1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
A novel technique to enable experimental validation of deformable dose accumulation
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/39/2/10.1118/1.3676185
1.
1. K. M. Langen, and D. T. L. Jones, “Organ motion and its management,” Int. J. Radiat. Oncol., Biol., Phys. 50(1), 265278 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)01453-5
2.
2. M. Rosu, L. A. Dawson, J. M. Balter, D. L. McShan, T. S. Lawrence, and R. K. T. Haken, “Alterations in normal liver doses due to organ motion,” Int. J. Radiat. Oncol., Biol., Phys. 57(5), 14721479 (2003).
http://dx.doi.org/10.1016/j.ijrobp.2003.08.025
3.
3. G. Starkschall, K. Britton, M. F. McAleer, M. D. Jeter, M. R. Kaus, K. Bzdusek, R. Mohan, and J. D. Cox, “Potential dosimetric benefits of four-dimensional radiation treatment planning,” Int. J. Radiat. Oncol., Biol., Phys. 73(5), 15601565 (2009).
http://dx.doi.org/10.1016/j.ijrobp.2008.12.024
4.
4. G. D. Hugo, J. Campbell, T. Zhang, and D. Yan, “Cumulative lung dose for several motion management strategies as a function of pretreatment patient parameters,” Int. J. Radiat. Oncol., Biol., Phys. 74(2), 593601 (2009).
http://dx.doi.org/10.1016/j.ijrobp.2008.12.069
5.
5. T. J. Whelan, D. H. Kim, and J. Sussman, “Clinical experience using hypofractionated radiation schedules in breast cancer,” Semin. Radiat. Oncol. 18(4), 257264 (2008).
http://dx.doi.org/10.1016/j.semradonc.2008.04.008
6.
6. J. Wulf, U. Hadinger, U. Oppitz, W. Thiele, R. Ness-Dourdoumas, and M. Flentje, “Stereotactic radiotherapy of targets in the lung and liver,” Strahlenther Onkol. 177(12), 645655 (2001).
http://dx.doi.org/10.1007/PL00002379
7.
7. H. Zhong, and J. V. Slebers, “Monte Carlo dose mapping on deforming anatomy,” Phys. Med. Biol. 54(19), 58155830 (2009).
http://dx.doi.org/10.1088/0031-9155/54/19/010
8.
8. S. Flampouri, S. B. Jiang, G. C. Sharp, J. Wolfgang, A. A. Patel, and N. C. Choi, “Estimation of the delivered patient dose in lung IMRT treatment based on deformable registration of 4D-CT data and Monte Carlo simulations,” Phys. Med. Biol. 51(11), 27632779 (2006).
http://dx.doi.org/10.1088/0031-9155/51/11/006
9.
9. K. K. Brock, M. Hawkins, C. Eccles, J. L. Moseley, D. J. Moseley, D. A. Jaffray, and L. A. Dawson, “Improving image-guided target localization through deformable registration,” Acta Oncol. 47(7), 12791285 (2008).
http://dx.doi.org/10.1080/02841860802256491
10.
10. K. K. Brock, S. J. Hollister, L. A. Dawson, and J. M. Balter, “Inclusion of organ deformation in dose calculations,” Med. Phys. 30(3), 290295 (2003).
http://dx.doi.org/10.1118/1.1539039
11.
11. K. K. Brock, M. B. Sharpe, S. M. Kim, and D. A. Jaffray, “Accuracy of finite element model (FEM)-based multi-organ deformable image registration,” Med. Phys. 32(6), 16471659 (2005).
http://dx.doi.org/10.1118/1.1915012
12.
12. S. Ceberg, A. Karlsson, H. Gustavsson, L. Wittgren, and S. Å. J. Bäck, “Verification of dynamic radiotherapy: the potential for 3D dosimetry under respiratory-like motion using polymer gel,” Phys. Med. Biol. 53, N387N396 (2008).
http://dx.doi.org/10.1088/0031-9155/53/20/N02
13.
13. M. Oliver, A. Gladwish, R. Staruch, J. Craig, S. Gaede, J. Chen, and E. Wong, “Experimental measurements and Monte Carlo simulations for dosimetric evaluations of intrafraction motion for gated and ungated intensity modulated arc therapy deliveries,” Phys. Med. Biol. 53(22), 64196436 (2008).
http://dx.doi.org/10.1088/0031-9155/53/22/010
14.
14. Y. Y. Vinogradskiy, P. Balter, D. S. Followill, P. E. Alvarez, R. A. White, and G. Starkschall, “Comparing the accuracy of four-dimensional photon dose calculations with three-dimensional calculations using moving and deforming phantoms,” Med. Phys. 36(11), 50005006 (2009).
http://dx.doi.org/10.1118/1.3238482
15.
15. Y. De Deene, C. Hurley, A. Venning, K. Vergote, Mather M , B. J. Healy, and C. Baldock, “A basic study of some normoxic polymer gel dosimeters,” Phys. Med. Biol. 47(19), 34413463 (2002).
