1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
The use and QA of biologically related models for treatment planning: Short report of the TG-166 of the therapy physics committee of the AAPMa)
a)The full Task Group report is available at www.aapm.org.
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/39/3/10.1118/1.3685447
1.
1. C. C. Ling and X. A. Li, “Over the next decade the success of radiation treatment planning will be judged by the immediate biological response of tumor cells rather than by surrogate measures such as dose maximization and uniformity,” Med. Phys. 32, 21892192 (2005).
http://dx.doi.org/10.1118/1.1930908
2.
2. M. V. Graham, J. A. Purdy, B. Emami, W. Harms, W. Bosch, M. A. Lockett, and C. A. Perez, “Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small lung cancer (NSCLC),” Int. J. Radiat. Oncol., Biol., Phys. 45, 323329 (1999).
http://dx.doi.org/10.1016/S0360-3016(99)00183-2
3.
3. L. B. Marks, S. M. Bentzen, J. O. Deasy, F. M. Kong, J. D. Bradley, I. S. Vogelius, I. El Naqa, J. L. Hubbs, J. V. Lebesque, R. D. Timmerman, M. K. Martel, and A. Jackson, “Radiation dose-volume effects in the lung,” Int. J. Radiat. Oncol., Biol., Phys. 76(3 Suppl), S70S76 (2010).
http://dx.doi.org/10.1016/j.ijrobp.2009.06.091
4.
4. J. O. Deasy, “Multiple local minima in radiotherapy optimization problems with dose-volume constraints,” Med. Phys. 24, 11571161 (1997).
http://dx.doi.org/10.1118/1.598017
5.
5. Q. Wu and R. Mohan, “Multiple local minima in IMRT optimization based on dose-volume criteria,” Med. Phys. 29, 15141527 (2002).
http://dx.doi.org/10.1118/1.1485059
6.
6. R. D. Stewart and X. A. Li, “BGRT: Biologically guided radiation therapy—The future is fast approaching!,” Med. Phys. 34, 37393751 (2007).
http://dx.doi.org/10.1118/1.2779861
7.
7. A. Brahme, “Optimized radiation therapy based on radiobiological objectives,” Semin. Radiat. Oncol. 9, 3547 (1999).
http://dx.doi.org/10.1016/S1053-4296(99)80053-8
8.
8. C. C. Ling, J. Humm, S. Larson, H. Amols, Z. Fuks, S. Leibel, and J. A. Koutcher, “Towards multidimensional radiotherapy (MD-CRT): Biological imaging and biological conformality,” Int. J. Radiat. Oncol., Biol., Phys. 47, 551560 (2000).
http://dx.doi.org/10.1016/S0360-3016(00)00467-3
9.
9. Y. Yang and L. Xing, “Towards biologically conformal radiation therapy (BCRT): Selective IMRT dose escalation under the guidance of spatial biology distribution,” Med. Phys. 32, 14731484 (2005).
http://dx.doi.org/10.1118/1.1924312
10.
10. S. M. Bentzen, “Theragnostic imaging for radiation oncology: Dose-painting by numbers,” Lancet Oncol. 6, 112117 (2005).
http://dx.doi.org/10.1016/S1470-2045(05)01737-7
11.
11. Y. Kim and W. A. Tomé, “Risk-Adaptive Optimization: Selective Boosting of high-risk tumor subvolumes,” Int J. Radiat. Oncol., Biol., Phys. 66, 152842 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2006.08.032
12.
12. A. Søvik, E. Malinen, H. K. Skogmo, S. M. Bentzen, O. S. Bruland, and D. R. Olsen, “Radiotherapy adapted to spatial and temporal variability in tumor hypoxia,” Int. J. Radiat. Oncol., Biol., Phys. 68, 14961504 (2007).
http://dx.doi.org/10.1016/j.ijrobp.2007.04.027
13.
14.
14. A. Niemierko, “Reporting and analyzing dose distributions: A concept of equivalent uniform dose,” Med. Phys. 24, 103110 (1997).
http://dx.doi.org/10.1118/1.598063
15.
15. A. Niemierko, “A generalized concept of equivalent uniform dose (EUD),” Med. Phys. 26, 1101 (1999).
16.
16. B. Choi and J. O. Deasy, “The generalized equivalent uniform dose function as a basis for intensity-modulated treatment planning,” Phys. Med. Biol. 47, 35793589 (2002).
http://dx.doi.org/10.1088/0031-9155/47/20/302
17.
