1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Effectiveness of external respiratory surrogates for in vivo liver motion estimation
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/39/8/10.1118/1.4738966
1.
1. J. Ferlay, H.-R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” Int. J. Cancer 127 (12), 28932917 (2010).
http://dx.doi.org/10.1002/ijc.25516
2.
2. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” Cancer J. Clin. 61(2), 6990 (2011).
http://dx.doi.org/10.3322/caac.20107
3.
3. H. Kaneko, S. Takagi, Y. Otsuka, M. Tsuchiya, A. Tamura, T. Katagiri, T. Maeda, and T. Shiba, “Laparoscopic liver resection of hepatocellular carcinoma,” Am. J. Surg. 189(2), 190194 (2005).
http://dx.doi.org/10.1016/j.amjsurg.2004.09.010
4.
4. G. Belli, P. Limongelli, C. Fantini, A. D’Agostino, L. Cioffi, A. Belli, and G. Russo, “Laparoscopic and open treatment of hepatocellular carcinoma in patients with cirrhosis,” Br. J. Surg. 96(9), 10411048 (2009).
http://dx.doi.org/10.1002/bjs.6680
5.
5. A. Laurent, D. Cherqui, M. Lesurtel, F. Brunetti, C. Tayar, and P.-L. Fagniez, “Laparoscopic liver resection for subcapsular hepatocellular carcinoma complicating chronic liver disease,” Arch. Surg. 138(7), 763769 (2003).
http://dx.doi.org/10.1001/archsurg.138.7.763
6.
6. H. Tranchart, G. Di Giuro, P. Lainas, J. Roudie, H. Agostini, D. Franco, and I. Dagher, “Laparoscopic resection for hepatocellular carcinoma: A matched-pair comparative study,” Surg. Endosc. 24(5), 11701176 (2010).
http://dx.doi.org/10.1007/s00464-009-0745-3
7.
7. M. J. Murphy, “Tracking moving organs in real time,” Semin. Radiat. Oncol. 14(1), 91100 (2004).
http://dx.doi.org/10.1053/j.semradonc.2003.10.005
8.
8. T. J. Dubinsky, C. Cuevas, M. K. Dighe, O. Kolokythas, and J. H. Hwang, “High-intensity focused ultrasound: Current potential and oncologic applications,” Am. J. Roentgenol. 190(1), 191199 (2008).
http://dx.doi.org/10.2214/AJR.07.2671
9.
9. Y. F. Zhou, “High intensity focused ultrasound in clinical tumor ablation,” World J. Clin. Oncol. 2(1), 827 (2011).
http://dx.doi.org/10.5306/wjco.v2.i1.8
10.
10. A. Muacevic, B. Wowra, and M. Reiser, “CyberKnife: Review of first 1,000 cases at a dedicated therapy center,” Int. J. Comput. Assist. Radiol. Surg. 3(5), 447456 (2008).
http://dx.doi.org/10.1007/s11548-008-0246-1
11.
11. T. E. Schefter, B. D. Kavanagh, R. D. Timmerman, H. R. Cardenes, A. Baron, and L. E. Gaspar, “A phase I trial of stereotactic body radiation therapy (SBRT) for liver metastases,” Int. J. Radiat. Oncol., Biol., Phys. 62(5), 13711378 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2005.01.002
12.
12. R. D. Timmerman, B. D. Kavanagh, L. C. Cho, L. Papiez, and L. Xing, “Stereotactic body radiation therapy in multiple organ sites,” J. Clin. Oncol. 25(8), 947952 (2007).
http://dx.doi.org/10.1200/JCO.2006.09.7469
13.
13. Q. J. Wu, D. Thongphiew, W. Zhiheng, V. Chankong, and Y. Fangfang, “The impact of respiratory motion and treatment technique on stereotactic body radiation therapy for liver cancer,” Med. Phys. 35(4), 14401451 (2008).
http://dx.doi.org/10.1118/1.2839095
14.
14. P. Weiss, J. Baker, and E. Potchen, “Assessment of hepatic respiratory excursion,” J. Nucl. Med. 13, 758759 (1972).
15.
15. S. C. Davies, A. L. Hill, R. B. Holmes, M. Halliwell, and P. C. Jackson, “Ultrasound quantitation of respiratory organ motion in the upper abdomen,” Br. J. Radiol. 67(803), 10961102 (1994).
http://dx.doi.org/10.1259/0007-1285-67-803-1096
16.
16. K. M. Langen and D. T. L. Jones, “Organ motion and its management,” Int. J. Radiat. Oncol. Biol. Phys. 50(1), 265278 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)01453-5
17.
17. B. Bussels, L. Goethals, M. Feron, D. Bielen, S. Dymarkowski, P. Suetens, and K. Haustermans, “Respiration-induced movement of the upper abdominal organs: A pitfall for the three-dimensional conformal radiation treatment of pancreatic cancer,” Radiother. Oncol. 68(1), 6974 (2003).
http://dx.doi.org/10.1016/S0167-8140(03)00133-6
18.
18. A. Kirilova, G. Lockwood, P. Choi, N. Bana, M. A. Haider, K. K. Brock, C. Eccles, and L. A. Dawson, “Three-dimensional motion of liver tumors using cine-magnetic resonance imaging,” Int. J. Radiat. Oncol., Biol., Phys. 71(4), 11891195 (2008).
http://dx.doi.org/10.1016/j.ijrobp.2007.11.026
19.
