Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. F. F. Yin, J Wong, J. M. Balter, S. Benedict, J. Craig, L. Dong, D. Jaffray, S. B. Jiang, S. Kim, C.-M. Ma, M. Muphy, P. Munro, T. Solberg, and Q. Wu, “The role of in-room kv x-ray imaging for patient setup and target localization,” Report of AAPM Task Group 104, 2009.
2. S. Dieterich, C. Cavedon, C. F. Chuang, A. B. Cohen, J. A. Garrett, C. L. Lee, J. R. Lowenstein, M. F. d’souza, Jr. , D. D. Taylor, X. Wu, and C. Yu, “Report of AAPM TG 135: Quality assurance for robotic radiosurgery,” Med. Phys. 38(6), 29142936 (2011).
3. E. E. Klein, J. Hanley, J. Bayouth, F. F. Yin, W. Simon, S. Dresser, C. Serago, F. Aguirre, L. Ma, B. Arjomandy, C. Liu, C. Sandin, and T. Holmes, “Task Group 142 report: Quality assurance of medical accelerators,” Med. Phys. 36(9), 41974212 (2009).
4. J. A. Molloy, G. Chan, A. Markovic, S. McNeeley, D. Pfeiffer, B. Salter, and W. A. Tome, “Quality assurance of U.S.-guided external beam radiotherapy for prostate cancer: Report of AAPM Task Group 154,” Med. Phys. 38(2), 857871 (2011).
5. International Commission in Radiation Units and Measurements, “Prescribing, recording and reporting photon beam therapy,” ICRU Report No. 62 (Supplement to ICRU Report 50) (ICRU, Bethesda, MD, 1999).
6. T. R. Willoughby, P. A. Kupelian, J. Pouliot, K. Shinohara, M. Aubin, M. Roach III , L. L. Skrumeda, J. M. Balter, D. W. Litzenberg, S. W. Hadley, J. T. Wei, and H. M. Sandler, “Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer,” Int. J. Radiat. Oncol., Biol., Phys. 65(2), 528534 (2006).
7. H. Shirato, S. Shimizu, K. Kitamura, and R. Onimaru, “Organ motion in image-guided radiotherapy: Lessons from real-time tumor-tracking radiotherapy,” Int. J. Clin. Oncol. 12(1), 816 (2007).
8. M. B. Sharpe, T. Craig, and D. J. Moseley, “Image guidance: Treatment target localization systems,” Front. Radiat. Ther. Oncol. 40, 7293 (2007).
9. W. A. Tome, H. A. Jaradat, I. A. Nelson, M. A. Ritter, and M. P. Mehta, “Helical tomotherapy: Image guidance and adaptive dose guidance,” Front. Radiat. Ther. Oncol. 40, 162178 (2007).
10. K. M. Langen and D. T. Jones, “Organ motion and its management,” Int. J. Radiat. Oncol., Biol., Phys. 50(1), 265278 (2001).
11. K. G. Gilhuijs and M. van Herk, “Automatic on-line inspection of patient setup in radiation therapy using digital portal images,” Med. Phys. 20(3), 667677 (1993).
12. D. Yan, E. Ziaja, D. Jaffray, J. Wong, D. Brabbins, F. Vicini, and A. Martinez, “The use of adaptive radiation therapy to reduce setup error: A prospective clinical study,” Int. J. Radiat. Oncol., Biol., Phys. 41(3), 715720 (1998).
13. J. P. Bissonnette, K. N. Franks, T. G. Purdie, D. J. Moseley, J. J. Sonke, D. A. Jaffray, L. A. Dawson, and A. Bezjak, “Quantifying interfraction and intrafraction tumor motion in lung stereotactic body radiotherapy using respiration-correlated cone beam computed tomography,” Int. J. Radiat. Oncol., Biol., Phys. 75(3), 688695 (2009).
14. C. Beltran, M. G. Herman, and B. J. Davis, “Planning target margin calculations for prostate radiotherapy based on intrafraction and interfraction motion using four localization methods,” Int. J. Radiat. Oncol., Biol., Phys. 70(1), 289295 (2008).
