banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
TOPAS: An innovative proton Monte Carlo platform for research and clinical applications
Rent this article for
Access full text Article
1. H. Paganetti, “Range uncertainties in proton therapy and the role of Monte Carlo simulations,” Phys. Med. Biol. 57, R99R117 (2012).
2. M. Fippel and M. Soukup, “A Monte Carlo dose calculation algorithm for proton therapy,” Med. Phys. 31, 22632273 (2004).
3. L. Waters, “MCNPX user's manual,” Los Alamos National Laboratory, 2002.
4. A. Ferrari, P. R. Sala, A. Fasso, and J. Ranft, “FLUKA: A multi-particle transport code,” CERN Yellow Report No. CERN 2005-10; INFN/TC 05/11, SLAC-R-773 (CERN, Geneva, 2005).
5. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. J. Gomez Cadenas, I. Gonzalez, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampen, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M. G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D. C. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche, “Geant4: A simulation toolkit,” Nucl. Instrum. Methods Phys. Res. A 506, 250303 (2003).
6. J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G. A. P. Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G. G. Daquino, M. Donszelmann, M. Dressel, G. Folger, F. Foppiano, J. Generowicz, V. Grichine, S. Guatelli, P. Gumplinger, A. Heikkinen, I. Hrivnacova, A. Howard, S. Incerti, V. Ivanchenko, T. Johnson, F. Jones, T. Koi, R. Kokoulin, M. Kossov, H. Kurashige, V. Lara, S. Larsson, F. Lei, O. Link, F. Longo, M. Maire, A. Mantero, B. Mascialino, I. McLaren, P. Mendez Lorenzo, K. Minamimoto, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, L. Peralta, J. Perl, A. Pfeiffer, M. G. Pia, A. Ribon, P. Rodrigues, G. Russo, S. Sadilov, G. Santin, T. Sasaki, D. Smith, N. Starkov, S. Tanaka, E. Tcherniaev, B. Tomé, A. Trindade, P. Truscott, L. Urban, M. Verderi, A. Walkden, J. P. Wellisch, D. C. Williams, D. Wright, and H. Yoshida, “Geant4: Developments and Applications,” IEEE Trans. Nucl. Sci. 53, 270278 (2006).
7. R. Gotta, “Monte Carlo simulation with Geant4 of a 3D dosimeter for therapeutical proton beams,” MS thesis, University of Torino, 1999.
8. H. Paganetti and B. Gottschalk, “Test of Geant3 and Geant4 nuclear models for 160 MeV protons stopping in CH2,” Med. Phys. 30, 19261931 (2003).
9. D. W. O. Rogers, B. A. Faddegon, G. X. Ding, C.-M. Ma, J. Wei, and T. R. Mackie, “BEAM: A Monte Carlo code to simulate radiotherapy treatment units,” Med. Phys. 22, 503524 (1995).
10. I. Kawrakow, “Accurate condensed history Monte Carlo simulation of electron transport: I. EGSnrc, the new EGS4 version,” Med. Phys. 27, 485498 (2000).
11.OPERA-3D Reference Manual,” Vector Fields Limited, Oxford, England, 2004.
12. J. Schümann, H. Paganetti, J. Shin, B. Faddegon, and J. Perl, “Efficient voxel navigation for proton therapy dose calculation in TOPAS and Geant4,” Phys. Med. Biol. 57, 32813293 (2012).
13. K. L. Brown and R. V. Servranckx, “First- and second-order charged particle optics,” SLAC Report No. SLAC-PUB-3381 (Stanford Linear Accelerator Center, Menlo Park, California, 1984).
14. International Atomic Energy Agency, “Phase-space database for external beam radiotherapy,” IAEA Technical Report No. INDC (NDS)-0484 (IAEA, Vienna, Austria, 2006).
15. C. Zacharatou Jarlskog and H. Paganetti, “Physics settings for using the Geant4 toolkit in proton therapy,” IEEE Trans. Nucl. Sci. 55, 10181025 (2008).
16. L. Urban, “Multiple scattering model in Geant4,” CERN Report No. CERN-OPEN-2002-070 (CERN, Geneva, 2002).
17. H. W. Lewis, “Multiple scattering in an infinite medium,” Phys. Rev. 78, 526529 (1950).
18. B. A. Faddegon, I. Kawrakow, Y. Kubyshin, J. Perl, J. Sempau, and L. Urban, “The accuracy of EGSnrc, Geant4 and PENELOPE Monte Carlo systems for the simulation of electron scatter in external beam radiotherapy,” Phys. Med. Biol. 54, 61516163 (2009).
19. J. F. Janni, “Proton range energy tables, 1 keV–10 GeV,” At. Data Nucl. Data Tables 27, 147529 (1982).
20. H. Bichsel and T. Hiraoka, “Energy loss of 70 MeV protons in elements,” Nucl. Instrum. Methods Phys. Res. B 66, 345351 (1992).
21. ICRU, “Stopping powers and ranges for protons and alpha particles,” ICRU Report No. 49 (International Commission on Radiation Units and Measurements, Bethesda, MD, 1993).
22. Y. Kumazaki, T. Akagi, T. Yanou, D. Suga, Y. Hishikawa, and T. Teshima, “Determination of the mean excitation energy of water from proton beam ranges,” Radiat. Meas. 42, 16831691 (2007).
23. P. Andreo, “On the clinical spatial resolution achievable with protons and heavier charged particle radiotherapy beams,” Phys. Med. Biol. 54, N205N215 (2009).
24. J. Herault, N. Iborra, B. Serrano, and P. Chauvel, “Monte Carlo simulation of a proton therapy platform devoted to ocular melanoma,” Med. Phys. 32, 910919 (2005).
25. A. Stankovskiy, S. Kerhoas-Cavata, R. Ferrand, C. Nauraye, and L. Demarzi, “Monte Carlo modelling of the treatment line of the Proton Therapy Center in Orsay,” Phys. Med. Biol. 54, 23772394 (2009).
26. C. Grassberger, A. Trofimov, A. Lomax, and H. Paganetti, “Variations in linear energy transfer within clinical proton therapy fields and the potential for biological treatment planning,” Int. J. Radiat. Oncol. Biol. Phys. 80, 15591566 (2011).
27. C. Grassberger and H. Paganetti, “Elevated LET components in clinical proton beams,” Phys. Med. Biol. 56, 66776691 (2011).
