina, C. A. Poole, K. R. Olsen, D. H. Nicholson, S. Byrne, R. Quencer, R. S. Hinks, and V. Pisciotta, “MR technique for localization and verification procedures in episcleral brachytherapy,” Int. J. Radiat. Oncol., Biol., Phys. 17, 11111114 (1989).
http://dx.doi.org/10.1016/0360-3016(89)90165-X
110.
110. Collaborative Ocular Melanoma Study Group, “Examination procedures,” in COMS manual of Procedures PB95-179693, edited by N. T. I. Service (National Technical Information Service, Springfield, VA, 1995), Chap. 9.
111.
111. T. A. Rice, “personal communication” (1987).
112.
112. R. W. Kline, “personal communication” (1987).
114.
114. M. M. Goodsitt, P. L. Carson, S. Witt, D. L. Hykes, and J. M. Kofler Jr., “Real-time B-mode ultrasound quality control test procedures: Report of AAPM Ultrasound Task Group No. 1,” Med. Phys. 25, 13851406 (1998).
http://dx.doi.org/10.1118/1.598404
115.
115. W. M. Butler, W. S. Bice Jr., L. A. DeWerd, J. M. Hevezi, M. S. Huq, G. S. Ibbott, J. R. Palta, M. J. Rivard, J. P. Seuntjens, and B. R. Thomadsen, “Third-party brachytherapy source calibrations and physicist responsibilities: Report of the AAPM Low Energy Brachytherapy Source Calibration Working Group,” Med. Phys. 35, 38603865 (2008).
http://dx.doi.org/10.1118/1.2959723
116.
116. J. F. Williamson, B. M. Coursey, L. A. DeWerd, W. F. Hanson, R. Nath, M. J. Rivard, and G. Ibbott, “On the use of apparent activity (Aapp) for treatment planning of 125I and 103Pd interstitial brachytherapy sources: Recommendations of the American Association of Physicists in Medicine radiation therapy committee subcommittee on low-energy brachytherapy source dosimetry,” Med. Phys. 26, 25292530 (1999).
http://dx.doi.org/10.1118/1.598789
117.
117. G. J. Kutcher et al., “Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40,” Med. Phys. 21, 581618 (1994).
http://dx.doi.org/10.1118/1.597316
118.
118. B. Fraass, K. Doppke, M. Hunt, G. Kutcher, G. Starkschall, R. Stern, and J. Van Dyke, “American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning,” Med. Phys. 25, 17731829 (1998).
http://dx.doi.org/10.1118/1.598373
119.
119. A. Beiki-Ardakani, J. Jezioranski, D. A. Jaffray, and I. Young, “Improving quality assurance for assembled COMS eye plaques using a pinhole gamma camera,” Med. Phys. 35, 43184323 (2008).
http://dx.doi.org/10.1118/1.2975152
120.
120. A. Almony, S. Breit, H. Zhao, J. Garcia-Ramirez, D. B. Mansur, and J. W. Harbour, “Tilting of radioactive plaques after initial accurate placement for treatment of uveal melanoma,” Arch. Ophthalmol. 126, 6570 (2008).
http://dx.doi.org/10.1001/archophthalmol.2007.9
121.
121. J. W. Harbour, T. G. Murray, S. F. Byrne, J. R. Hughes, E. K. Gendron, F. J. Ehlies, and A. M. Markoe, “Intraoperative echographic localization of iodine 125 episcleral radioactive plaques for posterior uveal melanoma,” Retina 16, 129134 (1996).
http://dx.doi.org/10.1097/00006982-199616020-00008
122.
122. P. T. Finger, J. M. Romero, R. B. Rosen, R. Iezzi, R. Emery, and A. Berson, “Three-dimensional ultrasonography of choroidal melanoma: Localization of radioactive eye plaques,” Arch. Ophthalmol. 116, 305312 (1998).
123.