15. J. Seco, G. C. Sharp, Z. Wu, D. Gierga, F. Buettner, and H. Paganetti, “Dosimetric impact of motion in free-breathing and gated lung radiotherapy: A 4D Monte Carlo study of intrafraction and interfraction effects,” Med. Phys. 35(1), 356366 (2008).
16. J. M. Balter, K. K. Brock, K. L. Lam, D. Tatro, L. A. Dawson, D. L. McShan, and R. K. Ten Haken, “Evaluating the influence of setup uncertainties on treatment planning for focal liver tumors,” Int. J. Radiat. Oncol., Biol., Phys. 63(2), 610614 (2005).
17. Q. J. Wu, D. Thongphiew, Z. Wang, V. Chankong, and F. F. Yin, “The impact of respiratory motion and treatment technique on stereotactic body radiation therapy for liver cancer,” Med. Phys. 35(4), 14401451 (2008).
18. A. Kirilova, G. Lockwood, P. Choi, N. Bana, M. A. Haider, K. K. Brock, C. Eccles, and L. A. Dawson, “Three-dimensional motion of liver tumors using cine-magnetic resonance imaging,” Int. J. Radiat. Oncol., Biol., Phys. 71(4), 11891195 (2008).
19. E. Huang, L. Dong, A. Chandra, D. A. Kuban, Rosen II , A. Evans, and A. Pollack, “Intrafraction prostate motion during IMRT for prostate cancer,” Int. J. Radiat. Oncol., Biol., Phys. 53(2), 261268 (2002).
20. J. F. Aubry, L. Beaulieu, L. M. Girouard, S. Aubin, D. Tremblay, J. Laverdiere, and E. Vigneault, “Measurements of intrafraction motion and interfraction and intrafraction rotation of prostate by three-dimensional analysis of daily portal imaging with radiopaque markers,” Int. J. Radiat. Oncol., Biol., Phys. 60(1), 3039 (2004).
21. R. P. Smith, P. Bloch, E. E. Harris, J. McDonough, A. Sarkar, A. Kassaee, S. Avery, and L. J. Solin, “Analysis of interfraction and intrafraction variation during tangential breast irradiation with an electronic portal imaging device,” Int. J. Radiat. Oncol., Biol., Phys. 62(2), 373378 (2005).
22. S. Sidhu, N. P. Sidhu, C. Lapointe, and G. Gryschuk, “The effects of intrafraction motion on dose homogeneity in a breast phantom with physical wedges, enhanced dynamic wedges, and ssIMRT,” Int. J. Radiat. Oncol., Biol., Phys. 66(1), 6475 (2006).
23. N. J. Yue, X. Li, S. Beriwal, D. E. Heron, M. R. Sontag, and M. S. Huq, “The intrafraction motion induced dosimetric impacts in breast 3D radiation treatment: A 4DCT based study,” Med. Phys. 34(7), 27892800 (2007).
24. X. Q. Lu, L. N. Shanmugham, A. Mahadevan, E. Nedea, M. A. Stevenson, I. Kaplan, E. T. Wong, S. La Rosa, F. Wang, and S. M. Berman, “Organ deformation and dose coverage in robotic respiratory-tracking radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 71(1), 281289 (2008).
25. K. K. Brock, D. L. McShan, R. K. Ten Haken, S. J. Hollister, L. A. Dawson, and J. M. Balter, “Inclusion of organ deformation in dose calculations,” Med. Phys. 30(3), 290295 (2003).
26. M. von Siebenthal, G. Szekely, A. J. Lomax, and P. C. Cattin, “Systematic errors in respiratory gating due to intrafraction deformations of the liver,” Med. Phys. 34(9), 36203629 (2007).
27. T. Bortfeld, K. Jokivarsi, M. Goitein, J. Kung, and S. B. Jiang, “Effects of intra-fraction motion on IMRT dose delivery: Statistical analysis and simulation,” Phys. Med. Biol. 47(13), 22032220 (2002).
28. T. Bortfeld, S. B. Jiang, and E. Rietzel, “Effects of motion on the total dose distribution,” Semin. Radiat. Oncol. 14(1), 4151 (2004).