28. G. Barrand, T. Johnson, and A. Pfeiffer, “AIDA abstract interfaces for data analysis,” 2001 [available URL: http://aida.freehep.org/].
29. R. Brun and F. Rademakers, “ROOT: An object oriented data analysis framework,” Nucl. Instrum. Methods. 389, 8186 (1996).
30. F. Sommerer, F. Cerutti, K. Parodi, A. Ferrari, W. Enghardt, and H. Aiginger, “In-beam PET monitoring of mono-energetic (16)O and (12)C beams: Experiments and FLUKA simulations for homogeneous targets,” Phys. Med. Biol. 54, 39793996 (2009).
31. J. C. Polf, S. Peterson, M. McCleskey, B. T. Roeder, A. Spiridon, S. Beddar, and L. Trache, “Measurement and calculation of characteristic prompt gamma ray spectra emitted during proton irradiation,” Phys. Med. Biol. 54, N519N527 (2009).
32. M. Moteabbed, S. Espana, and H. Paganetti, “Monte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapy,” Phys. Med. Biol. 56, 10631082 (2011).
33. T. Li, Z. Liang, J. V. Singanallur, T. J. Satogata, D. C. Williams, and R. W. Schulte, “Reconstruction for proton computed tomography by tracing proton trajectories: A Monte Carlo study,” Med. Phys. 33, 699706 (2006).
34. C. Z. Jarlskog and H. Paganetti, “Sensitivity of different dose scoring methods on organ specific neutron doses calculations in proton therapy,” Phys. Med. Biol. 53, 45234532 (2008).
35. J. Allison, M. Asai, G. Barrand, M. Donszelmann, K. Minamimoto, J. Perl, S. Tanaka, E. Tcherniaev, and J. Tinslay, “The Geant4 visualisation system,” Comput. Phys. Commun. 178, 331365 (2008).
36. J. Perl, “HepRApp: The original HepRep data browsing application,” 2007 [available URL: http://www.slac.stanford.edu/~perl/HepRApp].
37. A. Saitoh, A. Kimura, S. Tanaka, and T. Sasaki, “gMocren: High-quality volume visualization tool for Geant4 simulation,” Nuclear Science Symposium Conference Record, NSS ‘07 (IEEE, Honolulu, Hawaii, 2007), Vol. 1, pp. 888891.
38. T. Aso, T. Yamashita, T. Akagi, S. Kameoka, T. Nishio, K. Murakami, C. Omachi, T. Ssasaki, K. Amako, A. Kimura, H. Yoshida, H. Kurashige, and M. Kaburagi, “Validation of PTSIM for clinical usage,” in Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Knoxville, Tennessee, 2010 (IEEE, New York, New York, 2010), pp. 158160.
39. T. Aso, A. Kimura, S. Tanaka, H. Yoshida, N. Kanematsu, T. Sasaki, and T. Akagi, “Verification of the dose distributions with GEANT4 simulation for proton therapy,” IEEE Trans. Nucl. Sci. 52, 896901 (2005).
40. J. Shin, J. Perl, J. Schümann, H. Paganetti, and B. Faddegon, “A consistent, modular framework to handle multiple time-dependent quantities in Monte Carlo simulations as implemented in TOPAS,” Phys. Med. Biol. 57, 32953308 (2012).
41. H. M. Lu and H. Kooy, “Optimization of current modulation function for proton spread-out Bragg peak fields,” Med. Phys. 33, 12811287 (2006).
42. H. Paganetti, H. Jiang, S.-Y. Lee, and H. Kooy, “Accurate Monte Carlo for nozzle design, commissioning, and quality assurance in proton therapy,” Med. Phys. 31, 21072118 (2004).
43. H. Paganetti, H. Jiang, K. Parodi, R. Slopsema, and M. Engelsman, “Clinical implementation of full Monte Carlo dose calculation in proton beam therapy,” Phys. Med. Biol. 53, 48254853 (2008).
44. B. Clasie, A. Wroe, H. Kooy, N. Depauw, J. Flanz, H. Paganetti, and A. Rosenfeld, “Assessment of out-of-field absorbed dose and equivalent dose in proton fields,” Med. Phys. 37, 311321 (2010).
45. B. Gottschalk, R. Platais, and H. Paganetti, “Nuclear interactions of 160 MeV protons stopping in copper: A test of Monte Carlo nuclear models,” Med. Phys. 26, 25972601 (1999).
46. H. Paganetti, “Monte Carlo calculations for absolute dosimetry to determine output factors for proton therapy treatments,” Phys. Med. Biol. 51, 28012812 (2006).
47. S. W. Peterson, J. Polf, M. Bues, G. Ciangaru, L. Archambault, S. Beddar, and A. Smith, “Experimental validation of a Monte Carlo proton therapy nozzle model incorporating magnetically steered protons,” Phys. Med. Biol. 54, 32173229 (2009).
48. I. K. Daftari, T. R. Renner, L. J. Verhey, R. P. Singh, M. Nyman, P. L. Petti, and J. R. Castro, “New UCSF proton ocular beam facility at the Crocker Nuclear Laboratory Cyclotron (UC Davis),” Nucl. Instrum. Methods Phys. Res. A 380, 597612 (1996).
49. W. T. Chu, B. A. Ludewig, and T. R. Renner, “Instrumentation for treatment of cancer using proton and light-ion beams,” Rev. Sci. Instrum. 64, 20552122 (1993).
50. J. Daartz, M. Engelsman, H. Paganetti, and M. R. Bussiere, “Field size dependence of the output factor in passively scattered proton therapy: Influence of range, modulation, air gap, and machine settings,” Med. Phys. 36, 32053210 (2009).
51. B. Bednarz, H. M. Lu, M. Engelsman, and H. Paganetti, “Uncertainties and correction methods when modeling passive scattering proton therapy treatment heads with Monte Carlo,” Phys. Med. Biol. 56, 28372854 (2011).
52. H. M. Kooy, B. M. Clasie, H. M. Lu, T. M. Madden, H. Bentefour, N. Depauw, J. A. Adams, A. V. Trofimov, D. Demaret, T. F. Delaney, and J. B. Flanz, “A case study in proton pencil-beam scanning delivery,” Int. J. Radiat. Oncol., Biol., Phys. 76, 624630 (2010).
53. L. Hong, M. Goitein, M. Bucciolini, R. Comiskey, B. Gottschalk, S. Rosenthal, C. Serago, and M. Urie, “A pencil beam algorithm for proton dose calculations,” Phys. Med. Biol. 41, 13051330 (1996).

