1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Comprehensive assessment of the slice sensitivity profiles in breast tomosynthesis and breast CT
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/39/12/10.1118/1.4764908
1.
1. A. Karellas, J. Y. Lo, and C. G. Orton, “Cone beam x-ray CT will be superior to digital x-ray tomosynthesis in imaging the breast and delineating cancer,” Med. Phys. 35, 409411 (2008).
http://dx.doi.org/10.1118/1.2825612
2.
2. J. M. Boone, T. R. Nelson, K. K. Lindfors, and J. A. Seibert, “Dedicated breast CT: Radiation dose and image quality evaluation,” Radiology 221, 657667 (2001).
http://dx.doi.org/10.1148/radiol.2213010334
3.
3. J. Boone, A. Kwan, K. Yang, G. Burkett, K. Lindfors, and T. Nelson, “Computed tomography for imaging the breast,” J. Mammary Gland Biol. Neoplasia 11, 103111 (2006).
http://dx.doi.org/10.1007/s10911-006-9017-1
4.
4. J. T. Bushberg, J. A. Seibert, J. M. Boone, and E. M. Leidholdt, The Essential Physics of Medical Imaging (Lippincott, Philadelphia, 2011).
5.
5. J. Hsieh, “Analytical models for multi-slice helical CT performance parameters,” Med. Phys. 30, 169178 (2003).
http://dx.doi.org/10.1118/1.1533750
6.
6. Y.-H. Hu, B. Zhao, and W. Zhao, “Image artifacts in digital breast tomosynthesis: Investigation of the effects of system geometry and reconstruction parameters using a linear system approach,” Med. Phys. 35, 52425252 (2008).
http://dx.doi.org/10.1118/1.2996110
7.
7. S. Prevrhal, J. C. Fox, J. A. Shepherd, and H. K. Genant, “Accuracy of CT-based thickness measurement of thin structures: Modeling of limited spatial resolution in all three dimensions,” Med. Phys. 30, 18 (2003).
http://dx.doi.org/10.1118/1.1521940
8.
8. T. G. Flohr, K. Stierstorfer, S. Ulzheimer, H. Bruder, A. N. Primak, and C. H. McCollough, “Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot,” Med. Phys. 32, 25362547 (2005).
http://dx.doi.org/10.1118/1.1949787
9.
9. J. A. Christner, K. Stierstorfer, A. N. Primak, C. D. Eusemann, T. G. Flohr, and C. H. McCollough, “Evaluation of z-axis resolution and image noise for nonconstant velocity spiral CT data reconstructed using a weighted 3D filtered backprojection (WFBP) reconstruction algorithm,” Med. Phys. 37, 897906 (2010).
http://dx.doi.org/10.1118/1.3271110
10.
10. Y. Zhang, H.-P. Chan, B. Sahiner, J. Wei, J. Ge, L. M. Hadjiiski, and C. Zhou, “Investigation of the Z-axis resolution of breast tomosynthesis mammography systems,” Proc. SPIE 6510, Medical Imaging 2007: Physics of Medical Imaging, 65104A (2007).
http://dx.doi.org/10.1117/12.713816
11.
11. L. Chen, C. K. Abbey, A. Nosrateih, K. K. Lindfors, and J. M. Boone, “Anatomical complexity in breast parenchyma and its implications for optimal breast imaging strategies,” Med. Phys. 39, 14351441 (2012).
http://dx.doi.org/10.1118/1.3685462
12.
12. B. Ren, “Design and performance of the protojour full field breast tomosynthesis system with selenium based flat panel detector,” Proc. SPIE 5745, 550561 (2005).
http://dx.doi.org/10.1117/12.595833
13.
13. A. Kwan, “Evaluation of the spatial resolution characteristics of a cone-beam breast CT scanner,” Med. Phys. 34, 275281 (2007).
http://dx.doi.org/10.1118/1.2400830
14.
14. N. D. Prionas, “Experimentally determined spectral optimization for dedicated breast computed tomography,” Med. Phys. 38, 646655 (2011).
http://dx.doi.org/10.1118/1.3537077
15.
15. K. Yang, “Noise power properties of a cone-beam CT system for breast cancer detection,” Med. Phys. 35, 53175327 (2008).
http://dx.doi.org/10.1118/1.3002411
16.
16. K. K. Lindfors, J. M. Boone, T. R. Nelson, K. Yang, A. L. C. Kwan, and D. F. Miller, “Dedicated breast CT: Initial clinical experience,” Radiology 246, 725733 (2008).
http://dx.doi.org/10.1148/radiol.2463070410
17.
17. N. D. Prionas, K. K. Lindfors, S. Ray, S.-Y. Huang, L. A. Beckett, W. L. Monsky, and J. M. Boone, “Contrast-enhanced dedicated breast CT: Initial clinical experience,” Radiology 256, 714723 (2010).
http://dx.doi.org/10.1148/radiol.10092311