29. C. Coolens, P. M. Evans, J. Seco, S. Webb, J. M. Blackall, E. Rietzel, and G. T. Chen, “The susceptibility of IMRT dose distributions to intrafraction organ motion: An investigation into smoothing filters derived from four dimensional computed tomography data,” Med. Phys. 33(8), 28092818 (2006).
30. S. Kim, H. C. Akpati, J. E. Kielbasa, J. G. Li, C. Liu, R. J. Amdur, and J. R. Palta, “Evaluation of intrafraction patient movement for CNS and head & neck IMRT,” Med. Phys. 31(3), 500506 (2004).
31. E. D. Ehler, B. E. Nelms, and W. A. Tome, “On the dose to a moving target while employing different IMRT delivery mechanisms,” Radiother. Oncol. 83(1), 4956 (2007).
32. T. S. Hong, W. A. Tome, R. J. Chappell, P. Chinnaiyan, M. P. Mehta, and P. M. Harari, “The impact of daily setup variations on head-and-neck intensity-modulated radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 61(3), 779788 (2005).
33. D. W. Litzenberg, J. M. Balter, S. W. Hadley, H. M. Sandler, T. R. Willoughby, P. A. Kupelian, and L. Levine, “Influence of intrafraction motion on margins for prostate radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 65(2), 548553 (2006).
34. N. P. Orton and W. A. Tome, “The impact of daily shifts on prostate IMRT dose distributions,” Med. Phys. 31(10), 28452848 (2004).
35. B. Schaly, G. S. Bauman, W. Song, J. J. Battista, and J. Van Dyk, “Dosimetric impact of image-guided 3D conformal radiation therapy of prostate cancer,” Phys. Med. Biol. 50(13), 30833101 (2005).
36. Q. Wu, G. Ivaldi, J. Liang, D. Lockman, D. Yan, and A. Martinez, “Geometric and dosimetric evaluations of an online image-guidance strategy for 3D-CRT of prostate cancer,” Int. J. Radiat. Oncol., Biol., Phys. 64(5), 15961609 (2006).
37. H. S. Li, I. J. Chetty, and T. D. Solberg, “Quantifying the interplay effect in prostate IMRT delivery using a convolution-based method,” Med. Phys. 35(5), 17031710 (2008).
38. K. M. Langen, W. Lu, W. Ngwa, T. R. Willoughby, B. Chauhan, S. L. Meeks, P. A. Kupelian, and G. Olivera, “Correlation between dosimetric effect and intrafraction motion during prostate treatments delivered with helical tomotherapy,” Phys. Med. Biol. 53(24), 70737086 (2008).
39. M. W. Kissick and T. R. Mackie, “Task Group 76 Report on ‘The management of respiratory motion in radiation oncology’ [Med. Phys. 33, 3874-3900 (2006)],” Med. Phys. 36(12), 57215722 (2009).
40. J. M. Crook, Y. Raymond, D. Salhani, H. Yang, and B. Esche, “Prostate motion during standard radiotherapy as assessed by fiducial markers,” Radiother. Oncol. 37(1), 3542 (1995).
41. C. R. Ramsey, D. Scaperoth, R. Seibert, D. Chase, T. Byrne, and S. Mahan, “Image-guided helical tomotherapy for localized prostate cancer: Technique and initial clinical observations,” J. Appl. Clin. Med. Phys. 8(3), 2320 (2007).
42. A. David and J. P. Forsyth, Computer Vision: A Modern Approach, 1st ed. (Prentice-Hall, Englewood Cliffs, NJ, 2002).
43. H. J. van Kleffens and W. M. Star, “Application of stereo x-ray photogrammetry (SRM) in the determination of absorbed dose values during intracavitary radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 5(4), 557563 (1979).
44. D. E. Velkley and G. D. Oliver, Jr. , “Stereo-photogrammetry for the determination of patient surface geometry,” Med. Phys. 6(2), 100104 (1979).
45. W. D. Renner, T. P. O’Connor, S. R. Amtey, P. R. Reddi, G. K. Bahr, and J. G. Kereiakes, “The use of photogrammetry in tissue compensator design. Part I: Photogrammetric determination of patient topography,” Radiology 125(2), 505510 (1977).