Data & Media loading...


Article metrics loading...




While Monte Carlo particle transport has proven useful in many areas (treatment head design, dose calculation, shielding design, and imaging studies) and has been particularly important for proton therapy (due to the conformal dose distributions and a finite beam range in the patient), the available general purpose Monte Carlo codes in proton therapy have been overly complex for most clinical medical physicists. The learning process has large costs not only in time but also in reliability. To address this issue, we developed an innovative protonMonte Carlo platform and tested the tool in a variety of proton therapy applications.


Our approach was to take one of the already-established general purpose Monte Carlo codes and wrap and extend it to create a specialized user-friendly tool for proton therapy. The resulting tool, TOol for PArticle Simulation (TOPAS), should make Monte Carlo simulation more readily available for research and clinical physicists. TOPAS can model a passive scattering or scanning beam treatment head, model a patient geometry based on computed tomography(CT)images, score dose, fluence, etc., save and restart a phase space, provides advanced graphics, and is fully four-dimensional (4D) to handle variations in beam delivery and patient geometry during treatment. A custom-designed TOPAS parameter control system was placed at the heart of the code to meet requirements for ease of use, reliability, and repeatability without sacrificing flexibility.


We built and tested the TOPAS code. We have shown that the TOPAS parameter system provides easy yet flexible control over all key simulation areas such as geometry setup, particle source setup, scoring setup, etc. Through design consistency, we have insured that user experience gained in configuring one component, scorer or filter applies equally well to configuring any other component, scorer or filter. We have incorporated key lessons from safety management, proactively removing possible sources of user error such as line-ordering mistakes. We have modeled proton therapytreatment examples including the UCSF eye treatment head, the MGH stereotactic alignment in radiosurgery treatment head and the MGH gantry treatment heads in passive scattering and scanning modes, and we have demonstrated dose calculation based on patient-specific CT data. Initial validation results show agreement with measured data and demonstrate the capabilities of TOPAS in simulating beam delivery in 3D and 4D.


We have demonstrated TOPAS accuracy and usability in a variety of proton therapy setups. As we are preparing to make this tool freely available for researchers in medical physics, we anticipate widespread use of this tool in the growing proton therapy community.


Full text loading...

This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: TOPAS: An innovative proton Monte Carlo platform for research and clinical applications