123. NRC Regulatory Guide NUREG-1556, “Consolidated guidance about materials licenses: Program-specific guidance about medical licenses,” Vol. 9, Rev. 2, 2008, see http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1556/v9/r2/.
124.
124. T. W. Kaulich and M. Bamberg, “Radiation protection of persons living close to patients with radioactive implantsStrahlenther. Onkol. 186, 107112 (2010).
http://dx.doi.org/10.1007/s00066-010-2073-x
125.
125. P. T. Finger, K. J. Chin, and G. Duvall, “Palladium-103 ophthalmic plaque radiation therapy for choroidal melanoma: 400 treated patients,” Ophthalmology 116, 790796 (2009).
http://dx.doi.org/10.1016/j.ophtha.2008.12.027
126.
126. A. Aizman, P. T. Finger, U. Shabto, A. Szechter, and A. Berson, “Palladium 103 (103Pd) plaque radiation therapy for circumscribed choroidal hemangioma with retinal detachment,” Arch. Ophthalmol. 122, 16521656 (2004).
http://dx.doi.org/10.1001/archopht.122.11.1652
127.
127. P. A. Saconn, C. J. Gee, C. M. Greven, T. P. McCoy, K. E. Ekstrand, and K. M. Greven, “Alternative dose for choroidal melanoma treated with an iodine-125 radioactive plaque: A single-institution retrospective study,” Int. J. Radiat. Oncol., Biol., Phys. 78, 844848 (2009).
http://dx.doi.org/10.1016/j.ijrobp.2009.08.059
128.
128. S. Edge, D. Byrd, C. Compton, A. Fritz, F. Greene, and A. Trotti, “Malignant melanoma of the uvea,” in Ophthalmic Sites: Part X, The AJCC Cancer Staging Manual (Springer, New York, 2009), pp. 547559.
129.
129. N. L. Gagne, K. L. Leonard, K. E. Huber, J. E. Mignano, J. S. Duker, N. V. Laver, and M. J. Rivard, “BEDVH - A method for evaluating biologically effective dose volume histograms: Application to eye plaque brachytherapy implants,” Med. Phys. 39, 976983 (2012).
http://dx.doi.org/10.1118/1.3679010
130.
130. N. L. Gagne, K. L. Leonard, and M. J. Rivard, “Radiobiology for eye plaque brachytherapy and evaluation of implant duration and radionuclide choice using an objective function,” Med. Phys. 39, 33323342 (2012).
http://dx.doi.org/10.1118/1.4718683
131.
131. U. Schneider, F. Gelisken, W. Inhoffen, and I. Kreissig, “Indocyanine green videoangiography of malignant melanomas of the choroid using the scanning laser ophthalmoscope,” Ger. J. Ophthalmol. 5, 611 (1996).
132.
132. T. H. Pettit, A. Barton, R. Y. Foos, and R. E. Christensen, “Fluorescein angiography of choroidal melanomas,” Arch. Ophthalmol. 83, 2738 (1970).
http://dx.doi.org/10.1001/archopht.1970.00990030029006
133.
133. H. Newman, K. J. Chin, and P. T. Finger, “Subfoveal choroidal melanoma: Pretreatment characteristics and response to plaque radiation therapy,” Arch. Ophthalmol. 129, 892898 (2010).
http://dx.doi.org/10.1001/archophthalmol.2011.161
134.
134. P. T. Finger, K. J. Chin, and G. P. Yu, “Risk factors for radiation maculopathy after ophthalmic plaque radiation for choroidal melanoma,” Am. J. Ophthalmol. 149, 608615 (2010).
http://dx.doi.org/10.1016/j.ajo.2009.11.006
135.
135. H. Newman, P. T. Finger, K. J. Chin, and A. C. Pavlick, “Systemic bevacizumab (Avastin) for exudative retinal detachment secondary to choroidal melanoma,” Eur. J. Ophthalmol. 21(6), 796801 (2011).
http://dx.doi.org/10.5301/EJO.2011.6477
136.