18.
18. B. Li, G. B. Avinash, R. Uppaluri, J. W. Eberhard, and B. E. H. Claus, “The impact of acquisition angular range on the z-resolution of radiographic tomosynthesis,” Int. Congr. Ser. 1268, 1318 (2004).
http://dx.doi.org/10.1016/j.ics.2004.03.298
19.
19. I. Sechopoulos and C. Ghetti, “Optimization of the acquisition geometry in digital tomosynthesis of the breast,” Med. Phys. 36, 11991207 (2009).
http://dx.doi.org/10.1118/1.3090889
20.
20. B. Zhao, J. Zhou, Y.-H. Hu, T. Mertelmeier, J. Ludwig, and W. Zhao, “Experimental validation of a three-dimensional linear system model for breast tomosynthesis,” Med. Phys. 36, 240251 (2009).
http://dx.doi.org/10.1118/1.3040178
21.
21. B. Li, “Optimization of slice sensitivity profile for radiographic tomosynthesis,” Med. Phys. 34, 29072916 (2007).
http://dx.doi.org/10.1118/1.2742499
22.
22. T. Mertelmeier, J. Ludwig, B. Zhao, and W. Zhao, “Optimization of tomosynthesis acquisition parameters: Angular range and number of projections,” in Digital Mammography, edited by E. Krupinski (Springer, Heidelberg, 2008), Vol. 5116, pp. 220227.
23.
23. Y.-H. Hu, W. Zhao, T. Mertelmeier, and J. Ludwig, “Image artifact in digital breast tomosynthesis and its dependence on system and reconstruction parameters,” in Digital Mammography, edited by E. Krupinski (Springer, Heidelberg, 2008), Vol. 5116, pp. 628634.
24.
24. T. Wu, R. H. Moore, E. A. Rafferty, and D. B. Kopans, “A comparison of reconstruction algorithms for breast tomosynthesis,” Med. Phys. 31, 26362647 (2004).
http://dx.doi.org/10.1118/1.1786692
25.
25. S. P. Poplack, T. D. Tosteson, C. A. Kogel, and H. M. Nagy, “Digital breast tomosynthesis: Initial experience in 98 women with abnormal digital screening mammography,” Am. J. Roentgenol. 189, 616623 (2007).
http://dx.doi.org/10.2214/AJR.07.2231
26.
26. I. Andersson, D. Ikeda, S. Zackrisson, M. Ruschin, T. Svahn, P. Timberg, and A. Tingberg, “Breast tomosynthesis and digital mammography: A comparison of breast cancer visibility and BIRADS classification in a population of cancers with subtle mammographic findings,” Eur. Radiol. 18, 28172825 (2008).
http://dx.doi.org/10.1007/s00330-008-1076-9
27.
27. C. H. J. Chang, J. L. Sibala, J. H. Gallagher, R. C. Riley, A. W. Templeton, P. V. Beasley, and R. A. Porte, “Computed tomography of the breast,” Radiology 124, 827829 (1977).
http://dx.doi.org/10.1148/124.3.827
28.
28. P. Baldwin, “Digital breast tomosynthesis,” Radiol. Technol. 81, 57M74M (2009).
29.
29. W. Zhao, B. Zhao, P. R. Fisher et al., “Optimization of detector operation and imaging geometry for breast tomosynthesis,” Proceedings of SPIE 6510, 65101M (2007).
http://dx.doi.org/10.1117/12.713718
30.
30. T. Wu, B. Liu, R. Moore et al., “Optimal acquisition techniques for digital breast tomosynthesis screening,” Proceedings of SPIE 6142, 61425E (2006).
http://dx.doi.org/10.1117/12.652289
31.
31. J. T. Dobbins III and D. J. Godfrey, “Digital x-ray tomosynthesis: Current state of the art and clinical potential,” Phys. Med. Biol. 48, R65R106 (2003).
http://dx.doi.org/10.1088/0031-9155/48/19/R01
32.
32. J. Zhou, B. Zhao, and W. Zhao, “A computer simulation platform for the optimization of a breast tomosynthesis system,” Med. Phys. 34, 10981109 (2007).
http://dx.doi.org/10.1118/1.2558160
33.
33. J. Robert, S. Saunders, and E. Samei, “A method for modifying the image quality parameters of digital radiographic images,” Med. Phys. 30, 30063017 (2003).
http://dx.doi.org/10.1118/1.1621870
34.
34. S. Suryanarayanan, A. Karellas, S. Vedantham, S. J. Glick, C. J. D’Orsi, S. P. Baker, and R. L. Webber, “Comparison of tomosynthesis methods used with digital mammography,” Acad. Radiol. 7, 10851097 (2000).
http://dx.doi.org/10.1016/S1076-6332(00)80061-6
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/39/12/10.1118/1.4764908
Loading
/content/aapm/journal/medphys/39/12/10.1118/1.4764908
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/39/12/10.1118/1.4764908
2012-11-26
2014-07-11

