Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Durante and J. S. Loeffler, “Charged particles in radiation oncology,” Nat. Rev. Clin. Oncol. 7, 3743 (2010).
2. A. R. Smith, “Vision 20/20: proton therapy,” Med. Phys. 36, 556568 (2009).
3. O. Jäkel, C. P. Karger, and J. Debus, “The future of heavy ion radiotherapy,” Med. Phys. 35, 56535663 (2008).
4. D. Schulz-Ertner and H. Tsujii, “Particle radiation therapy using proton and heavier ion beams,” J. Clin. Oncol. 25, 953964 (2007).
5. D. Schardt, T. Elsässer, and D. Schulz-Ertner, “Heavy-ion tumor therapy: Physical and radiobiological benefits,” Rev. Mod. Phys. 82, 383425 (2010).
6. T. E. Merchant, “Proton beam therapy in pediatric oncology,” Cancer J. 15, 298305 (2009).
7. W. D. Newhauser, and M. Durante, “Assessing the risk of second malignancies after modern radiotherapy,” Nat. Rev. Cancer 11, 438448 (2011).
8. T. Terasawa, T. Dvorak, S. Ip, G. Raman, J. Lau, and T. A. Trikalinos, “Systematic review: Charged particle therapy for cancer,” Ann. Intern. Med. 151, 556565 (2009).
9. E. C. Halperin, “Particle therapy and treatment of cancer,” Lancet Oncol. 7, 676685 (2006).
10.Particle Therapy Co-Operative group homepage.
11. P. Pommier, Y. Lievens, F. Feschet, J. M. Borras, M. H. Baron, A. Shtiliyanova, and M. Pijls-Johannesma, “Simulating demand for innovative radiotherapies: An illustrative model based on carbon ion and proton radiotherapy,” Radiother. Oncol. 96, 243249 (2010).
12. M. Brada, M. Pijls-Johannesma, and D. De Ruysscher, “Current clinical evidence for proton therapy,” Cancer J. 15, 319324 (2009).
13. D. Benedict, F. J. Bova, B. Clark, S. J. Goetsch, W. H. Hinson, D. D. Leavitt, D. J. Schlesinger, and K. M. Yenice, “Anniversary paper: The role of medical physicists in developing stereotactic radiation therapy,” Med. Phys. 35, 42624277 (2008).
14. S. Dietrich, K. Cleary, W. D’Souza, M. Murphy, K. H. Wong, and P. Keall, “Locating and targeting moving tumors with radiation beams,” Med. Phys. 35, 56845691 (2008).
15. C. Bert, and M. Durante, “Motion in radiotherapy: particle therapy,” Phys. Med. Biol. 56, R113R144 (2011).
16. H. Suit, H. Krooy, A. Trofimov, J. Farr, J. Munzenrider, T. DeLaney, J. S. Loeffler, B. Clasie, S. Safai, and H. Paganetti, “Should positive phase III clinical trial data be required before proton beam therapy is more widely adopted? No,” Radiother. Oncol. 86, 148153 (2008).
17. H. Suit, T. DeLaney, S. Goldberg, H. Paganetti, B. Clasie, L. Germeck, A. Niemerko, E. Hall, J. Flanz, J. Hallman, and A. Trofimov, “Proton vs. carbon ion beams in the definitive radiation treatment of cancer patients,” Radiother. Oncol. 95, 322 (2010).
18. B. Larsson, L. Leksell, B. Rexed, P. Sourander, W. Mair, and B. Andersson, “The high-energy proton beam as a neurosurgical tool,” Nature 182, 12221223 (1958).
19. L. Leksell, “Radiosurgery,” Neurosurgery 24, 297298 (1989).
20. J. D. Fenwick, W. A. Tomé, E. T. Soisson, M. P. Mehta, and T. Rock Mackie, “Tomotherapy and other innovative IMRT delivery systems,” Semin. Radiat. Oncol. 16, 199208 (2006).
