1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Effect of slice thickness on detectability in breast CT using a prewhitened matched filter and simulated mass lesions
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/39/4/10.1118/1.3692176
1.
1. J. M. Boone, T. R. Nelson, K. K. Lindfors, and J. A. Seibert, “Dedicated breast CT: Radiation dose and image quality evaluation,” Radiology 221, 657667 (2001).
http://dx.doi.org/10.1148/radiol.2213010334
2.
2. B. Chen and R. Ning, “Cone-beam volume CT breast imaging: Feasibility study,” Med. Phys. 29, 755770 (2002).
http://dx.doi.org/10.1118/1.1461843
3.
3. J. M. Boone, A. L. C. Kwan, K. Yang, G. W. Burkett, K. K. Lindfors, and T. R. Nelson, “Computed tomography for imaging the breast,” J. Mammary Gland Biol. Neoplasia 11, 103111 (2006).
http://dx.doi.org/10.1007/s10911-006-9017-1
4.
4. S. J. Glick, “Breast CT,” Annu. Rev. Biomed. Eng. 9, 501526 (2007).
http://dx.doi.org/10.1146/annurev.bioeng.9.060906.151924
5.
5. M. P. Tornai, R. L. McKinley, C. N. Bryzmialkiewicz, P. Madhav, S. J. Cutler, D. J. Crotty, J. E. Bowsher, E. Samei, and C. E. Floyd, Jr., “Design and development of a fully 3D dedicated x-ray computed mammotomography system,” Proc. SPIE 5745, 189197 (2005).
http://dx.doi.org/10.1117/12.595636
6.
6. J. M. Boone and K. K. Lindfors, “Breast CT: Potential for breast cancer screening and diagnosis,” Future Oncol. 2, 351356 (2006).
http://dx.doi.org/10.2217/14796694.2.3.351
7.
7. K. Yang, A. L. C. Kwan, and J. M. Boone, “Computer modeling of the spatial resolution properties of a dedicated breast CT system,” Med. Phys. 34, 20592069 (2007).
http://dx.doi.org/10.1118/1.2737263
8.
8. X. Gong, S. Glick, B. Liu, A. Vedula, and S. Thacker, “A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging,” Med. Phys. 33, 10411052 (2006).
http://dx.doi.org/10.1118/1.2174127
9.
9. A. L. Kwan, J. M. Boone, and N. Shah, “Evaluation of x-ray scatter properties in a dedicated cone-beam breast CT scanner,” Med. Phys. 32, 29672975 (2005).
http://dx.doi.org/10.1118/1.1954908
10.
10. C. Shaw, L. Chen, M. Altunbas, S. Tu, T. P. Wang, C. J. Lai, S. Cheenu Kappadath, Y. Meng, and X. Liu, “Cone beam breast CT with a flat panel detector-simulation, implementation and demonstration,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 4, 44614464 (2005).
11.
11. S. J. Glick, S. Thacker, X. Gong, and B. Liu, “Evaluating the impact of X-ray spectral shape on image quality in flat-panel CT breast imaging,” Med. Phys. 34, 524 (2007).
http://dx.doi.org/10.1118/1.2388574
12.
12. K. Yang, A. L. Kwan, and J. M. Boone, “Computer modeling of the spatial resolution properties of a dedicated breast CT system,” Med. Phys. 34, 20592069 (2007).
http://dx.doi.org/10.1118/1.2737263
13.
13. J. Q. Xia, J. Y. Lo, K. Yang, C. E. Floyd, Jr., and J. M. Boone, “Dedicated breast computed tomography: Volume image denoising via a partial-diffusion equation based technique,” Med. Phys. 35, 19501958 (2008).
http://dx.doi.org/10.1118/1.2903436
14.
14. K. Yang, A. L. Kwan, S. Y. Huang, N. J. Packard, and J. M. Boone, “Noise power properties of a cone-beam CT system for breast cancer detection,” Med. Phys. 35, 53175327 (2008).
http://dx.doi.org/10.1118/1.3002411
15.
15. I. Sechopoulos, S. S. Feng, and C. J. D’Orsi, “Dosimetric characterization of a dedicated breast computed tomography clinical prototype,” Med. Phys. 37, 41104120 (2010).
http://dx.doi.org/10.1118/1.3457331
16.
16. A. E. Burgess and H. Ghandeharian, “Visual signal detection. II. Signal-location identification,” J. Opt. Soc. Am. A 1, 906910 (1984).
http://dx.doi.org/10.1364/JOSAA.1.000906
17.
17. M. P. Eckstein, A. J. Ahumada, Jr. , and A. B. Watson, “Visual signal detection in structured backgrounds. II. Effects of contrast gain control, background variations, and white noise,” J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 14, 24062419 (1997).
http://dx.doi.org/10.1364/JOSAA.14.002406
18.
18. X. Gong, A. Vedula, and S. Glick, “Microcalcification detection by cone-beam CT mammography with a flat-panel imager,” Phys. Med. Biol. 49, 21832195 (2004).
http://dx.doi.org/10.1088/0031-9155/49/11/005
19.
19. W. T. Yang, S. Carkaci, L. Chen, C. J. Lai, A. Sahin, G. J. Whitman, and C. C. Shaw, “Dedicated cone-beam breast CT: Feasibility study with surgical mastectomy specimens,” Am. J. Roentgenol. 189, 13121315 (2007).