46. F. Borel, J. Defer, H. Aget, O. Gallet, M. Urbajtel, and A. Laugier, “[Use of photogrammetry for taking body contours in radiotherapy],” J. Radiol. Electrol., Med. Nucl. 56(5), 433437 (1975).
47. R. D. Rogus, R. L. Stern, and H. D. Kubo, “Accuracy of a photogrammetry-based patient positioning and monitoring system for radiation therapy,” Med. Phys. 26(5), 721728 (1999).
48. J. P. Siebert and S. J. Marshall, “Human Body 3D imaging by speckle texture projection photogrammetry,” Sens. Rev. 20(3), 218226 (2000).
49. E. R. Davies, Machine Vision: Theory, Algorithms, Practicalities, 3rd ed. (Elsevier, Amsterdam/Boston, 2005).
50. P. J. Schoffel, W. Harms, G. Sroka-Perez, W. Schlegel, and C. P. Karger, “Accuracy of a commercial optical 3D surface imaging system for realignment of patients for radiotherapy of the thorax,” Phys. Med. Biol. 52(13), 39493963 (2007).
51. G. Stroian, T. Falco, and J. P. Seuntjens, “Elimination of ghost markers during dual sensor-based infrared tracking of multiple individual reflective markers,” Med. Phys. 31(7), 20082019 (2004).
52. C. Bert, K. G. Metheany, K. Doppke, and G. T. Chen, “A phantom evaluation of a stereo-vision surface imaging system for radiotherapy patient setup,” Med. Phys. 32(9), 27532762 (2005).
53. C. Moore, F. Lilley, V. Sauret, M. Lalor, and D. Burton, “Opto-electronic sensing of body surface topology changes during radiotherapy for rectal cancer,” Int. J. Radiat. Oncol., Biol., Phys. 56(1), 248258 (2003).
54. A. Brahme, P. Nyman, and B. Skatt, “4D laser camera for accurate patient positioning, collision avoidance, image fusion and adaptive approaches during diagnostic and therapeutic procedures,” Med. Phys. 35(5), 16701681 (2008).
55. S. L. Meeks, F. J. Bova, W. A. Friedman, J. M. Buatti, R. D. Moore, and W. M. Mendenhall, “IRLED-based patient localization for linac radiosurgery,” Int. J. Radiat. Oncol., Biol., Phys. 41(2), 433439 (1998).
56. T. R. Willoughby, A. R. Forbes, D. Buchholz, K. M. Langen, T. H. Wagner, O. A. Zeidan, P. A. Kupelian, and S. L. Meeks, “Evaluation of an infrared camera and x-ray system using implanted fiducials in patients with lung tumors for gated radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 66(2), 568575 (2006).
57. G. Baroni, M. Riboldi, M. F. Spadea, B. Tagaste, C. Garibaldi, R. Orecchia, and A. Pedotti, “Integration of enhanced optical tracking techniques and imaging in IGRT,” J. Radiat. Res. 48(Suppl A), A61A74 (2007).
58. S. Webb and D. M. Binnie, “A strategy to minimize errors from differential intrafraction organ motion using a single configuration for a ‘breathing’ multileaf collimator,” Phys. Med. Biol. 51(18), 45174531 (2006).
59. P. J. Keall, M. Chang, S. Benedict, H. Thames, S. S. Vedam, and P. S. Lin, “Investigating the temporal effects of respiratory-gated and intensity-modulated radiotherapy treatment delivery on in vitro survival: An experimental and theoretical study,” Int. J. Radiat. Oncol., Biol., Phys. 71(5), 15471552 (2008).
60. A. Sawant, R. Venkat, V. Srivastava, D. Carlson, S. Povzner, H. Cattell, and P. Keall, “Management of three-dimensional intrafraction motion through real-time DMLC tracking,” Med. Phys. 35(5), 20502061 (2008).
61. R. L. Smith, A. Sawant, L. Santanam, R. B. Venkat, L. J. Newell, B. C. Cho, P. Poulsen, H. Catell, P. J. Keall, and P. J. Parikh, “Integration of real-time internal electromagnetic position monitoring coupled with dynamic multileaf collimator tracking: An intensity-modulated radiation therapy feasibility study,” Int. J. Radiat. Oncol., Biol., Phys. 74(3), 868875 (2009).