21. R. N. Kjellberg, T. Hanamura, K. R. Davis, S. L. Lyons, and R. D. Adams, “Bragg-peak proton-beam therapy for arteriovenous malformations of the brain,” N. Engl. J. Med. 30, 269274 (1983).
22. V. Seifert, D. Stolke, H. M. Mehdorn, and B. Hoffmann, “Clinical and radiological evaluation of long-term results of stereotactic proton beam radiosurgery in patients with cerebral arteriovenous malformations,” J. Neurosurg. 81, 683689 (1994).
23. F. G. Barker II, W. E. Butler, S. Lyons, E. Cascio, C. S. Ogilvy, J. S. Loeffler, and P. H. Chapman, “Dose-volume prediction of radiation-related complications after proton beam radiosurgery for cerebral arteriovenous malformations,” J. Neurosurg. 99, 254263 (2003).
24. C. C. Chen, P. Chapman, J. Petit, and J. S. Loeffler, “Proton radiosurgery in neurosurgery,” Neurosurg. Focus 23, E5 (2007).
25. R. P. Levy, J. I. Fabrikant, K. A. Frankel, M. H. Phillips, and J. T. Lyman, “Stereotactic heavy-charged-particle Bragg peak radiosurgery for the treatment of intracranial arteriovenous malformations in childhood and adolescence,” Neurosurgery 24, 841852 (1989).
26. H. Silander, L. Pellettieri, P. Enblad, A. Montelius, E. Grusell, C. Vallhagen-Dahlgren, U. Isacsson, G. Nyberg, U. Moström, A. Lilja, G. Gál, and E. Blomquist, “Fractionated, stereotactic proton beam treatment of cerebral arteriovenous malformations,” Acta Neurol. Scand. 109, 8590 (2004).
27. G. K. Steinberg, J. I. Fabrikant, M. P. Marks, R. P. Levy, K. A. Frankel, M. H. Phillips, L. M. Shuer, and G. D. Silverberg, “Stereotactic heavy-charged-particle Bragg-peak radiation for intracranial arteriovenous malformations,” N. Engl. J. Med. 323, 96101 (1990).
28. F. J. A. I. Vernimmen, J. P. Slabbert, J. A. Wilson, S. Fredericks, and R. Melvill, “Stereotactic proton beam therapy for intracranial arterovenous malformations,” Int. J. Radiat. Oncol., Biol., Phys. 62, 4452 (2005).
29. B. C. Lopez, P. J. Hamlyn, and J. M. Zakrzewska, “Stereotactic radiosurgery for primary trigeminal neuralgia: State of the evidence and recommendations for future reports,” J. Neurol. Neurosurg. Psychiatry 75, 10191024 (2004).
30. M. Quigg and N. M. Barbaro, “Stereotactic radiosurgery for treatment of epilepsy,” Arch Neurol. 65, 177183 (2008).
31. B. W. Chong, “Current issues in endovascular surgical neuroradiology,” Semin. Neurol. 27, 385392 (2007).
32. J. Hanlon, C. Lee, E. Chell, M. Gertner, S. Hansen, R. W. Howell, and W. E. Bolch, “Kilovoltage stereotactic radiosurgery for age-related macular degeneration: Assessment of optic nerve dose and patient effective dose,” Med. Phys. 36, 36713681 (2009).
33. K. Tipton, J. H. Launders, R. Inamdar, C. Miyamoto, and K. Schoelles, “Stereotactic body radiation therapy: Scope of the literature,” Ann. Intern. Med. 154, 737745 (2011).
34. J. M. Zakrzewska and M. E. Linskey, “Trigeminal neuralgia,” Clin. Evid. 12, 1207 (2009).
35. G. C. Jones, A. L. Elaimy, J. J. Demakas, H. Jiang, W. T. Lamoreaux, R. K. Fairbanks, A. R. Mackay, B. S. Cooke, and C. M. Lee, “Feasibility of multiple repeat gamma knife radiosurgeries for trigeminal neuralgia: A case report and review of the literature,” Case Report Med. 2011, 258910 (2011).