136. P. T. Finger and M. Kurli, “Laser photocoagulation for radiation retinopathy after ophthalmic plaque radiation therapy,” Br. J. Ophthalmol. 89(6), 730738 (2005).
http://dx.doi.org/10.1136/bjo.2004.052159
137.
137. P. T. Finger, “Anti-VEGF bevacizumab (Avastin) for radiation optic neuropathy,” Am. J. Ophthalmol. 143, 335338 (2007).
http://dx.doi.org/10.1016/j.ajo.2006.09.014
138.
138. P. T. Finger, “Radiation retinopathy is treatable with anti-vascular endothelial growth factor bevacizumab (Avastin),” Int. J. Radiat. Oncol., Biol., Phys. 70, 974977 (2008).
http://dx.doi.org/10.1016/j.ijrobp.2007.11.045
139.
139. P. T. Finger and K. J. Chin, “Intravitreous ranibizumab (lucentis) for radiation maculopathy,” Arch. Ophthalmol. 128, 249252 (2010).
http://dx.doi.org/10.1001/archophthalmol.2009.376
140.
140. P. T. Finger and K. Chin, “Anti-vascular endothelial growth factor bevacizumab (avastin) for radiation retinopathy,” Arch. Ophthalmol. 125(6), 751756 (2007).
http://dx.doi.org/10.1001/archopht.125.6.751
141.
141. P. T. Finger and K. J. Chin, “Antivascular endothelial growth factor bevacizumab for radiation optic neuropathy: Secondary to plaque radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 82, 789798 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2010.11.075
142.
142. P. K. Lommatzsch and R. Lommatzsch, “Treatment of juxtapapillary melanomas,” Br. J. Ophthalmol. 75, 715717 (1991).
http://dx.doi.org/10.1136/bjo.75.12.715
143.
143. P. K. Lommatzsch, C. Werschnik, and E. Schuster, “Long-term follow-up of Ru-106/Rh-106 brachytherapy for posterior uveal melanoma,” Graefe's Arch. Clin. Exp. Ophthalmol. 238, 129137 (2000).
http://dx.doi.org/10.1007/PL00007880
144.
144. J. Fontanesi, D. Meyer, S. Xu, and D. Tai, “Treatment of choroidal melanoma with I-125 plaque,” Int. J. Radiat. Oncol., Biol., Phys. 26, 619623 (1993).
http://dx.doi.org/10.1016/0360-3016(93)90278-4
145.
145. P. T. Finger, D. Lu, A. Buffa, D. S. DeBlasio, and J. L. Bosworth, “Palladium-103 versus iodine-125 for ophthalmic plaque radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 27, 849854 (1993).
http://dx.doi.org/10.1016/0360-3016(93)90459-9
146.
146. P. T. Finger, D. M. Moshfeghi, and T. K. Ho, “Palladium 103 ophthalmic plaque radiotherapy,” Arch. Ophthalmol. 109, 16101613 (1991).
http://dx.doi.org/10.1001/archopht.1991.01080110148053
147.
147. S. Packer, M. Rotman, R. G. Fairchild, D. M. Albert, H. L. Atkins, and B. Chan, “Irradiation of choroidal melanoma with iodine 125 ophthalmic plaque,” Arch. Ophthalmol. 98, 14531457 (1980).
http://dx.doi.org/10.1001/archopht.1980.01020040305019
148.
148. D. M. Robertson, K. S. Fountain, J. A. Anderson, and G. W. Posthumus, “Radioactive iodine-125 as a therapeutic radiation source for management of intraocular tumors,” Trans. Am. Ophthalmol. Soc. 79, 294306 (1981).
149.
149. B. R. Garretson, D. M. Robertson, and J. D. Earle, “Choroidal melanoma treatment with iodine 125 brachytherapy,” Arch. Ophthalmol. 105, 13941397 (1987).
http://dx.doi.org/10.1001/archopht.1987.01060100096035
150.