62. A. Sawant, R. L. Smith, R. B. Venkat, L. Santanam, B. Cho, P. Poulsen, H. Cattell, L. J. Newell, P. Parikh, and P. J. Keall, “Toward submillimeter accuracy in the management of intrafraction motion: The integration of real-time internal position monitoring and multileaf collimator target tracking,” Int. J. Radiat. Oncol., Biol., Phys. 74(2), 575582 (2009).
63. F. J. Bova, J. M. Buatti, W. A. Friedman, W. M. Mendenhall, C. C. Yang, and C. L. Liu, “The Univeristy of Florida frameless high-precision stereotactic radiotherapy system.,” Int. J. Radiat. Oncol., Biol., Phys. 38, 875882 (1997).
64. A. W. Lightstone, S. H. Benedict, F. J. Bova, T. D. Solberg, and R. L. Stern, “Intracranial stereotactic positioning systems: Report of the American Association of Physicists in Medicine Radiation Therapy Committee Task Group no. 68,” Med. Phys. 32(7), 23802398 (2005).
65. S. L. Meeks, F. J. Bova, T. H. Wagner, J. M. Buatti, W. A. Friedman, and K. D. Foote, “Image localization for frameless stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 46(5), 12911299 (2000).
66. W. A. Tome, S. L. Meeks, J. M. Buatti, F. J. Bova, W. A. Friedman, and Z. Li, “A high-precision system for conformal intracranial radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 47(4), 11371143 (2000).
67. W. A. Tome, S. L. Meeks, T. R. McNutt, J. M. Buatti, F. J. Bova, W. A. Friedman, and M. Mehta, “Optically guided intensity modulated radiotherapy,” Radiother. Oncol. 61(1), 3344 (2001).
68. S. S. Korreman, T. Juhler-Nottrup, and A. L. Boyer, “Respiratory gated beam delivery cannot facilitate margin reduction, unless combined with respiratory correlated image guidance,” Radiother. Oncol. 86(1), 6168 (2008).
69. E. Yorke, K. E. Rosenzweig, R. Wagman, and G. S. Mageras, “Interfractional anatomic variation in patients treated with respiration-gated radiotherapy,” J. Appl. Clin. Med. Phys. 6(2), 1932 (2005).
70. C. Bert, K. G. Metheany, K. P. Doppke, A. G. Taghian, S. N. Powell, and G. T. Chen, “Clinical experience with a 3D surface patient setup system for alignment of partial-breast irradiation patients,” Int. J. Radiat. Oncol., Biol., Phys. 64(4), 12651274 (2006).
71. D. P. Gierga, M. Riboldi, J. C. Turcotte, G. C. Sharp, S. B. Jiang, A. G. Taghian, and G. T. Chen, “Comparison of target registration errors for multiple image-guided techniques in accelerated partial breast irradiation,” Int. J. Radiat. Oncol., Biol., Phys. 70(4), 12391246 (2008).
72. M. Krengli, S. Gaiano, E. Mones, A. Ballare, D. Beldi, C. Bolchini, and G. Loi, “Reproducibility of patient setup by surface image registration system in conformal radiotherapy of prostate cancer,” Radiat. Oncol. 4, 9 (2009).
73. L. I. Cervino, T. Pawlicki, J. D. Lawson, and S. B. Jiang, “Frame-less and mask-less cranial stereotactic radiosurgery: A feasibility study,” Phys. Med. Biol. 55(7), 18631873 (2010).
74. A. Wagner, K. Schicho, W. Birkfellner, M. Figl, R. Seemann, F. Konig, F. Kainberger, and R. Ewers, “Quantitative analysis of factors affecting intraoperative precision and stability of optoelectronic and electromagnetic tracking systems,” Med. Phys. 29(5), 905912 (2002).
75. D. C. Barratt, A. H. Davies, A. D. Hughes, S. A. Thom, and K. N. Humphries, “Optimisation and evaluation of an electromagnetic tracking device for high-accuracy three-dimensional ultrasound imaging of the carotid arteries,” Ultrasound. Med. Biol. 27(7), 957968 (2001).