36. A. C. Aubuchon, M. D. Chan, J. F. Lovato, C. J. Balamucki, T. L. Ellis, S. B. Tatter, K. P. McMullen, M. T. Munley, A. F. Deguzman, K. E. Ekstrand, J. D. Bourland, and E. G. Shaw, “Repeat gamma knife radiosurgery for trigeminal neuralgia,” Int. J. Radiat. Oncol., Biol., Phys. 81, 10591065 (2011).
37. T. H. Schwarz, “Predicting the unpredictable: Stereotactic radiosurgery and temporal lobe epilepsy,” Epilepsy Curr. 10, 150152 (2010).
38. E. F. Chang, M. Quigg, M. C. Oh, W. P. Dillon, M. M. Ward, K. D. Laxer, D. K. Broshek, and N. M. Barbaro; Epilepsy Radiosurgery Study Group, “Predictors of efficacy after stereotactic radiosurgery for medial temporal lobe epilepsy,” Neurology 74, 165172 (2010).
39. A. Yuan and P. K. Kaiser, “Emerging therapies for the treatment of neovascular age related macular degeneration,” Semin. Ophthalmol. 26, 149155 (2011).
40. R. Petrarca and T. L. Jackson, “Radiation therapy for neovascular age-related macular degeneration,” Clin. Ophthalmol. 5, 5763 (2011).
41. M. Gertner, E. Chell, K. H. Pan, S. Hansen, P. K. Kaiser, and D. M. Moshfeghi, “Stereotactic targeting and dose verification for age-related macular degeneration,” Med. Phys. 37, 600606 (2010).
42. H. J. Zambarakji, A. M. Lane, E. Ezra, D. Gauthier, M. Goitein, J. A. Adams, J. E. Munzenrider, J. W. Miller, and E. S. Gragoudas, “Proton beam irradiation for neovascular age-related macular degeneration,” Ophthalmology 113, 20122019 (2006).
43. S. M. Hahn and A. Maity, “General principles of radiation and chemoradiation,” Retina 29, S30S31 (2009).
44. K. V. Chalam, S. Balaiya, R. S. Malyappa, W. Hsi, V. S. Brar, and R. K. Murthy, “Evaluation of choroidal endothelial cell proliferation after exposure to varying doses of proton beam radiation,” Retina 31, 169176 (2011)
45. T. Miyamoto, M. Baba, T. Sugane, M. Nakajima, T. Yashiro, K. Kagei, N. Hirasawa, T. Sugawara, N. Yamamoto, M. Koto, H. Ezawa, K. Kadono, H. Tsujii, J. E. Mizoe, K. Yoshikawa, S. Kandatsu, and T. Fujisawa; Working Group for Lung Cancer, “Carbon ion radiotherapy for stage I non-small cell lung cancer using a regimen of four fractions during 1 week,” J. Thorac. Oncol. 2, 916926 (2007).
46. Z. Liao, S. H. Lin, and J. D. Cox, “Status of particle therapy for lung cancer,” Acta Oncol. 50, 745756 (2011).
47. T. Chiba, K. Tokuuye, Y. Matsuzaki, S. Sugahara, Y. Chuganji, K. Kagei, J. Shoda, M. Hata, M. Abei, H. Igaki, N. Tanaka, and Y. Akine, “Proton beam therapy for hepatocellular carcinoma: A retrospective review of 162 patients,” Clin. Cancer Res. 11, 37993805 (2005).
48. H. Kato, H. Tsujii, T. Miyamoto, J. E. Mizoe, T. Kamada, H. Tsuji, S. Yamada, S. Kandatsu, K. Yoshikawa, T. Obata, H. Ezawa, S. Morita, M. Tomizawa, N. Morimoto, J. Fujita, and M. Ohto; Liver Cancer Working Group, “Results of the first prospective study of carbon ion radiotherapy for hepatocellular carcinoma with liver cirrhosis,” Int. J. Radiat. Oncol., Biol., Phys. 59, 14681476 (2004).