150. H. C. Boldt, B. M. Melia, J. C. Liu, and S. M. Reynolds, “I-125 brachytherapy for choroidal melanoma photographic and angiographic abnormalities: The Collaborative Ocular Melanoma Study: COMS Report No. 30,” Ophthalmology 116, 106115 (2009).
http://dx.doi.org/10.1016/j.ophtha.2008.10.013
151.
151. M. Melia, C. S. Moy, S. M. Reynolds, J. A. Hayman, T. G. Murray, K. R. Hovland, J. D. Earle, N. Kurinij, L. M. Dong, P. H. Miskala, C. Fountain, D. Cella, and C. M. Mangione, “Quality of life after iodine 125 brachytherapy vs enucleation for choroidal melanoma: 5-year results from the Collaborative Ocular Melanoma Study: COMS QOLS Report No. 3,” Arch. Ophthalmol. 124, 226238 (2006).
http://dx.doi.org/10.1001/archopht.124.2.226
152.
152. L. Bergman, B. Nilsson, G. Lundell, M. Lundell, and S. Seregard, “Ruthenium brachytherapy for uveal melanoma, 1979–2003: Survival and functional outcomes in the Swedish population,” Ophthalmology 112, 834840 (2005).
http://dx.doi.org/10.1016/j.ophtha.2004.11.038
153.
153. B. Damato, I. Patel, I. R. Campbell, H. M. Mayles, and R. D. Errington, “Local tumor control after 106Ru brachytherapy of choroidal melanoma,” Int. J. Radiat. Oncol., Biol., Phys. 63, 385391 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2005.02.017
154.
154. B. Damato, I. Patel, I. R. Campbell, H. M. Mayles, and R. D. Errington, “Visual acuity after Ruthenium(106) brachytherapy of choroidal melanomas,” Int. J. Radiat. Oncol., Biol., Phys. 63, 392400 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2005.02.059
155.
155. B. F. Fernandes, H. Krema, E. Fulda, C. J. Pavlin, D. G. Payne, H. D. McGowan, and E. R. Simpson, “Management of iris melanomas with 125Iodine plaque radiotherapy,” Am. J. Ophthalmol. 149, 7076 (2010).
http://dx.doi.org/10.1016/j.ajo.2009.08.007
156.
156. R. Potter, K. Janssen, F. J. Prott, J. Widder, U. Haverkamp, H. Busse, and R. P. Muller, “Ruthenium-106 eye plaque brachytherapy in the conservative treatment of uveal melanoma: Evaluation of 175 patients treated with 150 Gy from 1981–1989,” Front. Radiat. Ther. Oncol. 30, 143149 (1997).
157.
157. S. Seregard, “Long-term survival after ruthenium plaque radiotherapy for uveal melanoma: A meta-analysis of studies including 1066 patients,” Acta Ophthalmol. Scand. 77, 414417 (1999).
http://dx.doi.org/10.1034/j.1600-0420.1999.770411.x
158.
158. P. Isager, N. Ehlers, S. F. Urbak, and J. Overgaard, “Visual outcome, local tumour control, and eye preservation after 106Ru/Rh brachytherapy for choroidal melanoma,” Acta Oncol. 45, 285293 (2006).
http://dx.doi.org/10.1080/02841860500468950
159.
159. P. T. Finger, “Plaque radiation therapy for malignant melanoma of the iris and ciliary body,” Am. J. Ophthalmol. 132, 328335 (2001).
http://dx.doi.org/10.1016/S0002-9394(01)01007-8
160.
160. P. T. Finger, S. Reddy, and K. Chin, “High-frequency ultrasound characteristics of 24 iris and iridociliary melanomas: Before and after plaque brachytherapy,” Arch. Ophthalmol. 125, 10511058 (2007).
http://dx.doi.org/10.1001/archopht.125.8.1051
161.
161. F. A. Marigo, P. T. Finger, S. A. McCormick, R. Iezzi, K. Esaki, H. Ishikawa, J. M. Liebmann, and R. Ritch, “Iris and ciliary body melanomas: Ultrasound biomicroscopy with histopathologic correlation,” Arch. Ophthalmol. 118, 15151521 (2000).
http://dx.doi.org/10.1001/archopht.118.11.1515
162.