http://dx.doi.org/10.1088/0031-9155/47/19/301
16.
16. Y. De Deene, A. Venning, C. Hurley, B. J. Healy, and C. Baldock, “Dose-response stability and integrity of the dose distribution of various polymer gel dosimeters,” Phys. Med. Biol. 47(14), 24592470 (2002).
http://dx.doi.org/10.1088/0031-9155/47/14/307
17.
17. Y. De Deene, K. Vergote, C. Claeys, and C. De Wagter, “The fundamental radiation properties of normoxic polymer gel dosimeters: a comparison between a methacrylic acid based gel and acrylamide based gels,” Phys. Med. Biol. 51, 653673 (2006).
http://dx.doi.org/10.1088/0031-9155/51/3/012
18.
18. A. J. Venning, K. N. Nitschke, P. J. Keall, and Baldock C, “Radiological properties of normoxic polymer gel dosimeters,” Med. Phys. 32(4), 10471053 (2005).
http://dx.doi.org/10.1118/1.1881812
19.
19. R. A. Crescenti, S. G. Scheib, U. Schneider, and S. Gianolini, “Introducing gel dosimetry in a clinical environment: customization of polymer gel composition and magnetic resonance imaging parameters used for 3D dose verifications in radiosurgery and intensity modulated radiotherapy,” Med. Phys. 34(4), 12861297 (2007).
http://dx.doi.org/10.1118/1.2712042
20.
20. P. Sandilos, A. Angelopoulos, P. Baras, K. Dardoufas, P. Karaiskos, P. Kipouros, M. Kozicki, J. M. Rosiak, L. Sakelliou, I. Seimenis, and L. Vlahos, “Dose verification in clinical IMRT prostate incidents,” Int. J. Radiat. Oncol., Biol., Phys. 59(5), 15401547 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.04.029
21.
21. J. L. Bedford, P. J. Childs, V. Nordmark Hansen, M. A. Mosleh-Shirazi, F. Verhaegen, and A. P. Warrington, “Commissioning and quality assurance of the Pinnacle3 radiotherapy treatment planning system for external beam photons,” Br. J. Radiol. 76, 163176 (2003).
http://dx.doi.org/10.1259/bjr/42085182
22.
22. A. M. Nichol, K. K. Brock, G. A. Lockwood, M. Math, D. J. Moseley, T. Rosewall, P. R. Warde, C. N. Catton, and D. A. Jaffray, “A magnetic resonance imaging study of prostate deformation relative to implanted gold fiducial markers,” Int. J. Radiat. Oncol., Biol., Phys. 67(1), 4856 (2007).
http://dx.doi.org/10.1016/j.ijrobp.2006.08.021
23.
23. V. Egorov, S. Tsyuryupa, S. Kanilo, M. Kogit, and A. Sarvazyan, “Soft tissue elastometer,” Med. Eng. Phys. 30(2), 206212 (2008).
http://dx.doi.org/10.1016/j.medengphy.2007.02.007
24.
24. A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol. 48(14), 21832198 (2003).
http://dx.doi.org/10.1088/0031-9155/48/14/310
25.
25. W. D. Foltz, J. A. Stainsby, and G. A. Wright, “T2 accuracy on a whole-body imager,” Magn. Reson. Med. 38(5), 759768 (1997).
http://dx.doi.org/10.1002/mrm.v38:5
26.
26. W. D. Foltz, N. Merchant, E. Downar, J. A. Stainsby, and G. A. Wright, “Coronary venous oximetry using MRI,” Magn. Reson. Med. 42(5), 837848 (1999).
http://dx.doi.org/10.1002/(SICI)1522-2594(199911)42:5<>1.0.CO;2-O
27.
27. W. D. Foltz, O. Al-Kwifi, M. S. Sussman, J. A. Stainsby, and G. A. Wright, “Optimized spiral imaging for measurement of myocardial T2 relaxation,” Magn. Reson. Med. 49(6), 10891097 (2003).
http://dx.doi.org/10.1002/mrm.v49:6
28.
28. J. J. Sonke, L. Zijp, P. Remeijer, and M. van Herk, “Respiratory correlated cone beam CT,” Med. Phys. 32(4), 11761186 (2005).
http://dx.doi.org/10.1118/1.1869074
29.
29. A. Al-Mayah, J. Moseley, and K. K. Brock, “Contact surface and material nonlinearity modeling of human lungs,” Phys. Med. Biol. 53(1), 305317 (2008).
http://dx.doi.org/10.1088/0031-9155/53/1/022
30.
30. D. A. Low and J. F. Dempsey, “Evaluation of the gamma dose distribution comparison method,” Med. Phys. 30(9), 24552464 (2003).
http://dx.doi.org/10.1118/1.1598711
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/39/2/10.1118/1.3676185
Loading
/content/aapm/journal/medphys/39/2/10.1118/1.3676185
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/39/2/10.1118/1.3676185
2012-01-18
2014-07-31