19. S. S. Vedam, P. J. Keall, V. R. Kini, and R. Mohan, “Determining parameters for respiration-gated radiotherapy,” Med. Phys. 28(10), 21392146 (2001).
http://dx.doi.org/10.1118/1.1406524
20.
20. Y. Seppenwoolde, H. Shirato, K. Kitamura, S. Shimizu, M. van Herk, J. V. Lebesque, and K. Miyasaka, “Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 53(4), 822834 (2002).
http://dx.doi.org/10.1016/S0360-3016(02)02803-1
21.
21. H. D. Kubo and B. C. Hill, “Respiration gated radiotherapy treatment: A technical study,” Phys. Med. Biol. 41(1), 8391 (1996).
http://dx.doi.org/10.1088/0031-9155/41/1/007
22.
22. S. Hunjan, G. Starkschall, K. Prado, L. Dong, and P. Balter, “Lack of correlation between external fiducial positions and internal tumor positions during breath-hold CT,” Int. J. Radiat. Oncol., Biol., Phys. 76(5), 15861591 (2010).
http://dx.doi.org/10.1016/j.ijrobp.2009.08.008
23.
23. I. C. Laura, A. K. Y. Chao, A. Sandhu, and S. B. Jiang, “The diaphragm as an anatomic surrogate for lung tumor motion,” Phys. Med. Biol. 54(11), 35293541 (2009).
http://dx.doi.org/10.1088/0031-9155/54/11/017
24.
24. S. S. Vedam, V. R. Kini, P. J. Keall, V. Ramakrishnan, H. Mostafavi, and R. Mohan, “Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker,” Med. Phys. 30(4), 505513 (2003).
http://dx.doi.org/10.1118/1.1558675
25.
25. T. Zhang, H. Keller, M. J. O’Brien, T. R. Mackie, and B. Paliwal, “Application of the spirometer in respiratory gated radiotherapy,” Med. Phys. 30(12), 31653171 (2003).
http://dx.doi.org/10.1118/1.1625439
26.
26. J. D. P. Hoisak, K. E. Sixel, R. Tirona, P. C. F. Cheung, and J.-P. Pignol, “Correlation of lung tumor motion with external surrogate indicators of respiration,” Int. J. Radiat. Oncol., Biol., Phys. 60(4), 12981306 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.07.681
27.
27. Y. Tsunashima, T. Sakae, Y. Shioyama, K. Kagei, T. Terunuma, A. Nohtomi, and Y. Akine, “Correlation between the respiratory waveform measured using a respiratory sensor and 3D tumor motion in gated radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 60(3), 951958 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.06.026
28.
28. H. D. Kubo, P. M. Len, S. i. Minohara, and H. Mostafavi, “Breathing-synchronized radiotherapy program at the University of California Davis Cancer Center,” Med. Phys. 27(2), 346353 (2000).
http://dx.doi.org/10.1118/1.598837
29.
29. K. T. Malinowski, J. R. Pantarotto, S. Senan, T. J. McAvoy, and W. D. D’Souza, “Inferring positions of tumor and nodes in stage III lung cancer from multiple anatomical surrogates using four-dimensional computed tomography,” Int. J. Radiat. Oncol., Biol., Phys. 77(5), 15531560 (2010).
http://dx.doi.org/10.1016/j.ijrobp.2009.12.064
30.
30. H. Yan, F. Yin, G. Zhu, M. Ajlouni, and J. H. Kim, “The correlation evaluation of a tumor tracking system using multiple external markers,” Med. Phys. 33(11), 40734084 (2006).
http://dx.doi.org/10.1118/1.2358830
31.
31. B. Cho, P. R. Poulsen, A. Sawant, D. Ruan, and P. J. Keall, “Real-time target position estimation using stereoscopic kilovoltage/megavoltage imaging and external respiratory monitoring for dynamic multileaf collimator tracking,” Int. J. Radiat. Oncol., Biol., Phys. 79(1), 269278 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2010.02.052
32.
32. K. Malinowski, T. J. McAvoy, R. George, S. Dietrich, and W. D. D’Souza, “Incidence of changes in respiration-induced tumor motion and its relationship with respiratory surrogates during individual treatment fractions,” Int. J. Radiat. Oncol., Biol., Phys. 82(5), 16651673 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2011.02.048
33.
33. M. Nakamura, Y. Narita, Y. Matsuo, M. Narabayashi, M. Nakata, A. Sawada, T. Mizowaki, Y. Nagata, and M. Hiraoka, “Effect of audio coaching on correlation of abdominal displacement with lung tumor motion,” Int. J. Radiat. Oncol., Biol., Phys. 75(2), 558563 (2009).
http://dx.doi.org/10.1016/j.ijrobp.2008.11.070
34.
34. S. Weisberg, Applied Linear Regression, 3rd ed. (John Wiley & Sons, Inc., Hoboken, NJ, 2005).
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/39/8/10.1118/1.4738966
Loading
/content/aapm/journal/medphys/39/8/10.1118/1.4738966
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/39/8/10.1118/1.4738966
2012-08-03
2014-10-26