17. H. E. Romeijn, J. F. Dempsey, and J. G. Li, “A unifying framework for multi-criteria fluence map optimization models,” Phys. Med. Biol. 49, 19912013 (2004).
http://dx.doi.org/10.1088/0031-9155/49/10/011
18.
18. M. Alber and R. Reemtsen, “Intensity modulated radiation therapy planning by use of a barrier-penalty multiplier method,” Optimization, Methods and Software (OMS) (Taylor & Francis, London, 2007), Vol. 22, pp. 391411.
19.
19. Q. Wu, D. Djajaputra, Y. Wu, J. Zhou, H. H. Liu, and R. Mohan, “Intensity-modulated radiotherapy optimization with gEUD-guided dose-volume objectives,” Phys. Med. Biol. 48, 279291 (2003).
http://dx.doi.org/10.1088/0031-9155/48/3/301
20.
20. D. N. Mihailidis, B. Plants, L. Farinash, M. Harmon, L. Whaley, P. Paja, and P. Tomara, “Superiority of equivalent uniform dose (EUD)-based optimization for breast and chest wall,” Med. Dosim. 35, 6776 (2010)
http://dx.doi.org/10.1016/j.meddos.2009.03.002
21.
21. P. Källman, B. K. Lind, and A. Brahme, “An algorithm for maximizing the probability of complication-free tumour control in radiation therapy,” Phys. Med. Biol. 37, 871890 (1992).
http://dx.doi.org/10.1088/0031-9155/37/4/004
22.
22. Q. Wu, R. Mohan, A. Niemierko, and R. Schmidt-Ullrich, “Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose,” Int. J. Radiat. Oncol., Biol., Phys. 52, 224235 (2002).
http://dx.doi.org/10.1016/S0360-3016(01)02585-8
23.
23. W. R. De Gersem, S. Derycke, C. O. Colle, C. De Wagter, and W. J. De Neve, “Inhomogeneous target-dose distributions: A dimension more for optimization?,” Int. J. Radiat. Oncol., Biol., Phys. 44, 461468 (1999).
http://dx.doi.org/10.1016/S0360-3016(98)00464-7
24.
24. QUANTEC, Int. J. Radiat. Oncol. Biol. Phys. 76(3 Suppl) (2010).
25.
25. S. H. Benedict, K. M. Yenice, D. Followill, J. M. Galvin, W. Hinson, B. Kavanagh, P. Keall, M. Lovelock, S. Meeks, L. Papiez, T. Purdie, R. Sadagopan, M. C. Schell, B. Salter, D. J. Schlesinger, A. S. Shiu, T. Solberg, D. Y. Song, V. Stieber, R. Timmerman, W. A. Tomé, D. Verellen, L. Wang, and F. F. Yin, “Stereotactic body radiation therapy: The report of AAPM Task Group 101,” Med Phys. 37, 40784101 (2010).
http://dx.doi.org/10.1118/1.3438081
26.
26. I. Kawrakow, “The effect of Monte Carlo statistical uncertainties on the evaluation of dose distributions in radiation treatment planning,” Phys. Med. Biol. 49, 15491556 (2004).
http://dx.doi.org/10.1088/0031-9155/49/8/012
27.
27. R. K. Ten Haken, T. S. Lawrence, and L. A. Dawson, “Prediction of radiation-induced liver disease by Lyman normal-tissue complication probability model in three-dimensional conformal radiation therapy for primary liver carcinoma: In regards to Xu et al. (Int J Radiat Oncol Biol Phys 2006;65:189-195),” Int. J. Radiat. Oncol., Biol., Phys. 66, 1272 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2006.08.003
28.
28. E. S. Koh, A. Sun, T. H. Tran, R. Tsang, M. Pintilie, D. C. Hodgson, W. Wells, R. Heaton, and M. K. Gospodarowicz, “Clinical dose-volume histogram analysis in predicting radiation pneumonitis in Hodgkin’s lymphoma,” Int. J. Radiat. Oncol., Biol., Phys. 66, 223228 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2006.03.063
29.
29. J. T. Lyman, “Complication probability as assessed from dose-volume histograms,” Radiat. Res. Suppl. 8, S13S19 (1985).
http://dx.doi.org/10.2307/3583506
30.