49. T. Okada, T. Kamada, H. Tsuji, J. E. Mizoe, M. Baba, S. Kato, S. Yamada, S. Sugahara, S. Yasuda, N. Yamamoto, R. Imai, A. Hasegawa, H. Imada, H. Kiyohara, K. Jingu, M. Shinoto, and H. Tsujii, “Carbon ion radiotherapy: Clinical experiences at National Institute of Radiological Science (NIRS),” J. Radiat. Res. 51, 355364 (2010).
50. S. Mori, G. T. Chen, and M. Endo, “Effects of intrafractional motion on water equivalent path length in respiratory gated heavy charged particle beam radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 69, 308317 (2007).
51. H. Tsuji, T. Yanagi, H. Ishikawa, T. Kamada, J. E. Mizoe, T. Kanai, S. Morita, and H. Tsujii; Working Group for Genitourinary Tumors, “Hypofractionated radiotherapy with carbon ion beams for prostate cancer,” Int. J. Radiat. Oncol., Biol., Phys. 63, 11531160 (2005).
52. D. A. Bush, J. D. Slater, B. B. Shin, G. Cheek, D. W. Miller, and J. M. Slater, “Hypofractionated proton beam radiotherapy for stage I lung cancer,” Chest 126, 11981203 (2004).
53. T. Miyamoto, N. Yamamoto, H. Nishimura, M. Koto, H. Tsujii, J. E. Mizoe, T. Kamada, H. Kato, S. Yamada, S. Morita, K. Yoshikawa, S. Kandatsu, and T. Fujisawa, “Carbon ion radiotherapy for stage I non-small cell lung cancer,” Radiother. Oncol. 66, 127140 (2003).
54. R. J. Smeenk, B. S. Teh, E. B. Butler, E. N. van Lin, and J. H. Kaanders, “Is there a role for endorectal balloons in prostate radiotherapy? A systematic review,” Radiother. Oncol. 95, 277282 (2010).
55. M. Urie, M. Goitein, and M. Wagner, “Compensating for heterogeneities in proton radiation therapy,” Phys. Med. Biol. 29, 553566 (1984).
56. M. Koto, T. Miyamoto, N. Yamamoto, H. Nishimura, S. Yamada, and H. Tsujii, “Local control and recurrence of stage I non-small cell lung cancer after carbon ion radiotherapy,” Radiother. Oncol. 71, 147156 (2004).
57. S. Minohara, T. Kanai, M. Endo, K. Noda, and M. Kanazawa, “Respiratory gated irradiation system for heavy-ion radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 47, 10971103 (2000).
58. M. H. Phillips, E. Pedroni, H. Blattmann, T. Boehringer, A. Coray, and S. Scheib, “Effects of respiratory motion on dose uniformity with a charged particle scanning method,” Phys. Med. Biol. 37, 223233 (1992).
59. C. Bert, S. O. Grözinger, and E. Rietzel, “Quantification of interplay effects of scanned particle beams and moving targets,” Phys. Med. Biol. 53, 22532265 (2008).
60. M. Eckermann, “Scanning proton beam radiotherapy under functional apnea,” PTCOG 50 2011 (presentation and abstract).
61. C. Bert, A. Gemmel, N. Saito, N. Chaudhri, D. Schardt, M. Durante, G. Kraft, and E. Rietzel, “Dosimetric precision of an ion beam tracking system,” Radiat. Oncol. 5, 61 (2010).
62. N. Saito, C. Bert, N. Chaudhri, A. Gemmel, D. Schardt, M. Durante, and E. Rietzel, “Speed and accuracy of a beam tracking system for treatment of moving targets with scanned ion beams,” Phys. Med. Biol. 54, 48494862 (2009).
63. D. Clery, “The next big beam?,” Science 327, 142143 (2010).
64. G. Kraft and S. D. Kraft, “Research needed for improving heavy-ion therapy,” New J. Phys. 11, 025001 (2009).
65. S. M. Vatnitsky, D. W. Miller, M. F. Moyers, R. P. Levy, R. W. Schulte, J. D. Slater, and J. M. Slater, “Dosimetry techniques for narrow proton beam radiosurgery,” Phys. Med. Biol. 44, 27892801 (1999).