Abstract

Purpose:

This study experimentally evaluated the slice sensitivity profile (SSP) and its relationship between acquisition angle, object size, and cone angle. The sensitivity profile metric was used to characterize a breast tomosynthesis system's resolution in the z-axis. The SSP was also measured on a prototype breast computed tomography (bCT) system.

Methods:

The SSP was measured using brass disks placed within adipose tissue-equivalent breast phantoms. The digital tomosynthesissystem (Selenia Dimensions, Hologic Corporation, Bedford, MA) acquires projection images over a 15° angular range and the bCT scanner acquires projection images over a 360° angular range. Angular ranges between 15° and 360° were studied by using a subset of the projection images acquired on the bCT scanner. The SSP was determined by measuring a background-corrected mean gray scale value as a function of the z-position (axis normal to the plane of the detector).

Results:

The results show that SSP improves when the angular acquisition range is increased and the SSP approaches a delta function for angles greater than 180°. Smaller objects have a narrower SSP and the SSP is not significantly dependent on the cone angle. For a 2.5, 5, 10 mm disk, the full width at half maximum of the SSP was 35, 61, 115 mm, respectively, on the tomosynthesissystem (at 15°) and was 0.5 mm for all disk diameters on the bCT scanner (at 360°).

Conclusions:

The SSP is dependent on object size and angular acquisition range. These dependencies are overcome once the angular acquisition range is increased beyond 180°.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/39/12/1.4764908.html;jsessionid=2ejevo5cs7ung.x-aip-live-06?itemId=/content/aapm/journal/medphys/39/12/10.1118/1.4764908&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Comprehensive assessment of the slice sensitivity profiles in breast tomosynthesis and breast CT
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/39/12/10.1118/1.4764908
10.1118/1.4764908
SEARCH_EXPAND_ITEM