30. G. J. Kutcher and C. Burman, “Calculation of complication probability factors for non-uniform normal tissue irradiation: The effective volume method,” Int. J. Radiat. Oncol., Biol., Phys. 16, 16231630 (1989).
http://dx.doi.org/10.1016/0360-3016(89)90972-3
31.
31. L. A. Dawson, D. Normolle, J. M. Balter, C. J. McGinn, T. S. Lawrence, and R. K. Ten Haken, “Analysis of radiation-induced liver disease using the Lyman NTCP model,” Int. J. Radiat. Oncol., Biol., Phys. 53, 810821 (2002). Erratum in:
31. L. A. Dawson, D. Normolle, J. M. Balter, C. J. McGinn, T. S. Lawrence, and R. K. Ten Haken, Int. J. Radiat. Oncol., Biol., Phys. 53, 1422 (2002).
http://dx.doi.org/10.1016/S0360-3016(02)02846-8
32.
32. Y. Seppenwoolde, J. V. Lebesque, K. de Jaeger, J. S. Belderbos, L. J. Boersma, C. Schilstra, G. T. Henning, J. A. Hayman, M. K. Martel, and R. K. Ten Haken, “Comparing different NTCP models that predict the incidence of radiation pneumonitis. Normal tissue complication probability,” Int. J. Radiat. Oncol., Biol., Phys. 55, 724735 (2003).
http://dx.doi.org/10.1016/S0360-3016(02)03986-X
33.
33. Z. Y. Xu, S. X. Liang, J. Zhu, X. D. Zhu, J. D. Zhao, H. J. Lu, Y. L. Yang, L. Chen, A. Y. Wang, X. L. Fu, and G. L. Jiang, “Prediction of radiation-induced liver disease by Lyman normal-tissue complication probability model in three-dimensional conformal radiation therapy for primary liver carcinoma,” Int. J. Radiat. Oncol., Biol., Phys. 65, 189195 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2005.11.034
34.
34. M. Zaider and H. I. Amols, “A little to a lot or a lot to a little: Is NTCP always minimized in multiport therapy?,” Int. J. Radiat. Oncol., Biol., Phys. 41, 945950 (1998).
http://dx.doi.org/10.1016/S0360-3016(98)00128-X
35.
35. V. Moiseenko, J. Battista, and J. Van Dyk, “Normal tissue complication probabilities: Dependence on choice of biological model and dose-volume histogram reduction scheme,” Int. J. Radiat. Oncol., Biol., Phys. 46, 983993 (2000).
http://dx.doi.org/10.1016/S0360-3016(99)00473-3
36.
36. L. P. Muren, N. Jebsen, A. Gustafsson, and O. Dahl, “Can dose-response models predict reliable normal tissue complication probabilities in radical radiotherapy of urinary bladder cancer? The impact of alternative radiation tolerance models and parameters,” Int. J. Radiat. Oncol., Biol., Phys. 50, 627637 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)01464-X
37.
37. B. Sanchez-Nieto and A. E. Nahum, “The delta-TCP concept: A clinically useful measure of tumor control probability,” Int. J. Radiat. Oncol., Biol., Phys. 44, 369380 (1999).
http://dx.doi.org/10.1016/S0360-3016(99)00029-2
38.
38. W. A. Tomé and J. F. Fowler, “Selective boosting of tumor subvolumes,” Int. J. Radiat. Oncol., Biol., Phys. 48, 593599 (2000).
http://dx.doi.org/10.1016/S0360-3016(00)00666-0
39.
39. W. A. Tomé and J. F. Fowler, “On cold spots in tumor subvolumes,” Med. Phys. 29, 15901598 (2002).
http://dx.doi.org/10.1118/1.1485060
40.
40. P. Okunieff, D. Morgan, A. Niemierko, and H. D. Suit, “Radiation dose-response of human tumors,” Int. J. Radiat. Oncol., Biol., Phys. 32, 12271237 (1995).
http://dx.doi.org/10.1016/0360-3016(94)00475-Z
41.
41. B. Emami, J. Lyman, A. Brown, L. Coia, M. Goitein, J. E. Munzenrider, B. Shank, L. J. Solin, and M. Wesson, “Tolerance of normal tissue to therapeutic irradiation,” Int. J. Radiat. Oncol., Biol., Phys. 21, 109122 (1991).
http://dx.doi.org/10.1016/0360-3016(91)90171-Y
42.
42. V. A. Semenenko, B. Reitz, E. Day, X. S. Qi, M. Miften, and X. A. Li, “Evaluation of a commercial biologically based IMRT treatment planning system,” Med. Phys. 35, 58515860 (2008).
http://dx.doi.org/10.1118/1.3013556
43.
43. X. S. Qi, V. A. Semenenko, X. A. Li, “Improved critical structure sparing with biologically-based IMRT optimization,” Med. Phys. 36, 17901799 (2009).
http://dx.doi.org/10.1118/1.3116775
44.
44. G. J. Kutcher, L. Coia, M. Gillin, W. F. Hanson, S. Leibel, R. J. Morton, J. R. Palta, J. A. Purdy, L. E. Reinstein, G. K. Svensson, M. Weller, and L. Wingfield, “Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40,” Med. Phys. 21, 581618 (1994).
http://dx.doi.org/10.1118/1.597316
45.
45. B. Fraass, K. Doppke, M. Hunt, G. Kutcher, G. Starkschall, R. Stern, and J. Van Dyke, “American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning,” Med. Phys. 25, 17731829 (1998).
http://dx.doi.org/10.1118/1.598373
46.
46. G. A. Ezzell, J. W. Burmeister, N. Dogan, T. J. Losasso, J. G. Mechalakos, D. Mihailidis, A. Molineu, J. R. Palta, C. R. Ramsey, B. J. Salter, J. Shi, P. Xia, N. J. Yue, and Y. Xiao, “IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119,” Med. Phys. 36, 53595373 (2009).
http://dx.doi.org/10.1118/1.3238104
47.
47. E. E. Klein, J. Hanley, J. Bayouth, F. F. Yin, W. Simon, S. Dresser, C. Serago, F. Aguirre, L. Ma, B. Arjomandy, C. Liu, C. Sandin, and T. Holmes, “Task Group 142 report: Quality assurance of medical accelerators,” Med Phys. 36, 4197212 (2009).
http://dx.doi.org/10.1118/1.3190392
48.
48. J. O. Deasy, A. I. Blanco, and V. H. Clark, “CERR: A computational environment for radiotherapy research,” Med. Phys. 30, 979985 (2003).
http://dx.doi.org/10.1118/1.1568978
50.
50. B. Sanchez-Nieto and A. E. Nahum, “BIOPLAN: Software for the biological evaluation of radiotherapy treatment plans,” Med. Dosim. 25, 7176 (2000).
http://dx.doi.org/10.1016/S0958-3947(00)00031-5
51.
51. J. Uzan and A. E. Nahum, “BioSuite, new software for radiobiological customisation of dose and fraction size in external-beam radiothearapy,” 10th Biennial ESTRO meeting (2009).
56.
56.ICRU, “Prescribing, recording and reporting photon beam therapy,” ICRU Report No. 50 (International Commission on Radiation Units and Measurements, Washington, DC, 1993).
57.
57. J. H. Killoran, H. M. Kooy, D. J. Gladstone, F. J. Welte, and C. J. Beard, “A numerical simulation of organ motion and daily setup uncertainties: Implications for radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 37, 213221 (1997).
http://dx.doi.org/10.1016/S0360-3016(96)00477-4
58.
58. D. J. Brenner and R. K. Sachs, “A more robust biologically based ranking criterion for treatment plans,” Int. J. Radiat. Oncol., Biol., Phys. 43, 697698 (1999).
http://dx.doi.org/10.1016/S0360-3016(98)00438-6
59.
59. S. Das, “A role for biological optimization within the current treatment planning paradigm,” Med Phys. 36, 46724682 (2010).
http://dx.doi.org/10.1118/1.3220211
60.
60. Y. Lu, D. R. Spelbring, and G. T. Chen, “Functional dose-volume histograms for functionally heterogeneous normal organs,” Phys. Med. Biol. 42, 34556 (1997).
http://dx.doi.org/10.1088/0031-9155/42/2/007
61.
61. L. B. Marks, G. W. Sherouse, M. T. Munley, G. C. Bentel, and D. P. Spencer, “Incorporation of functional status into dose-volume analysis,” Med. Phys. 26, 1969 (1999).
http://dx.doi.org/10.1118/1.598503
63.
63. J. D. Cox, J. Stetz, and T. F. Pajak, “Toxicity criteria of the radiation therapy oncology group (RTOG) and the European organization for research and treatment of cancer (EORTC),” Int. J. Radiat. Oncol., Biol., Phys. 31, 13411346 (1995).
http://dx.doi.org/10.1016/0360-3016(95)00060-C
64.
64. H. R. Withers, J. M. Taylor, and B. Maciejewski, “Treatment volume and tissue tolerance,” Int. J. Radiat. Oncol., Biol., Phys. 14, 751759 (1988).
http://dx.doi.org/10.1016/0360-3016(88)90098-3
65.
65. M. Alber and F. Nüsslin, “An objective function for radiation treatment optimization based on local biological measures,” Phys. Med. Biol. 44, 479493 (1999).
http://dx.doi.org/10.1088/0031-9155/44/2/014
66.
66. M. Alber, “A concept for the optimization of radiotherapy,” Ph.D. dissertation, University of Tübingen, Tübingen, Germany, 2000.
67.
67. M. Alber and C. Belka, “A normal tissue dose response model of dynamic repair processes,” Phys. Med. Biol. 51, 153172 (2006).
http://dx.doi.org/10.1088/0031-9155/51/1/012
68.
68. M. Alber, M. Birkner, and F. Nüsslin, “Tools for the analysis of dose optimization: II. Sensitivity analysis,” Phys. Med. Biol. 47, N265N270 (2002).
http://dx.doi.org/10.1088/0031-9155/47/19/402
69.
69. B. Hårdemark, A. Liander, H. Rehbinder, J. Löf, and D. Robinson, “P3IMRT Biological optimization and EUD,” Pinnacle3 White Paper, available at www.medical.philips.com/main/products/ros/assets/docs/white_papers/EUD_Final.pdf.
70.
70. C. Burman, G. J. Kutcher, B. Emami, and M. Goitein, “Fitting of normal tissue tolerance data to an analytic function,” Int. J. Radiat. Oncol., Biol., Phys. 21, 123135 (1991).
http://dx.doi.org/10.1016/0360-3016(91)90172-Z
71.
71. B. K. Lind, P. Mavroidis, S. Hyödynmaa, and C. Kappas, “Optimization of the dose level for a given treatment plan to maximize the complication-free tumor cure,” Acta Oncol. 38, 787798 (1999).
http://dx.doi.org/10.1080/028418699432950
72.
72. G. Kåver, B. K. Lind, J. Löf, A. Liander, and A. Brahme, “Stochastic optimization of intensity modulated radiotherapy to account for uncertainties in patient sensitivity,” Phys. Med. Biol. 44, 29552969 (1999).
http://dx.doi.org/10.1088/0031-9155/44/12/308
73.
73. P. Källman, A. Ågren, and A. Brahme, “Tumour and normal tissue responses to fractionated non-uniform dose delivery,” Int. J. Radiat. Biol. 62, 249262 (1992).
http://dx.doi.org/10.1080/09553009214552071
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/39/3/10.1118/1.3685447
Loading
/content/aapm/journal/medphys/39/3/10.1118/1.3685447
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/39/3/10.1118/1.3685447
2012-02-21
2014-09-20

Abstract

Treatment planning tools that use biologically related models for plan optimization and/or evaluation are being introduced for clinical use. A variety of dose-responsemodels and quantities along with a series of organ-specific model parameters are included in these tools. However, due to various limitations, such as the limitations of models and available model parameters, the incomplete understanding of dose responses, and the inadequate clinical data, the use of biologically based treatment planningsystem (BBTPS) represents a paradigm shift and can be potentially dangerous. There will be a steep learning curve for most planners. The purpose of this task group is to address some of these relevant issues before the use of BBTPS becomes widely spread. In this report, the authors (1) discuss strategies, limitations, conditions, and cautions for using biologically based models and parameters in clinical treatment planning; (2) demonstrate the practical use of the three most commonly used commercially available BBTPS and potential dosimetric differences between biologically model based and dose-volume based treatment plan optimization and evaluation; (3) identify the desirable features and future directions in developing BBTPS; and (4) provide general guidelines and methodology for the acceptance testing, commissioning, and routine quality assurance (QA) of BBTPS.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/39/3/1.3685447.html;jsessionid=3h2kj95hsk7b4.x-aip-live-03?itemId=/content/aapm/journal/medphys/39/3/10.1118/1.3685447&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys

Most read this month

Article
content/aapm/journal/medphys
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The use and QA of biologically related models for treatment planning: Short report of the TG-166 of the therapy physics committee of the AAPMa)
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/39/3/10.1118/1.3685447
10.1118/1.3685447
SEARCH_EXPAND_ITEM