66. J. M. Schippers and A. J. Lomax, “Emerging technologies in proton therapy,” Acta Oncol. 50, 838850 (2011).
67. N. K. Abrosimov, Y. A. Gavrikov, E. M. Ivanov, D. L. Karlin, A. V. Khanzadeev, N. N. Yalynych, G. A. Riabov, D. M. Seliverstov, and V. M. Vinogradov, “1000 MeV proton therapy facility at Petersburg Nuclear Physics Institute Synchrocyclotron,” J. Phys. 41, 424432 (2006).
68. A. Bertucci, M. Durante, G. Gialanella, G. F. Grossi, L. Manti, M. Pugliese, P. Scampoli, D. Mancusi, L. Sihver, and A. Rusek A., “Shielding of relativistic protons,” Radiat. Environ. Biophys. 46, 107111 (2007).
69. H. Yang, N. Magpayo, and K. D. Held, “Targeted and non-targeted effects from combination of low doses of energetic protons and iron ions in human fibroblasts,” Int. J. Radiat. Biol. 87, 311319 (2011).
70. M. Durante and F. A. Cucinotta, “Heavy ion carcinogenesis and human space exploration,” Nat. Rev. Cancer 8, 465472 (2008).
71. M. Durante and F. A. Cucinotta, “Physical basis of radiation protection in space travel,” Rev. Mod. Phys. 83, 12451281 (2011).
72. A. Niranjan and J. C. Flickinger, “Radiobiology, principle and technique of radiosurgery,” Prog. Neurol. Surg. 21, 3242 (2008).
73. A. M. Koehler, “Proton radiography,” Science 160, 303 (1968).
74. C. A. Tobias, “The future of heavy-ion science in biology and medicine,” Radiat. Res. 103, 133 (1985).
75. N. Depauw and J. Seco, “Sensitivity study of proton radiography and comparison with kV and MV x-ray imaging using GEANT4 Monte Carlo simulations,” Phys. Med. Biol. 56, 24072421 (2011).
76. J. Seco and N. Depauw, “Proof of principle study of the use of a CMOS active pixel sensor for proton radiography,” Med. Phys. 38, 622623 (2011).
77. B. Han, X. G. Xu, and G. T. Chen, “Proton radiography and fluoroscopy of lung tumors: A Monte Carlo study using patient-specific 4DCT phantoms,” Med. Phys. 38, 19031911 (2011).
78. P. A. Rigg, C. L. Schwartz, R. S. Hixson, G. E. Hogan, K. K. Kwiatkowski, F. G. Mariam, M. Marr-Lyon, F. E. Merrill, C. L. Morris, P. Rightly, A. Saunders, and D. Tupa, “Proton radiography and accurate density measurements: A window into shock wave processes,” Phys. Rev. B 77, 220101 (2008).
79. F. E. Merrill, A. A. Golubev, F. G. Mariam, V. I. Turtikov, and D. Varentsov, “Proton microscopy at FAIR,” AIP Conf. Proc. 1195, 667670 (2009).
80. H. Paganetti, “Interpretation of proton relative biological effectiveness using lesion induction, lesion repair, and cellular dose distribution,” Med. Phys. 32, 25482556 (2005).
81. B. Andisheh, A. Brahme, M. A. Bitaraf, P. Mavroidis, and B. K. Lind, “Clinical and radiobiological advantages of single-dose stereotactic light-ion radiation therapy for large intracranial arteriovenous malformations. Technical note,” J. Neurosurg. 111, 919926 (2009).
82. A. Brahme, “Recent advances in light ion therapy,” Int. J. Radiat. Oncol. Biol. Phys. 58, 203216 (2004).
83.Gunma University Heavy Ion Medical Center webpage.