162. F. A. Marigo and P. T. Finger, “Anterior segment tumors: Current concepts and innovations,” Surv. Ophthalmol. 48, 569593 (2003).
http://dx.doi.org/10.1016/j.survophthal.2003.08.001
163.
163. J. P. Garcia Jr., L. Spielberg, and P. T. Finger, “High-frequency ultrasound measurements of the normal ciliary body and iris,” Ophthalmic Surg. Lasers Imaging 42(4), 321327 (2011).
http://dx.doi.org/10.3928/15428877-20110603-03
164.
164. C. Shields, M. Naseripour, J. Shields, J. Freir, and J. Cater, “Custom-designed plaque radiotherapy for nonresectable iris melanoma in 38 patients: Tumor control and ocular complications,” Am. J. Ophthalmol. 135, 648656 (2003).
http://dx.doi.org/10.1016/S0002-9394(02)02241-9
165.
165. F. E. Kruse, K. Rohrschneider, and H. E. Volcker, “Transplantation of amniotic membrane for reconstruction of the eye surface,” Ophthalmologe 95, 114119 (1998).
http://dx.doi.org/10.1007/s003470050247
166.
166. P. T. Finger, “Finger's amniotic membrane buffer technique: Protecting the cornea during radiation plaque therapy,” Arch. Ophthalmol. 126, 531534 (2008).
http://dx.doi.org/10.1001/archopht.126.4.531
167.
167. J. P. Garcia Jr., P. T. Garcia, R. B. Rosen, and P. T. Finger, “A 3-dimensional ultrasound C-scan imaging technique for optic nerve measurements,” Ophthalmology 111, 12381243 (2004).
http://dx.doi.org/10.1016/j.ophtha.2003.10.026
168.
168. J. W. Harbour, T. A. Meredith, P. A. Thompson, and M. E. Gordon, “Transpupillary thermotherapy versus plaque radiotherapy for suspected choroidal melanomas,” Ophthalmology 110, 22072214; discussion 2215 (2003).
http://dx.doi.org/10.1016/S0161-6420(03)00858-3
169.
169. N. M. Radcliffe and P. T. Finger, “Eye cancer related glaucoma: Current concepts.” Surv. Ophthalmol. 54(1), 4773 (2009).
http://dx.doi.org/10.1016/j.survophthal.2008.10.002
170.
170. I. Puusaari, J. Heikkonen, and T. Kivela, “Ocular complications after iodine brachytherapy for large uveal melanomas,” Ophthalmology 111, 17681777 (2004).
http://dx.doi.org/10.1016/j.ophtha.2004.03.027
171.
171. R. M. Conway, A. M. Poothullil, I. K. Daftari, V. Weinberg, J. E. Chung, and J. M. O’Brien, “Estimates of ocular and visual retention following treatment of extra-large uveal melanomas by proton beam radiotherapy,” Arch. Ophthalmol. 124, 838843 (2006).
http://dx.doi.org/10.1001/archopht.124.6.838
172.
172. J. Sisterson, “Ion beam therapy in 2004,” Nucl. Instrum. Methods Phys. Res. B 241, 713716 (2005).
http://dx.doi.org/10.1016/j.nimb.2005.07.121
173.
173. A. Courdi, J. P. Caujolle, J. D. Grange, L. Diallo-Rosier, J. Sahel, F. Bacin, C. Zur, P. Gastaud, N. Iborra-Brassart, J. Herault, and P. Chauvel, “Results of proton therapy of uveal melanomas treated in Nice,” Int. J. Radiat. Oncol., Biol., Phys. 45, 511 (1999).
http://dx.doi.org/10.1016/S0360-3016(99)00147-9
174.
