1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Monte Carlo simulations of adult and pediatric computed tomography exams: Validation studies of organ doses with physical phantoms
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/40/1/10.1118/1.4771934
1.
1. J. J. DeMarco, C. H. Cagnon, D. D. Cody, D. M. Stevens, C. H. McCollough, J. O’Daniel, and M. F. McNitt-Gray, “A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): Cylindrical and anthropomorphic phantoms,” Phys. Med. Biol. 50, 39894004 (2005).
http://dx.doi.org/10.1088/0031-9155/50/17/005
2.
2. J. J. DeMarco, C. H. Cagnon, D. D. Cody, D. M. Stevens, C. H. McCollough, M. Zankl, E. Angel, and M. F. McNitt-Gray, “Estimating radiation doses from multidetector CT using Monte Carlo simulations: Effects of different size voxelized patient models on magnitudes of organ and effective dose,” Phys. Med. Biol. 52, 25832597 (2007).
http://dx.doi.org/10.1088/0031-9155/52/9/017
3.
3. C. Lee, C. Lee, R. J. Staton, D. E. Hintenlang, M. M. Arreola, J. L. Williams, and W. E. Bolch, “Organ and effective doses in pediatric patients undergoing helical multislice computed tomography examination,” Med. Phys. 34, 18581873 (2007).
http://dx.doi.org/10.1118/1.2723885
4.
4. E. Angel, C. V. Wellnitz, M. M. Goodsitt, N. Yaghmai, J. J. DeMarco, C. H. Cagnon, J. W. Sayre, D. D. Cody, D. M. Stevens, A. N. Primak, C. H. McCollough, and M. F. McNitt-Gray, “Radiation dose to the fetus for pregnant patients undergoing multidetector CT imaging: Monte Carlo simulations estimating fetal dose for a range of gestational age and patient size,” Radiology 249, 220227 (2008).
http://dx.doi.org/10.1148/radiol.2491071665
5.
5. P. Deak, M. van Straten, P. C. Shrimpton, M. Zankl, and W. A. Kalender, “Validation of a Monte Carlo tool for patient-specific dose simulations in multi-slice computed tomography,” Eur. Radiol. 18, 759772 (2008).
http://dx.doi.org/10.1007/s00330-007-0815-7
6.
6. C. Lee, D. Lodwick, J. L. Williams, and W. E. Bolch, “Hybrid computational phantoms of the 15-year male and female adolescent: Applications to CT organ dosimetry for patients of variable morphometry,” Med. Phys. 35, 23662382 (2008).
http://dx.doi.org/10.1118/1.2912178
7.
7. E. Angel, N. Yaghmai, C. M. Jude, J. J. DeMarco, C. H. Cagnon, J. G. Goldin, C. H. McCollough, A. N. Primak, D. D. Cody, D. M. Stevens, and M. F. McNitt-Gray, “Dose to radiosensitive organs during routine chest CT: Effects of tube current modulation,” AJR, Am. J. Roentgenol. 193, 13401345 (2009).
http://dx.doi.org/10.2214/AJR.09.2886
8.
8. E. Angel, N. Yaghmai, C. M. Jude, J. J. Demarco, C. H. Cagnon, J. G. Goldin, A. N. Primak, D. M. Stevens, D. D. Cody, C. H. McCollough, and M. F. McNitt-Gray, “Monte Carlo simulations to assess the effects of tube current modulation on breast dose for multidetector CT,” Phys. Med. Biol. 54, 497512 (2009).
http://dx.doi.org/10.1088/0031-9155/54/3/003
9.
9. A. C. Turner, D. Zhang, H. J. Kim, J. J. DeMarco, C. H. Cagnon, E. Angel, D. D. Cody, D. M. Stevens, A. N. Primak, C. H. McCollough, and M. F. McNitt-Gray, “A method to generate equivalent energy spectra and filtration models based on measurement for multidetector CT Monte Carlo dosimetry simulations,” Med. Phys. 36, 21542164 (2009).
http://dx.doi.org/10.1118/1.3117683
10.
10. H. Liu, J. Gu, P. F. Caracappa, and X. G. Xu, “Comparison of two types of adult phantoms in terms of organ doses from diagnostic CT procedures,” Phys. Med. Biol. 55, 14411451 (2010).
http://dx.doi.org/10.1088/0031-9155/55/5/012
11.
11. X. Li, E. Samei, W. P. Segars, G. M. Sturgeon, J. G. Colsher, G. Toncheva, T. T. Yoshizumi, and D. P. Frush, “Patient-specific radiation dose and cancer risk estimation in CT: Part I. Development and validation of a Monte Carlo program,” Med. Phys. 38, 397407 (2011).
http://dx.doi.org/10.1118/1.3515839
12.
12. C. Lee, K. P. Kim, D. Long, D. Fisher, C. Tien, S. L. Simon, A. Bouville, and W. E. Bolch, “Organ doses for reference adult male and female undergoing computed tomography estimates by Monte Carlo simulations,” Med. Phys. 38, 11961206 (2011).
http://dx.doi.org/10.1118/1.3544658
13.
13. D. B. Pelowitz, “MCNPX user's manual version 2.6.0,” Los Alamos National Laboratory Report No. LA-CP-05-0369 (Los Alamos National Laboratory, Los Alamos, NM, 2008).
14.
14. K. Cranley, B. J. Gilmore, G. W. A. Fogarty, and L. Desponds, “Catalogue of diagnostic x-ray spectra and other data,” Report No. 78 (The Institute of Physics, London, 1997).
15.
15. R. J. Staton, C. Lee, C. Lee, M. D. Williams, D. E. Hintenlang, M. M. Arreola, J. L. Williams, and W. E. Bolch, “Organ and effective doses in newborn patients during helical multislice computed tomography examination,” Phys. Med. Biol. 51, 51515166 (2006).
http://dx.doi.org/10.1088/0031-9155/51/20/005
16.
16. D. E. Hyer, R. F. Fisher, and D. E. Hintenlang, “Characterization of a water-equivalent fiber-optic coupled dosimeter for use in diagnostic radiology,” Med. Phys. 36, 17111716 (2009).
http://dx.doi.org/10.1118/1.3116362
17.
17. J. F. Winslow, D. E. Hyer, R. F. Fisher, C. J. Tien, and D. E. Hintenlang, “Construction of anthropomorphic phantoms for use in dosimetry studies,” J. Appl. Clin. Med. Phys. 10, 195204 (2009).
http://dx.doi.org/10.1120/jacmp.v10i3.2986
18.
18. J. L. Hurtado, C. Lee, D. Lodwick, T. Goede, J. L. Williams, and W. E. Bolch, “Hybrid computational phantoms representing the reference adult male and adult female: Construction and applications for retrospective dosimetry,” Health Phys. 102, 292304 (2012).
http://dx.doi.org/10.1097/HP.0b013e318235163f
19.
19. C. Lee, D. Lodwick, J. Hurtado, D. Pafundi, J. L. Williams, and W. E. Bolch, “The UF family of reference hybrid phantoms for computational radiation dosimetry,” Phys. Med. Biol. 55, 339363 (2010).
http://dx.doi.org/10.1088/0031-9155/55/2/002
20.
20. C. Lee, C. Lee, J. L. Williams, and W. E. Bolch, “Whole-body voxel phantoms of paediatric patients—UF Series B,” Phys. Med. Biol. 51, 46494661 (2006).
http://dx.doi.org/10.1088/0031-9155/51/18/013
21.
21. A. K. Jones, D. E. Hintenlang, and W. E. Bolch, “Tissue-equivalent materials for construction of tomographic dosimetry phantoms in pediatric radiology,” Med. Phys. 30, 20722081 (2003).
http://dx.doi.org/10.1118/1.1592641
22.
22.International Commission on Radiation Units and Measurements, “Photon, electron, proton and neutron interaction data for body tissues,” ICRU Report No. 46 (ICRU Publications, Bethesda, MD, 1992).
23.
23. T. C. Chao, A. Bozkurt, and X. G. Xu, “Conversion coefficients based on the VIP-Man anatomical model and EGS4,” Health Phys. 81, 163183 (2001).
http://dx.doi.org/10.1097/00004032-200108000-00010
24.
24. J. Zhang, Y. H. Na, P. F. Caracappa, and X. G. Xu, “RPI-AM and RPI-AF, a pair of mesh-based, size-adjustable adult male and female computational phantoms using ICRP-89 parameters and their calculations for organ doses from monoenergetic photon beams,” Phys. Med. Biol. 54, 58855908 (2009).
http://dx.doi.org/10.1088/0031-9155/54/19/015
25.
25. J. H. Siewerdsen, A. M. Waese, D. J. Moseley, S. Richard, and D. A. Jaffray, “Spektr: A computational tool for x-ray spectral analysis and imaging system optimization,” Med. Phys. 31, 30573067 (2004).
http://dx.doi.org/10.1118/1.1758350
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/1/10.1118/1.4771934
Loading
/content/aapm/journal/medphys/40/1/10.1118/1.4771934
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/40/1/10.1118/1.4771934
2012-12-18
2014-08-29

Abstract

Purpose:

To validate the accuracy of a Monte Carlo source model of the Siemens SOMATOM Sensation 16 CT scanner using organ doses measured in physical anthropomorphic phantoms.

Methods:

The x-ray output of the Siemens SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code, MCNPX version 2.6. The resulting source model was able to perform various simulated axial and helical computed tomographic (CT) scans of varying scan parameters, including beam energy, filtration, pitch, and beam collimation. Two custom-built anthropomorphic phantoms were used to take dose measurements on the CT scanner: an adult male and a 9-month-old. The adult male is a physical replica of the University of Florida reference adult male hybrid computational phantom, while the 9-month-old is a replica of the University of Florida Series B 9-month-old voxel computational phantom. Each phantom underwent a series of axial and helical CT scans, during which organ doses were measured using fiber-optic coupled plastic scintillator dosimeters developed at the University of Florida. The physical setup was reproduced and simulated in MCNPX using the CT source model and the computational phantoms upon which the anthropomorphic phantoms were constructed. Average organ doses were then calculated based upon these MCNPX results.

Results:

For all CT scans, good agreement was seen between measured and simulated organ doses. For the adult male, the percent differences were within 16% for axial scans, and within 18% for helical scans. For the 9-month-old, the percent differences were all within 15% for both the axial and helical scans. These results are comparable to previously published validation studies using GE scanners and commercially available anthropomorphic phantoms.

Conclusions:

Overall results of this study show that the Monte Carlo source model can be used to accurately and reliably calculate organ doses for patients undergoing a variety of axial or helical CT examinations on the Siemens SOMATOM Sensation 16 scanner.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/40/1/1.4771934.html;jsessionid=c6tavuxw0vjr.x-aip-live-06?itemId=/content/aapm/journal/medphys/40/1/10.1118/1.4771934&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Monte Carlo simulations of adult and pediatric computed tomography exams: Validation studies of organ doses with physical phantoms
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/1/10.1118/1.4771934
10.1118/1.4771934
SEARCH_EXPAND_ITEM