Abstract

Purpose:

Due to low frame rate of MRI and high radiation damage from fluoroscopy and CT, livermotion estimation using external respiratory surrogate signals seems to be a better approach to track liver motion in real-time for livertumor treatments in radiotherapy and thermotherapy. This work proposes a livermotion estimation method based on external respiratory surrogate signals. Animal experiments are also conducted to investigate related issues, such as the sensor arrangement, multisensor fusion, and the effective time period.

Methods:

Liver motion and abdominal motion are both induced by respiration and are proved to be highly correlated. Contrary to the difficult direct measurement of the liver motion, the abdominal motion can be easily accessed. Based on this idea, our study is split into the model-fitting stage and the motion estimation stage. In the first stage, the correlation between the surrogates and the liver motion is studied and established via linear regression method. In the second stage, the liver motion is estimated by the surrogate signals with the correlation model. Animal experiments on cases of single surrogate signal, multisurrogate signals, and long-term surrogate signals are conducted and discussed to verify the practical use of this approach.

Results:

The results show that the best single sensor location is at the middle of the upper abdomen, while multisurrogate models are generally better than the single ones. The estimation error is reduced from 0.6 mm for the single surrogate models to 0.4 mm for the multisurrogate models. The long-term validity of the estimation models is quite satisfactory within the period of 10 min with the estimation error less than 1.4 mm.

Conclusions:

External respiratory surrogate signals from the abdomen motion produces good performance for livermotion estimation in real-time. Multisurrogate signals enhance estimation accuracy, and the estimation model can maintain its accuracy for at least 10 min. This approach can be used in practical applications such as the livertumor treatment in radiotherapy and thermotherapy.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/39/8/1.4738966.html;jsessionid=2qtuqmhqnh33p.x-aip-live-03?itemId=/content/aapm/journal/medphys/39/8/10.1118/1.4738966&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effectiveness of external respiratory surrogates for in vivo liver motion estimation
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/39/8/10.1118/1.4738966
10.1118/1.4738966
SEARCH_EXPAND_ITEM