84. V. Fuster, L. E. Rydén, D. S. Cannom, H. J. Crijns, A. B. Curtis, K. A. Ellenbogen, J. L. Halperin, J. Y. Le Heuzey, G. N. Kay, J. E. Lowe, S. B. Olsson, E. N. Prystowsky, J. L. Tamargo, S. Wann, S. C. Smith, Jr., A. K. Jacobs, C. D. Adams, J. L. Anderson, E. M. Antman, J. L. Halperin, S. A. Hunt, R. Nishimura, J. P. Ornato, R. L. Page, B. Riegel, S. G. Priori, J. J. Blanc, A. Budaj, A. J. Camm, V. Dean, J. W. Deckers, C. Despres, K. Dickstein, J. Lekakis, K. McGregor, M. Metra, J. Morais, A. Osterspey, J. L. Tamargo, and J. L. Zamorano; American College of Cardiology, American Heart Association Task Force, European Society of Cardiology Committee for Practice Guidelines, European Heart Rhythm Association, Heart Rhythm Society, “ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: full text: A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 guidelines for the management of patients with atrial fibrillation) developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society,” Europace 8, 651745 (2006).
85. T. Terasawa, E. M. Balk, M. Chung, A. C. Garlitski, A. A. Alsheikh-Ali, J. Lau, and S. Ip, “Systematic review: Comparative effectiveness of radiofrequency catheter ablation for atrial fibrillation,” Ann. Intern. Med. 151,191202 (2009).
86. A. Cheema, C. R. Vasamreddy, D. Dalal, J. E. Marine, J. Dong, C. A. Henrikson, D. Spragg, A. Cheng, S. Nazarian, S. Sinha, H. Halperin, R. Berger, and H. Calkins, “Long-term single procedure efficacy of catheter ablation of atrial fibrillation,” J. Interv. Card. Electrophysiol. 15, 145155 (2006).
87. R. M. Sullivan and A. Mazur, “Stereotactic robotic radiosurgery (CyberHeart): A cyber revolution in cardiac ablation?,” Heart Rhythm. 7, 811812 (2010).
88. A. Sharma, D. Wong, G. Weidlich, T. Fogarty, A. Jack, T. Sumanaweera, and P. Maguire, “Noninvasive stereotactic radiosurgery (CyberHeart) for creation of ablation lesions in the atrium,” Heart Rhythm. 7, 802810 (2010).
89. M. Amino, K. Yoshioka, T. Tanabe, E. Tanaka, H. Mori, Y. Furusawa, W. Zareba, M. Yamazaki, H. Nakagawa, H. Honjo, K. Yasui, K. Kamiya, and I. Kodama, “Heavy ion radition up-regulates Cx43 and ameliorates arrhythmogenic substrates in hearts after myocardial infarction,” Cardiovasc. Res. 72, 412421 (2006).
90. M. Amino, K. Yoshioka, D. Fujibayashi, T. Hashida, Y. Furusawa, W. Zareba, Y. Ikari, E. Tanaka, H. Mori, S. Inokuchi, I. Kodama, and T. Tanabe, “Year-long upregulation of connexin43 in rabbit hearts by heavy ion irradiation,” Am. J. Physiol. Heart. Circ. Physiol. 298, H1014H1021 (2010).
91. T. Elsässer, W. Kraft-Weyrather, T. Friedrich, M. Durante, G. Iancu, M. Krämer, G. Kragl, S. Brons, M. Winter, K. J. Weber, and M. Scholz, “Quantification of the relative biological effectiveness for ion beam radiotherapy: Direct experimental comparison of proton and carbon ion beams and a novel approach for treatment planning,” Int. J. Radiat. Oncol., Biol., Phys. 78, 11771183 (2010).
92. L. Paulis and T. Unger, “Novel therapeutic targets for hypertension,” Nat. Rev. Cardiol. 7, 431441 (2010).
93.Symplicity HTN-2 Investigators, “Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): A randomised controlled trial,” Lancet 376, 19031909 (2010).
94.Symplicity HTN-1 Investigators, “Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months,” Hypertension 57, 911917 (2011).
95. E. J. Dropcho, “Neurotoxicity of radiation therapy,” Neurol. Clin. 28, 217234 (2010).
96. S. Fridberg and B. I. Rudén, “Hypofractionation in radiotherapy. An investigation of injured Swedish women, treated for cancer of the breast,” Acta Oncol. 48, 822831 (2009).
97. I. Suramo, M. Päivänsalo, and V. Myllylä, “Cranio-caudal movements of the liver, pancreas and kidneys in respiration,” Acta Radiol. Diagn. 25, 129131 (1984).
98. E. Rietzel and C. Bert, “Respiratory motion management in particle therapy,” Med. Phys. 37, 449460 (2010).
99. C. Bert, A. Gemmel, N. Saito, N. Chaudhri, D. Schardt, M. Durante, G. Kraft, and E. Rietzel, “Dosimetric precision of an ion beam tracking system,” Radiat Oncol. 5, 61 (2010).
100. T. Nomiya, H. Tsuji, N. Hirasawa, H. Kato, T. Kamada, J. Mizoe, H. Kishi, K. Kamura, H. Wada, K. Nemoto, and H. Tsujii, “Carbon ion radiation therapy for primary renal cell carcinoma: initial clinical experience,” Int. J. Radiat. Oncol., Biol., Phys. 72, 828833 (2008).
101. Y. Aoka, T. Kamada, M. Kawana, Y. Yamada, T. Nishikawa, H. Kasanuki, and H. Tsujii, “Primary cardiac angiosarcoma treated with carbon-ion radiotherapy,” Lancet Oncol. 5, 636638 (2004).
102. S. M. Zenklusen, E. Pedroni, and D. A. Meer, “Study on repainting strategies for treating moderately moving targets with proton pencil beam scanning at the new Gantry 2 at PSI,” Phys. Med. Biol. 55, 51035121 (2010).
103. C. Bert and E. Rietzel, “4D treatment planning for scanned ion beams,” Radiat. Oncol. 2, 24 (2007).
104. R. Luchtenborg, N. Saito, M. Durante, and C. Bert, “Experimental verification of a real-time compensation functionality for dose changes due to target motion in scanned particle therapy,” Med Phys. 38, 54485458 (2011).
105. Y. Y. Vinogradskiy, P. Balter, D. S. Followill, P. E. Alvarez, R. A. White, and G. Starkschall, “Verification of four-dimensional photon dose calculations,” Med. Phys. 36, 34383447 (2009).
106. D. S. Followill, D. R. Evans, C. Cherry, A. Molineu, G. Fisher, W. F. Hanson, and G. S. Ibbott, “Design, development, and implementation of the radiological physics center’s pelvis and thorax anthropomorphic quality assurance phantoms,” Med. Phys. 34, 20702076 (2007).
107. J. Biederer and M. Heller, “Artificial thorax for MR imaging studies in porcine heart-lung preparations,” Radiology 226, 250255 (2003).
108. K. Parodi, N. Saito, N. Chaudhri, C. Richter, M. Durante, W. Enghardt, E. Rietzel, and C. Bert, “4D in-beam positron emission tomography for verification of motion-compensated ion beam therapy,” Med. Phys. 36, 42304243 (2009).

Data & Media loading...


Article metrics loading...



Radiation therapy using high-energy charged particles is generally acknowledged as a powerful new technique in cancertreatment. However, particle therapy in oncology is still controversial, specifically because it is unclear whether the putative clinical advantages justify the high additional costs. However, particle therapy can find important applications in the management of noncancer diseases, especially in radiosurgery. Extension to other diseases and targets (both cranial and extracranial) may widen the applications of the technique and decrease the cost/benefit ratio of the accelerator facilities. Future challenges in this field include the use of different particles and energies, motion management in particle body radiotherapy and extension to new targets currently treated by catheter ablation (atrial fibrillation and renal denervation) or stereotactic radiation therapy (trigeminal neuralgia, epilepsy, and macular degeneration). Particle body radiosurgery could be a future key application of accelerator-based particle therapy facilities in 10 years from today.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd