Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/40/10/10.1118/1.4820361
1.
1. M. D. Schnall, “Application of magnetic resonance imaging to early detection of breast cancer,” Breast Cancer Res. 3(1), 1721 (2001).
http://dx.doi.org/10.1186/bcr265
2.
2. E. Warner, D. B. Plewes, R. S. Shumak, G. C. Catzavelos, L. S. Di Prospero, M. J. Yaffe, V. Goel, E. Ramsay, P. L. Chart, D. E. Cole, G. A. Taylor, M. Cutrara, T. H. Samuels, J. P. Murphy, J. M. Murphy, and S. A. Narod, “Comparison of breast magnetic resonance imaging, mammography, and ultrasound for surveillance of women at high risk for hereditary breast cancer,” J. Clin. Oncol. 19(15), 35243531 (2001).
3.
3. M. J. Stoutjesdijk, C. Boetes, G. J. Jager, L. Beex, P. Bult, J. H. Hendriks, R. J. Laheij, L. Massuger, L. E. van Die, T. Wobbes, and J. O. Barentsz, “Magnetic resonance imaging and mammography in women with a hereditary risk of breast cancer,” J. Natl. Cancer Inst. 93(14), 10951102 (2001).
http://dx.doi.org/10.1093/jnci/93.14.1095
4.
4. E. A. Morris, L. Liberman, D. J. Ballon, M. Robson, A. F. Abramson, A. Heerdt, and D. D. Dershaw, “MRI of occult breast carcinoma in a high-risk population,” Am. J. Roentgenol. 181(3), 619626 (2003).
http://dx.doi.org/10.2214/ajr.181.3.1810619
5.
5. D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Kobrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy,” JAMA 292(22), 27352742 (2004).
http://dx.doi.org/10.1001/jama.292.22.2735
6.
6. D. Saslow, C. Boetes, W. Burke, S. Harms, M. O. Leach, C. D. Lehman, E. Morris, E. Pisano, M. Schnall, S. Sener, R. A. Smith, E. Warner, M. Yaffe, K. S. Andrews, and C. A. Russell, “American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography,” Ca-Cancer J. Clin. 57(2), 7589 (2007).
http://dx.doi.org/10.3322/canjclin.57.2.75
7.
7. L. Esserman, E. Kaplan, S. Partridge, D. Tripathy, H. Rugo, J. Park, S. Hwang, H. Kuere, D. Sudilovsky, Y. Lu, and N. Jylton, “MRI phenotype is associated with response to doxorubicin and cyclophosphamide neoadjuvant chemotherapy in stage III breast cancer,” Ann. Surg. Oncol. 8, 549559 (2001).
http://dx.doi.org/10.1007/s10434-001-0549-8
8.
8. S. G. Orel, “MR imaging of the breast,” Magn. Reson. Imaging Clin. N. Am. 9(2), 273288 (2001).
9.
9. K. K. Lindfors, J. M. Boone, T. R. Nelson, K. Yang, A. L. C. Kwan, and D. W. F. Miller, “Dedicated breast CT: Initial clinical experience,” Radiology 246(3), 725733 (2008).
http://dx.doi.org/10.1148/radiol.2463070410
10.
10. H. Chan, J. Wei, B. Sahiner, E. A. Raffert, T. Wu, M. A. Roubidoux, R. H. Moore, D. B. Kopanas, L. M. Hadjiiski, and M. A. Helvie, “Computer-aided detection system for breast masses on digital tomosynthesis mammograms: Preliminary experience,” Radiology 237(3), 10751080 (2005).
http://dx.doi.org/10.1148/radiol.2373041657
11.
11. S. P. Poplack, T. D. Tosteson, C. A. Kogel, and H. M. Nagy, “Digital breast tomosynthesis: Initial experience in 98 women with abnormal digital screening mammography,” Am. J. Roentgenol. 189, 616623 (2007).
http://dx.doi.org/10.2214/AJR.07.2231
12.
12. S. G. Orel and M. D. Schnall, “MR imaging of the breast for the detection, diagnosis, and staging of breast cancer,” Radiology 220(1), 1330 (2001).
13.
13. L. Bartella, C. S. Smith, D. D. Shaw, and L. Liberman, “Imaging breast cancer,” Radiol. Clin. North Am. 45, 4567 (2007).
http://dx.doi.org/10.1016/j.rcl.2006.10.007
14.