http://dx.doi.org/10.2214/AJR.07.2403
20.
20. R. F. Wagner and G. G. Brown, “Unified SNR analysis of medical imaging systems,” Phys. Med. Biol. 30, 489518 (1985).
http://dx.doi.org/10.1088/0031-9155/30/6/001
21.
21. A. Burgess, “Image quality, the ideal observer, and human performance of radiologic decision tasks,” Acad. Radiol. 2, 522526 (1995).
http://dx.doi.org/10.1016/S1076-6332(05)80411-8
22.
22. H. H. Barrett, C. K. Abbey, and E. Clarkson, “Objective assessment of image quality. III. ROC metrics, ideal observers, and likelihood-generating functions,” J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 15, 15201535 (1998).
http://dx.doi.org/10.1364/JOSAA.15.001520
23.
23. A. E. Burgess, F. L. Jacobson, and P. F. Judy, “Human observer detection experiments with mammograms and power-law noise,” Med. Phys. 28, 419437 (2001).
http://dx.doi.org/10.1118/1.1355308
24.
24. A. E. Burgess and P. F. Judy, “Signal detection in power-law noise: effect of spectrum exponents,” J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 24, B52B60 (2007).
http://dx.doi.org/10.1364/JOSAA.24.000B52
25.
25. K. K. Lindfors, J. M. Boone, T. R. Nelson, K. Yang, A. L. Kwan, and D. F. Miller, “Dedicated breast CT: Initial clinical experience,” Radiology 246, 725733 (2008).
http://dx.doi.org/10.1148/radiol.2463070410
26.
26. L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. A. 1, 612619 (1984).
http://dx.doi.org/10.1364/JOSAA.1.000612
27.
27. N. Packard and J. M. Boone, “Glandular segmentation of cone beam breast CT volume images,” Proc. SPIE 6510, 651038 (2007).
http://dx.doi.org/10.1117/12.713911
28.
28. T. R. Nelson, L. I. Cervino, J. M. Boone, and K. K. Lindfors, “Classification of breast computed tomography data,” Med. Phys. 35, 10781086 (2008).
http://dx.doi.org/10.1118/1.2839439
29.
29. A. S. Chawla, R. S. Saunders, S. Singh, J. Y. Lo, and E. Samei, “Towards optimized acquisition scheme for multiprojection correlation imaging of breast cancer,” Acad. Radiol. 16, 456463 (2009).
http://dx.doi.org/10.1016/j.acra.2008.09.013
30.
30. M. S. Vaz, Q. Besnehard, and C. Marchessoux, “3D lesion insertion in digital breast tomosynthesis images,” Proc. SPIE. 7961, 79615z (2011).
http://dx.doi.org/10.1117/12.878165
31.
31. J. P. Rolland and H. H. Barrett, “Effect of random background inhomogeneity on observer detection performance,” J. Opt. Soc. Am. A. 9, 649658 (1992).
http://dx.doi.org/10.1364/JOSAA.9.000649
32.
32. P. Monnin, F. O. Bochud, and F. R. Verdun, “Using a NPWE model observer to assess suitable image quality for a digital mammography quality assurance programme,” Radiat. Prot. Dosim. 139, 459462 (2010).
http://dx.doi.org/10.1093/rpd/ncq010
33.
33. F. O. Bochud, C. K. Abbey, and M. P. Eckstein, “Visual signal detection in structured backgrounds. III. Calculation of figures of merit for model observers in statistically nonstationary backgrounds,” J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 17, 193205 (2000).
http://dx.doi.org/10.1364/JOSAA.17.000193
34.
34. J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures, 2nd ed. (Wiley, New York, 1986).
35.
35. E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson, “Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach,” Biometrics 44, 837845 (1988).
http://dx.doi.org/10.2307/2531595
36.
36. M. J. Yaffe, J. M. Boone, N. Packard, O. Alonzo-Proulx, S. Y. Huang, C. L. Peressotti, A. Al-Mayah, and K. Brock, “The myth of the 50-50 breast,” Med. Phys. 36, 54375443 (2009).
http://dx.doi.org/10.1118/1.3250863
37.
37. I. Reiser, S. Lee, and R. M. Nishikawa, “On the orientation of mammographic structure,” Med. Phys. 38, 53035306 (2011).
http://dx.doi.org/10.1118/1.3633905
38.
38. M. P. Eckstein and J. S. Whiting, “Visual signal detection in structured backgrounds. I. Effect of number of possible spatial locations and signal contrast,” J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 13, 17771787 (1996).
http://dx.doi.org/10.1364/JOSAA.13.001777
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/39/4/10.1118/1.3692176
Loading
/content/aapm/journal/medphys/39/4/10.1118/1.3692176
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/39/4/10.1118/1.3692176
2012-03-14
2014-09-01