174. E. Egger, L. Zografos, A. Schalenbourg, D. Beati, T. Bohringer, L. Chamot, and G. Goitein, “Eye retention after proton beam radiotherapy for uveal melanoma,” Int. J. Radiat. Oncol., Biol., Phys. 55, 867880 (2003).
http://dx.doi.org/10.1016/S0360-3016(02)04200-1
175.
175. O. Pastyr, G. H. Hartmann, W. Schlegel, S. Schabbert, H. Treuer, W. J. Lorenz, and V. Sturm, “Stereotactically guided convergent beam irradiation with a linear accelerator: Localization-technique,” Acta Neurochir. 99, 6164 (1989).
http://dx.doi.org/10.1007/BF01407778
176.
176. K. Muller, P. J. Nowak, C. de Pan, J. P. Marijnissen, D. A. Paridaens, P. Levendag, and G. P. Luyten, “Effectiveness of fractionated stereotactic radiotherapy for uveal melanoma,” Int. J. Radiat. Oncol., Biol., Phys. 63, 116122 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2005.01.058
177.
177. K. Dieckmann, J. Bogner, D. Georg, M. Zehetmayer, G. Kren, and R. Potter, “A linac-based stereotactic irradiation technique of uveal melanoma,” Radiother. Oncol. 61, 4956 (2001).
http://dx.doi.org/10.1016/S0167-8140(01)00413-3
178.
178. R. Dunavoelgyi, K. Dieckmann, A. Gleiss, S. Sacu, K. Kircher, M. Georgopoulos, D. Georg, M. Zehetmayer, and R. Poetter, “Local tumor control, visual acuity, and survival after hypofractionated stereotactic photon radiotherapy of choroidal melanoma in 212 patients treated between 1997 and 2007,” Int. J. Radiat. Oncol., Biol., Phys. 81, 199205 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2010.04.035
179.
179. P. E. Carvounis and B. Katz, “Gamma knife radiosurgery in neuro-ophthalmology,” Curr. Opin. Ophthalmol. 14, 317324 (2003).
http://dx.doi.org/10.1097/00055735-200312000-00001
180.
180. R. Liscak and V. Vladyka, “Radiosurgery in ocular disorders: Clinical applications,” Prog. Neurol. Surg. 20, 324339 (2007).
181.
181. S. Logani, T. K. Helenowski, H. Thakrar, and B. Pothiawala, “Gamma Knife radiosurgery in the treatment of ocular melanoma,” Stereotact. Funct. Neurosurg. 61(Suppl. 1), 3844 (1993).
http://dx.doi.org/10.1159/000100658
182.
182. G. Marchini et al., “Stereotactic radiosurgery of uveal melanomas: Preliminary results with Gamma Knife treatment,” Stereotact. Funct. Neurosurg. 64(Suppl. 1), 7279 (1995).
183.
183. P. Pochop, J. Pilbauer, J. Krepelkova, V. Vladyka, R. Liscak, J. Sach, and G. Simonova, “Two years’ experience with treatment of uveal melanoma using the Leksell gamma knife,” Cesk. Slov. Oftalmol. 54, 222234 (1998).
184.
184. G. Modorati, E. Miserocchi, L. Galli, P. Picozzi, and P. Rama, “Gamma knife radiosurgery for uveal melanoma: 12 years of experience,” Br. J. Ophthalmol. 93, 4044 (2009).
http://dx.doi.org/10.1136/bjo.2008.142208
185.
185. S. Trichter, H. Amols, G. N. Cohen, D. Lewis, T. LoSasso, and M. Zaider, “Accurate dosimetry of Ru-106 ophthalmic applicators using GafChromic film in a solid water phantom,” Med. Phys. 29, 1349 (2002).
http://dx.doi.org/10.1118/1.1496319
186.
186. S. Trichter, M. Zaider, D. Nori, A. Sabbas, F. Kulidzhanov, D. Lewis, and C. Soares, “Clinical dosimetry of 106Ru eye plaques in accordance with the forthcoming ISO beta dosimetry standard using specially designed GAFCHROMIC® Film,” Int. J. Radiat. Oncol., Biol., Phys. 69, S665S666 (2007).
http://dx.doi.org/10.1016/j.ijrobp.2007.07.2019
187.
187. M. A. Astrahan, “A patch source model for treatment planning of ruthenium ophthalmic applicators,” Med. Phys. 30, 12191228 (2003).
http://dx.doi.org/10.1118/1.1573971
188.
188. ISO 21439, Clinical Dosimetry-Beta Radiation sources for Brachytherapy (International Organization for Standardization, 2009).
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/39/10/10.1118/1.4749933
Loading
/content/aapm/journal/medphys/39/10/10.1118/1.4749933
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/39/10/10.1118/1.4749933
2012-09-24
2015-07-31

Abstract

Dosimetry of eye plaques for ocular tumors presents unique challenges in brachytherapy. The challenges in accurate dosimetry are in part related to the steep dose gradient in the tumor and critical structures that are within millimeters of radioactive sources. In most clinical applications, calculations of dose distributions around eye plaques assume a homogenous water medium and full scatter conditions. Recent Monte Carlo (MC)-based eye-plaque dosimetry simulations have demonstrated that the perturbation effects of heterogeneous materials in eye plaques, including the gold-alloy backing and Silastic insert, can be calculated with reasonable accuracy. Even additional levels of complexity introduced through the use of gold foil “seed-guides” and custom-designed plaques can be calculated accurately using modern MC techniques. Simulations accounting for the aforementioned complexities indicate dose discrepancies exceeding a factor of ten to selected critical structures compared to conventional dose calculations. Task Group 129 was formed to review the literature; re-examine the current dosimetry calculation formalism; and make recommendations for eye-plaque dosimetry, including evaluation of brachytherapy source dosimetry parameters and heterogeneity correction factors. A literature review identified modern assessments of dose calculations for Collaborative Ocular Melanoma Study (COMS) design plaques, including MC analyses and an intercomparison of treatment planning systems (TPS) detailing differences between homogeneous and heterogeneous plaque calculations using the American Association of Physicists in Medicine (AAPM) TG-43U1 brachytherapy dosimetry formalism and MC techniques. This review identified that a commonly used prescription dose of 85 Gy at 5 mm depth in homogeneous medium delivers about 75 Gy and 69 Gy at the same 5 mm depth for specific 125I and 103Pd sources, respectively, when accounting for COMS plaque heterogeneities. Thus, the adoption of heterogeneous dose calculation methods in clinical practice would result in dose differences >10% and warrant a careful evaluation of the corresponding changes in prescription doses. Doses to normal ocular structures vary with choice of radionuclide, plaque location, and prescription depth, such that further dosimetric evaluations of the adoption of MC-based dosimetry methods are needed. The AAPM and American Brachytherapy Society (ABS) recommend that clinical medical physicists should make concurrent estimates of heterogeneity-corrected delivered dose using the information in this report's tables to prepare for brachytherapy TPS that can account for material heterogeneities and for a transition to heterogeneity-corrected prescriptive goals. It is recommended that brachytherapy TPS vendors include material heterogeneity corrections in their systems and take steps to integrate planned plaque localization and image guidance. In the interim, before the availability of commercial MC-based brachytherapy TPS, it is recommended that clinical medical physicists use the line-source approximation in homogeneous water medium and the 2D AAPM TG-43U1 dosimetry formalism and brachytherapy source dosimetry parameter datasets for treatment planning calculations. Furthermore, this report includes quality management program recommendations for eye-plaque brachytherapy.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/39/10/1.4749933.html;jsessionid=7i6550bna1ss1.x-aip-live-03?itemId=/content/aapm/journal/medphys/39/10/10.1118/1.4749933&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dosimetry of 125I and 103Pd COMS eye plaques for intraocular tumors: Report of Task Group 129 by the AAPM and ABS
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/39/10/10.1118/1.4749933
10.1118/1.4749933
SEARCH_EXPAND_ITEM