14. V. F. Cocquyt, G. M. Villeirs, P. N. Blondeel, H. T. Depypere, M. M. Mortier, R. F. Serreyn, R. VanDen Broecke, and S. J. P. Van Belle, “Assessment of response to preoperative chemotherapy in patients with stage II and III breast cancer: The value of MRI,” Breast J. 11, 306315 (2002).
http://dx.doi.org/10.1054/brst.2002.0450
15.
15. A. Rieber, H. J. Brambs, A. Gabelmann, V. Heilmann, R. Kreienberg, and T. Kuhn, “Breast MRI for monitoring response of primary breast cancer to neo-adjuvant chemotherapy,” Eur. Radiol. 12, 17111719 (2002).
http://dx.doi.org/10.1007/s00330-001-1233-x
16.
16. M. A. Parazella, “Gadolinium-contrast toxicity in patients with kidney disease: Nephrotoxicity and nephrogenic systemic fibrosis,” Curr. Drug Saf. 3, 6775 (2008).
http://dx.doi.org/10.2174/157488608783333989
17.
17. J. C. Bolmey, A. Izadnegahdar, L. Jofre, C. H. Pichot, G. Peronnnet, and M. Solaimani, “Microwave diffraction tomography for biomedical applications,” IEEE Trans. Microwave Theory Tech. 30, 19982000 (1982).
http://dx.doi.org/10.1109/TMTT.1982.1131357
18.
18. D. Colton and P. Monk, “A new approach to detecting leukemia using computational electromagnetics,” IEEE Comput. Sci. Eng. 2, 4652 (1995).
http://dx.doi.org/10.1109/99.476368
19.
19. S. P. Poplack, T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, C. A. Kogel, S. Knowlton-Soho, J. J. Gibson, and K. D. Paulsen, “Electromagnetic breast imaging: Pilot result in women with abnormal mammography,” Radiology 243(2), 350359 (2007).
http://dx.doi.org/10.1148/radiol.2432060286
20.
20. M. Lazebnik, D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, “A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries,” Phys. Med. Biol. 52, 60936115 (2007).
http://dx.doi.org/10.1088/0031-9155/52/20/002
21.
21. S. Y. Semenov, R. H. Svenson, A. E. Bulyshev, A. E. Souvorov, A. G. Nazarov, Y. E. Sizov, V. G. Posukh, A. Pavlovsky, P. N. Repin, A. N. Starostin, B. A. Voinov, M. Taran, G. P. Tatsis, and V. Y. Baranov, “Three-dimensional microwave tomography: Initial experimental imaging of animals,” IEEE Trans. Biomed. Eng. 49, 5563 (2002).
http://dx.doi.org/10.1109/10.972840
22.
22. J. Sierpowska, “Electrical and dielectric characterization of trabecular bone quality,” Ph.D. dissertation, Kuopio University, Kuopio, Finland, 2007.
23.
23. K. R. Foster and J. L. Schepps, “Dielectric properties of tumor and normal tissues at radio through microwave frequencies,” J. Microwave Power 16, 107119 (1981).
24.
24. S. A. Feig and R. E. Hendrick, “Radiation risk from screening mammography of women aged 40-49 years,” J. Natl. Cancer Inst. Monogr. 22, 119124 (1997).
25.
25. J. M. Boone, A. L. C. Kwan, T. R. Nelson, T. R. Nelson, N. Shah, G. Burkett, J. A. Seibert, K. K. Lindfors, and G. Roos, “Performance assessment of a pendant-geometry CT scanner for breast cancer detection,” Proc. SPIE 5745, 319323 (2005).
http://dx.doi.org/10.1117/12.595706
26.
26. R. R. Raylman, S. Majewski, M. F. Smith, J. Proffitt, W. Hammond, A. Srinivasan, J. McKisson, V. Popov, A. Weisenberger, C. O. Judy, B. Kross, S. Ramasubramanian, L. E. Banta, P. E. Kinahan, and K. Champley, “The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): Design, construction and phantom-based measurements,” Phys. Med. Biol. 53, 637653 (2008).
http://dx.doi.org/10.1088/0031-9155/53/3/009
27.
27. S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues,” Phys. Med. Biol. 41, 22712293 (1996).
http://dx.doi.org/10.1088/0031-9155/41/11/003
28.
28. K. R. Foster and H. Schwan, “Dielectric properties of tissues and biological materials: A critical review,” Crit. Rev. Biomed. Eng. 17(1), 25104 (1989).
29.
29. S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. Pogue, T. Tosteson, M. Grove, S. Soho, and W. Wells, “Electromagnetic breast imaging: Average tissue property values in women with negative clinical findings,” Radiology 231, 571580 (2004).
http://dx.doi.org/10.1148/radiol.2312030606
30.
30. P. M. Meaney, M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, C. A. Kogel, S. P. Poplack, and K. D. Paulsen, “Initial clinical experience in microwave breast imaging in women with normal mammography,” Acad. Radiol. 14(2), 207218 (2007).
http://dx.doi.org/10.1016/j.acra.2006.10.016
31.
31. S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53, 67136727 (2008).
http://dx.doi.org/10.1088/0031-9155/53/23/005
32.
32. S. H. Chung, H. Yu, M-Y Su, A. E. Cerussi, and B. J. Tromberg, “Molecular imaging of water binding state and diffusion in breast cancer using diffuse optical spectroscopy and diffusion weighted MRI,” J. Biomed. Opt. 17, 071304 (2012).
http://dx.doi.org/10.1117/1.JBO.17.7.071304
33.
33. S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2, 563569 (2003).
34.
34. Y. Guo, Y. Q. Cai, Z. L. Cai, Y. G. Gao, N. Y. An, L. Ma, S. Mahankali, and J. H. Gao, “Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging,” J. Magn. Reson. Imaging 16, 172178 (2002).
http://dx.doi.org/10.1002/jmri.10140
35.
35. H. P. Schwan and K. R. Foster, “Microwave dielectric properties of tissue: Some comments on the rotational mobility of tissue water,” Biophys. J. 17, 193197 (1977).
http://dx.doi.org/10.1016/S0006-3495(77)85637-3
36.
36. J. L. Schepps and K. R. Foster, “The UHF and microwave dielectric properties of normal and tumour tissues: Variation in dielectric properties with tissue water content,” Phys. Med. Biol. 25, 11491159 (1980).
http://dx.doi.org/10.1088/0031-9155/25/6/012
37.
37. U. Kaatze, “On the existence of bound water in biological systems as probed by dielectric spectroscopy,” Phys. Med. Biol. 35, 16631681 (1990).
http://dx.doi.org/10.1088/0031-9155/35/12/006
38.
38. K. R. Foster, J. L. Schepps, and H. P. Schwan, “Microwave dielectric relaxation in muscle: A second look,” Biophys. J. 29, 271281 (1980).
http://dx.doi.org/10.1016/S0006-3495(80)85131-9
39.
39. A. S. Hoffman, “Hydrogels for biomedical applications,” Adv. Drug Delivery Rev. 944, 312 (2002).
http://dx.doi.org/10.1016/S0169-409X(01)00239-3
40.
40. N. Jouon, M. Rinaudo, M. Desbrieres, and J. Desbrieres, “Hydration of hyaluronic acid as a function of the counterion type and relative humidity,” Carbohydr. Polym. 26, 6973 (1995).
http://dx.doi.org/10.1016/0144-8617(95)98837-7
41.
41. M. Lazebnik, L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, “A large-scale study of the ultrawideband and microwave dielectric properties of normal breast tissue obtained from reduction surgeries,” Phys. Med. Biol. 52, 26372656 (2007).
http://dx.doi.org/10.1088/0031-9155/52/10/001
42.
42. B. A. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103, 88288833 (2006).
http://dx.doi.org/10.1073/pnas.0509636103
43.
43. A. H. Golnabi, P. M. Meaney, and K. D. Paulsen, “Tomographic microwave imaging with incorporated prior spatial information,” IEEE Trans. Microwave Theory Tech. PP(99), 18 (2013).
44.
44. A. H. Golnabi, P. M. Meaney,and K. D. Paulsen, “Comparison of no-prior and soft-prior regularization in biomedical microwave imaging,” Int. J. Med. Phys. 36, 159170 (2011).
http://dx.doi.org/10.4103/0971-6203.83482
45.
45. Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt Express 18(8), 78357850 (2010).
http://dx.doi.org/10.1364/OE.18.007835
46.
46. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 8997 (2011).
http://dx.doi.org/10.1148/radiol.10082176
47.
47. Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: Optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 3042 (2009).
http://dx.doi.org/10.1109/TMI.2008.925082
48.
48. Q. Zhu, M. Huang, N. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and H. S. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: Initial clinical results of 19 cases,” Neoplasia 5(5), 379388 (2003).
49.
49. Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, H. S. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: Potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367378 (2010).
http://dx.doi.org/10.1148/radiol.10091237
50.
50. V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4(4), 347354 (2002).
http://dx.doi.org/10.1038/sj.neo.7900244
51.
51. V. Krishnaswamy, K. E. Michaelsen, B. W. Pogue, S. P. Poplack, I. Shaw, K. Defrietas, K. Brooks, and K. D. Paulsen, “A digital x-ray tomosynthesis coupled near infrared spectral tomography system for dual-modality breast imaging,” Opt. Express 20(17), 1912519136 (2012).
http://dx.doi.org/10.1364/OE.20.019125
52.
52. K. Michaelsen, V. Krishnaswamy, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Near-infrared spectral tomography integrated with digital breast tomosynthesis: Effects of tissue scattering on optical data acquisition design,” Med. Phys. 39(7), 45794587 (2012).
http://dx.doi.org/10.1118/1.4728228
53.
53. C. M. Carpenter et al., “Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size,” Opt. Lett. 32(8), 933935 (2007).
http://dx.doi.org/10.1364/OL.32.000933
54.
54. M. A. Mastanduno, K. E. Michaelsen, S. C. Davis, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Combined magnetic resonance imaging and near-infrared spectral imaging,” in Emerging Imaging Technologies in Medicine, Imaging in Medical Diagnosis and Therapy Series, edited by M. A. Anastasio and P. La Riviere (CRC, London, UK, 2013), Chap. 17, pp. 263278.
55.
55. M. Pakalniskis, W. A. Wells, M. Schwab, H. Froehlich, S. Jiang, Z. Li, T. Tosteson, S. P. Poplack, P. A. Kaufman, K. D. Paulsen, and B. W. Pogue, “Tumor angiogenesis change estimation by diffuse optical spectroscopic tomography: Can a correlation predict neo-adjuvant chemotherapy response in women with invasive breast cancer?,” Radiology 259(2), 365374 (2011).
http://dx.doi.org/10.1148/radiol.11100699
56.
56. S. M. Aguilar, J. D. Shea, M. A. Al-Joumayly, B. D. Van Veen, N. Behdad, and S. C. Hagness, “Dielectric characterization of PCL-based thermoplastic materials for microwave diagnostic and therapeutic applications,” IEEE Trans. Biomed. Eng. 59, 627633 (2012).
http://dx.doi.org/10.1109/TBME.2011.2157918
57.
57. N. R. Epstein, A. H. Golnabi, P. M. Meaney, and K. D. Paulsen, “Microwave dielectric contrast imaging in a magnetic resonant environment and the effect of using magnetic resonant spatial information in image reconstruction,” in Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, 2011 (IEEE, Piscataway Township, NJ, 2011), pp. 57385741.
58.
58. T. M. Grzegorczyk, P. M. Meaney, P. A. Kaufman, R. M. diFlorio-Alexander, and K. D. Paulsen, “Fast 3-D tomographic microwave imaging for breast cancer detection,” IEEE Trans. Med. Imaging 31, 15841592 (2012).
http://dx.doi.org/10.1109/TMI.2012.2197218
59.
59. G. E. P. Box and D. R. Cox, “Analysis of transformations,” J. R. Stat. Soc. Ser. B (Methodol.) 26, 211252 (1964).
60.
60. T. M. Grzegorczyk, P. M. Meaney, S. I. Jeon, S. D. Geimer, and K. D. Paulsen, “Importance of phase unwrapping for the reconstruction of microwave tomographic images,” Biomed. Opt. Express 2, 315330 (2011).
http://dx.doi.org/10.1364/BOE.2.000315
61.
61. T. Rubaek, P. M. Meaney, and K. D. Paulsen, “A contrast source inversion algorithm formulated using the log-phase formulation,” Int. J. Antennas Propag. 2011, 849894 (2011).
62.
62. H. Kim, J. Lee, S. Jeon, and H. Choi, “Design and fabrication of a receiver for microwave tomography breast imaging system,” in Proceedings of the IEEE Conference on Communication Technology Convergence, Jeju, South Korea, 2012.
63.
63. K. D. Paulsen and P. M. Meaney, “Compensation for nonactive array element effects in a microwave imaging system: Part I. Forward solution vs. measured data comparison,” IEEE Trans. Med. Imaging 18, 496507 (1999).
http://dx.doi.org/10.1109/42.781015
64.
64. P. M. Meaney, K. D. Paulsen, B. W. Pogue, and M. I. Miga, “Microwave image reconstruction utilizing log-magnitude and unwrapped phase to improve high-contrast object recovery,” IEEE Trans. Med. Imaging 20, 104116 (2001).
http://dx.doi.org/10.1109/42.913177
65.
65. P. M. Meaney, K. D. Paulsen, and T. P. Ryan, “Two-dimensional hybrid element image reconstruction for TM illumination,” IEEE Trans. Antennas Propag. 43, 239247 (1995).
http://dx.doi.org/10.1109/8.371992
66.
66. P. M. Meaney, K. D. Paulsen, and J. T. Chang, “Near-field microwave imaging of biologically based materials using a monopole transceiver system,” IEEE Trans. Microwave Theory Tech. 46, 3145 (1998).
http://dx.doi.org/10.1109/22.654920
67.
67. Q. Fang, P. M. Meaney, and K. D. Paulsen, “Viable three-dimensional microwave imaging: Theory and experiments,” IEEE Trans. Antennas Propag. 58, 449458 (2010).
http://dx.doi.org/10.1109/TAP.2009.2037691
68.
68. D. Li, P. M. Meaney, T. Raynolds, S. A. Pendergrass, M. W. Fanning, and K. D. Paulsen, “A parallel-detection microwave spectroscopy system for breast imaging,” Rev. Sci. Instrum. 75, 23052313 (2004).
http://dx.doi.org/10.1063/1.1764609
69.
69. P. M. Meaney, F. Shubitidze, M. W. Fanning, M. Kmiec, N. R. Epstein, and K. D. Paulsen, “Surface wave multipath signals in near-field microwave imaging,” Int. J. Biomed. Imaging 2012, 697253 (2012).
http://dx.doi.org/10.1155/2012/697253
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/10/10.1118/1.4820361
Loading
/content/aapm/journal/medphys/40/10/10.1118/1.4820361
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/40/10/10.1118/1.4820361
2013-09-12
2016-09-30

Abstract

Breast magnetic resonance imaging is highly sensitive but not very specific for the detection of breast cancer. Opportunities exist to supplement the image acquisition with a more specific modality provided the technical challenges of meeting space limitations inside the bore, restricted breast access, and electromagnetic compatibility requirements can be overcome. Magnetic resonance (MR) and microwave tomography (MT) are complementary and synergistic because the high resolution of MR is used to encode spatial priors on breast geometry and internal parenchymal features that have distinct electrical properties (i.e., fat vs fibroglandular tissue) for microwave tomography.

The authors have overcome integration challenges associated with combining MT with MR to produce a new coregistered, multimodality breast imaging platform—magnetic resonance microwave tomography, including: substantial illumination tank size reduction specific to the confined MR bore diameter, minimization of metal content and composition, reduction of metal artifacts in the MR images, and suppression of unwanted MT multipath signals.

MR SNR exceeding 40 dB can be obtained. Proper filtering of MR signals reduces MT data degradation allowing MT SNR of 20 dB to be obtained, which is sufficient for image reconstruction. When MR spatial priors are incorporated into the recovery of MT property estimates, the errors between the recovered versus actual dielectric properties approach 5%.

The phantom and human subject exams presented here are the first demonstration of combining MT with MR to improve the accuracy of the reconstructed MT images.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/40/10/1.4820361.html;jsessionid=SB_MIS7f6Qj5SuyLeA2BVHdO.x-aip-live-03?itemId=/content/aapm/journal/medphys/40/10/10.1118/1.4820361&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/40/10/10.1118/1.4820361&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/40/10/10.1118/1.4820361'
Right1,Right2,Right3,