Abstract

Purpose:

Dedicated breast CT (bCT) is an emerging technology with the potential to improve the detection of breast cancer in screening and diagnostic capacities. Typically, the 3D volume reconstructed from the scanner is displayed as sectional images. The purpose of this study was to evaluate the effect of section thickness on the detectability of simulated masses using a prewhitened matched filter (PWMF) as a model observer.

Methods:

A breast CT scanner has been designed and fabricated in the authors’ laboratory with more than 200 women imaged in IRB-approved phase I and phase II trials to date. Of these, 151 bilateral data sets were selected on the basis of low artifact content, sufficient breast coverage, and excluding cases with breast implants. BIRADS breast density ratings were available for 144 of these patients. Spherical mass lesions of diameter 1, 2, 3, 5, 11, and 15 mm were mathematically generated and embedded at random locations within the parenchymal region of each bCT volume. Microcalcifications were not simulated in this study. For each viewing plane (sagittal, axial, and coronal) and section thickness (ranging from 0.3 to 44 mm), section images of the breast parenchyma containing the lesion were generated from the reconstructed bCT data sets by averaging voxels over the length of the section. Using signal known exactly (SKE) model observer methodology, receiver operating characteristic (ROC) curve analysis was performed on each generated projected image using a PWMF based model observer. ROC curves were generated for each breast data set, and the area under the ROC curve (AUC) was evaluated as well as the sensitivity at 95% specificity.

Results:

For all lesion sizes, performance rises modestly to a peak before falling off substantially as section thickness increases over the range of the study. We find that the optimal section thickness tracks the size of the lesion to be detected linearly with a small positive offset and slopes ranging from 0.27 to 0.44. No significant differences were observed between left and right breasts. Performance measures are negatively correlated with measures of breast density, with an average correlation coefficient of −0.48 for the BIRADS breast density score and −0.81 for the proportion of glandular tissue in the breast interior.

Conclusions:

This study shows quantitatively how PWMF detection performance of a known lesion size is influenced by section thickness in dedicated breast CT. While the optimal section thickness is tuned to the size of the lesion being detected, overall performance is more robust for thin section images compared to thicker images.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/39/4/1.3692176.html;jsessionid=3kv0esbprhail.x-aip-live-02?itemId=/content/aapm/journal/medphys/39/4/10.1118/1.3692176&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effect of slice thickness on detectability in breast CT using a prewhitened matched filter and simulated mass lesions
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/39/4/10.1118/1.3692176
10.1118/1.3692176
SEARCH_EXPAND_ITEM