Abstract

Purpose:

To propose a novel technique to experimentally validate deformable dose algorithms by measuring 3D dose distributions under the condition of deformation using deformable geldosimeters produced by a novel gel fabrication method.

Method:

Five geldosimeters, two rigid control gels and three deformable gels, were manufactured and treated with the same conformal plan that prescribed 400 cGy to the isocenter. The control gels were treated statically; the deformable gels were treated while being compressed by an actuation device to simulate breathing motion (amplitude of compression = 1, 1.5, and 2 cm, respectively; frequency = 16 rpm). Comparison between the dose measured by the control gels and the corresponding static dose distribution calculated in the treatment planning system (TPS) has determined the intrinsic dose measurement uncertainty of the geldosimeters.Doses accumulated using MORFEUS, a biomechanical model-based deformable registration and dose accumulation algorithm, were compared with the doses measured by the deformable geldosimeters to verify the accuracy of MORFEUS using dose differences at each voxel as well as the gamma index test. Flexible plastic wraps were used to contain and protect the deformable gels from oxygen infiltration, which inhibits the gels’ dose sensitizing ability. Since the wraps were imperfect oxygen barrier, dose comparison between MORFEUS and the deformable gels was performed only in the central region with a received dose of 200 cGy or above to exclude the peripheral region where oxygen penetration had likely affected dose measurements.

Results:

Dose measured with the control gels showed that the intrinsic dose measurement uncertainty of the geldosimeters was 11.8 cGy or 4.7% compared to the TPS. The absolute mean voxel-by-voxel dose difference between the accumulated dose and the dose measured with the deformable gels was 4.7 cGy (SD = 36.0 cGy) or 1.5% (SD = 13.4%) for the three deformable gels. The absolute mean vector distance between the 250, 300, 350, and 400 cGy isodose surfaces on the accumulated and measured distributions was 1.2 mm (SD < 1.5 mm). The gamma index test that used the dose measurement precision of the control gels as the dose difference criterion and 2 mm as the distance criterion was performed, and the average pass rate of the accumulated dose distributions for all three deformable gels was 92.7%. When the distance criterion was relaxed to 3 mm, the average pass rate increased to 96.9%.

Conclusion:

This study has proposed a novel technique to manufacture deformable volumetric geldosimeters. By comparing the doses accumulated in MORFEUS and the doses measured with the dosimeters under the condition of deformation, the study has also demonstrated the potential of using deformable geldosimetry to experimentally validate algorithms that include deformations into dose computation. Since dose less than 200 cGy was not evaluated in this study, future investigations will focus more on low dose regions by either using bigger geldosimeters or prescribing a lower dose to provide a more complete experimental validation of MORFEUS across a wider dose range.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/39/2/1.3676185.html;jsessionid=5764o8af3j0v9.x-aip-live-02?itemId=/content/aapm/journal/medphys/39/2/10.1118/1.3676185&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A novel technique to enable experimental validation of deformable dose accumulation
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/39/2/10.1118/1.3676185
10.1118/1.3676185
SEARCH_EXPAND_ITEM