76. C. J. Hsu, Y. W. Chang, W. Y. Chou, C. P. Chiou, W. N. Chang, and C. Y. Wong, “Measurement of spinal range of motion in healthy individuals using an electromagnetic tracking device,” J. Neurosurg. Spine 8(2), 135142 (2008).
77. J. B. Hummel, M. R. Bax, M. L. Figl, Y. Kang, C. Maurer, Jr., W. W. Birkfellner, H. Bergmann, and R. Shahidi, “Design and application of an assessment protocol for electromagnetic tracking systems,” Med. Phys. 32(7), 23712379 (2005).
78. C. G. Meskers, H. Fraterman, F. C. van der Helm, H. M. Vermeulen, and P. M. Rozing, “Calibration of the “Flock of Birds” electromagnetic tracking device and its application in shoulder motion studies,” J. Biomech. 32(6), 629633 (1999).
79. M. P. Fried, J. Kleefield, H. Gopal, E. Reardon, B. T. Ho, and F. A. Kuhn, “Image-guided endoscopic surgery: Results of accuracy and performance in a multicenter clinical study using an electromagnetic tracking system,” Laryngoscope 107(5), 594601 (1997).
80. A. D. Milne, D. G. Chess, J. A. Johnson, and G. J. King, “Accuracy of an electromagnetic tracking device: A study of the optimal range and metal interference,” J. Biomech. 29(6), 791793 (1996).
81. J. M. Balter, J. N. Wright, L. J. Newell, B. Friemel, S. Dimmer, Y. Cheng, J. Wong, E. Vertatschitsch, and T. P. Mate, “Accuracy of a wireless localization system for radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 61(3), 933937 (2005).
82. D. W. Litzenberg, T. R. Willoughby, J. M. Balter, H. M. Sandler, J. Wei, P. A. Kupelian, A. A. Cunningham, A. Bock, M. Aubin, M. Roach III , K. Shinohara, and J. Pouliot, “Positional stability of electromagnetic transponders used for prostate localization and continuous, real-time tracking,” Int. J. Radiat. Oncol., Biol., Phys. 68(4), 11991206 (2007).
83. L. Santanam, K. Malinowski, J. Hubenshmidt, S. Dimmer, M. L. Mayse, J. Bradley, A. Chaudhari, K. Lechleiter, S. K. Goddu, J. Esthappan, S. Mutic, D. A. Low, and P. Parikh, “Fiducial-based translational localization accuracy of electromagnetic tracking system and on-board kilovoltage imaging system,” Int. J. Radiat. Oncol., Biol., Phys. 70(3), 892899 (2008).
84. J. Kindblom, A. M. Ekelund-Olvenmark, H. Syren, R. Iustin, K. Braide, I. Frank-Lissbrant, and B. Lennernas, “High precision transponder localization using a novel electromagnetic positioning system in patients with localized prostate cancer,” Radiother. Oncol. 90(3), 307311 (2009).
85. T. Shchory, D. Schifter, R. Lichtman, D. Neustadter, and B. W. Corn, “Tracking accuracy of a real-time fiducial tracking system for patient positioning and monitoring in radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 78(4), 12271234.
86. D. Neustadter, G. Barnea, S. Stokar, and B. Corn, “Analysis of dose to patient, spouse/caretaker, and staff, from an implanted trackable radioactive fiducial for use in the radiation treatment of prostate cancer,” Med. Phys. 37(3), 12201224.
87. D. Neustadter, M. Tune, A. Zaretsky, R. Shofti, A. Kushnir, T. Harel, D. Carmi-Yinon, and B. Corn, “Stability, visibility, and histologic analysis of a new implanted fiducial for use as a kilovoltage radiographic or radioactive marker for patient positioning and monitoring in radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 77(4), 12401247 (2010).
88. M. Van Herk, “Errors and margins in radiotherapy,” Semin. Radiat. Oncol. 24(1), 5264 (2004).
89. W. Lutz, K. R. Winston, and N. Maleki, “A system for stereotactic radiosurgery with a linear accelerator,” Int. J. Radiat. Oncol., Biol., Phys. 14(2), 373381 (1988).
90. B. R. Thomadsen, H. T. Heaton II , S. K. Jani, J. P. Masten, M. E. Napolitano, Z. Ouhib, C. S. Reft, M. J. Rivard, T. T. Robin, M. Subramanian, and O. H. Suleiman, “Off-label use of medical products in radiation therapy: Summary of the report of AAPM Task Group No. 121,” Med. Phys. 37(5), 23002311 (2010).
91. S. L. Meeks, W. A. Tome, T. R. Willoughby, P. A. Kupelian, T. H. Wagner, J. M. Buatti, and F. J. Bova, “Optically guided patient positioning techniques,” Semin. Radiat. Oncol. 15(3), 192201 (2005).
92. M. H. Phillips, K. Singer, E. Miller, and K. Stelzer, “Commissioning an image-guided localization system for radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 48(1), 267276 (2000).
93. S. L. Meeks, W. A. Tomé, and L. G. Bouchet, “Patient positioning using optical and ultrasound techniques,” in Intensity Modulated Radiotherapy, State of the Art (Medical Physics Publishing, College Park, MD (2003), 727748.
94. N. Hayashi, Y. Obata, Y. Uchiyama, Y. Mori, C. Hashizume, and T. Kobayashi, “Assessment of spatial uncertainties in the radiotherapy process with the Novalis system,” Int. J. Radiat. Oncol., Biol., Phys. 75(2), 549557 (2009).
95. M. Serban, E. Heath, G. Stroian, D. L. Collins, and J. Seuntjens, “A deformable phantom for 4D radiotherapy verification: Design and image registration evaluation,” Med. Phys. 35(3), 10941102 (2008).
96. J. R. van Sornsen de Koste, J. P. Cuijpers, F. G. de Geest, F. J. Lagerwaard, B. J. Slotman, and S. Senan, “Verifying 4D gated radiotherapy using time-integrated electronic portal imaging: A phantom and clinical study,” Radiat. Oncol. 2, 32 (2007).
97. P. J. Keall, H. Cattell, D. Pokhrel, S. Dieterich, K. H. Wong, M. J. Murphy, S. S. Vedam, K. Wijesooriya, and R. Mohan, “Geometric accuracy of a real-time target tracking system with dynamic multileaf collimator tracking system,” Int. J. Radiat. Oncol., Biol., Phys. 65(5), 15791584 (2006).
98. L. Santanam, C. Noel, T. R. Willoughby, J. Esthappan, S. Mutic, E. E. Klein, D. A. Low, and P. J. Parikh, “Quality assurance for clinical implementation of an electromagnetic tracking system,” Med. Phys. 36(8), 34773486 (2009).
99. S. B. Jiang, J. Wolfgang, and G. S. Mageras, “Quality assurance challenges for motion-adaptive radiation therapy: Gating, breath holding, and four-dimensional computed tomography,” Int. J. Radiat. Oncol., Biol., Phys. 71(1 Suppl), S103107 (2008).
100. G. J. Kutcher et al., “Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40,” Med. Phys. 21(4), 581618 (1994).

Data & Media loading...


Article metrics loading...



New technologies continue to be developed to improve the practice of radiation therapy. As several of these technologies have been implemented clinically, the Therapy Committee and the Quality Assurance and Outcomes Improvement Subcommittee of the American Association of Physicists in Medicine commissioned Task Group 147 to review the current nonradiographic technologies used for localization and tracking in radiotherapy. The specific charge of this task group was to make recommendations about the use of nonradiographic methods of localization, specifically; radiofrequency, infrared, laser, and video based patient localization and monitoring systems. The charge of this task group was to review the current use of these technologies and to write quality assurance guidelines for the use of these technologies in the clinical setting. Recommendations include testing of equipment for initial installation as well as ongoing quality assurance. As the equipment included in this task group continues to evolve, both in the type and sophistication of technology and in level of integration with treatment devices, some of the details of how one would conduct such testing will also continue to evolve. This task group, therefore, is focused on providing recommendations on the use of this equipment rather than on the equipment itself, and should be adaptable to each user’s situation in helping develop a comprehensive quality assurance program.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd