Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. A. Rhodin and T. Thomas, “A vascular connection to alzheimer's disease,” Microcirculation 8(4), 207220 (2001).
2. N. D. Prins, E. J. van Dijk, T. den Heijer, S. E. Vermeer, J. Jolles, P. J. Koudstaal, A. Hofman, and M. M. B. Breteler, “Cerebral small-vessel disease and decline in information processing speed, executive function and memory,” Brain 128(9), 20342041 (2005).
3. L. Pantoni, “Cerebral small vessel disease: From pathogenesis and clinical characteristics to therapeutic challenges,” Lancet Neurol. 9(7), 689701 (2010).
4. A. P. Tregaskiss, A. N. Goodwin, L. D. Bright, C. H. Ziegler, and R. D. Acland, “Three-dimensional ct angiography: A new technique for imaging microvascular anatomy,” Clin. Anat. 20(2), 116123 (2007).
5. R. J. Nijenhuis, T. Leiner, E. M. J. Cornips, J. T. Wilmink, M. J. Jacobs, J. M. A. van Engelshoven, and W. H. Backes, “Spinal cord feeding arteries at mr angiography for thoracoscopic spinal surgery: Feasibility study and implications for surgical approach,” Radiology 233(2), 541547 (2004).
6. Q. Li, F. Lv, Y. Wei, T. Luo, and P. Xie, “Automated subtraction ct angiography for visualization of the whole brain vasculature: A feasibility study,” Acad. Radiol. 20(8), 10091014 (2013).
7. W. L. Nowinski, F. Puspitasaari, I. Volkau, Y. Marchenko, and M. V. Knopp, “Comparison of magnetic resonance angiography scans on 1.5, 3, and 7 tesla units: A quantitative study of 3-dimensional cerebrovasculature,” J. Neuroimaging 23(1), 8695 (2013).
8. A. C. Stamm, C. L. Wright, M. V. Knopp, P. Schmalbrock, and J. T. Heverhagen, “Phase contrast and time-of-flight magnetic resonance angiography of the intracerebral arteries at 1.5, 3 and 7 t,” Magn. Reson. Imaging 31(4), 545549 (2013).
9. F. J. Fry and J. E. Barger, “Acoustical properties of the human skull,” J. Acoust. Soc. Am. 63(5), 15761590 (1978).
10. S. W. Smith, N. M. Ivancevich, B. D. Lindsey, J. Whitman, E. Light, M. Fronheiser, H. A. Nicoletto, and D. T. Laskowitz, “The ultrasound brain helmet: Feasibility study of multiple simultaneous 3d scans of cerebral vasculature,” Ultrasound Med. Biol. 35(2), 329338 (2009).
11. B. D. Lindsey, E. D. Light, H. A. Nicoletto, E. R. Bennett, D. T. Laskowitz, and S. W. Smith, “The ultrasound brain helmet: New transducers and volume registration for in vivo simultaneous multi-transducer 3-d transcranial imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(6), 11891202 (2011).
12. T. Sato, K. Uemura, and K. Sasaki, “Super-resolution acoustical passive imaging system using algebraic reconstruction,” J. Acoust. Soc. Am. 67(5), 18021808 (1980).
13. S. J. Norton and I. J. Won, “Time exposure acoustics,” IEEE Trans. Geosci. Remote 38(3), 13371343 (2000).
14. M. Gyöngy and C.-C. Coussios, “Passive spatial mapping of inertial cavitation during hifu exposure,” IEEE Trans. Biomed. Eng. 57(1), 4856 (2010).
15. C. R. Jensen, R. W. Ritchie, M. Gyöngy, J. R. T. Collin, T. Leslie, and C.-C. Coussios, “Spatiotemporal monitoring of high-intensity focused ultrasound therapy with passive acoustic mapping,” Radiology 262(1), 252261 (2012).
16. K. J. Haworth, T. D. Mast, K. Radhakrishnan, M. T. Burgess, J. A. Kopechek, S.-L. Huang, D. D. McPherson, and C. K. Holland, “Passive imaging with pulsed ultrasound insonations,” J. Acoust. Soc. Am. 132(1), 544553 (2012).
17. G. T. Clement, J. Sun, T. Giesecke, and K. Hynynen, “A hemisphere array for non-invasive ultrasound brain therapy and surgery,” Phys. Med. Biol. 45(12), 37073719 (2000).
18. J. Song and K. Hynynen, “Feasibility of using lateral mode coupling method for a large scale ultrasound phased array for noninvasive transcranial therapy,” IEEE Trans. Biomed. Eng. 57(1), 124133 (2010).
19. S. B. Feinstein, R. M. Lang, C. Dick, A. Neumann, J. Al-Sadir, K. G. Chua, J. Carroll, T. Feldman, and K. M. Borow, “Contrast echocardiography during coronary arteriography in humans: Perfusion and anatomic studies,” J. Am. Coll. Cardiol. 11(1), 5965 (1988).
20. L. J. Crouse, J. Cheirif, D. E. Hanly, J. A. Kisslo, A. J. Labovitz, J. S. Raichlen, R. W. Schutz, P. M. Shah, and M. D. Smith, “Opacification and border delineation improvement in patients with suboptimal endocardial border definition in routine echocardiography: Results of the phase iii albunex multicenter trial,” J. Am. Coll. Cardiol. 22(5), 14941500 (1993).
21. K. J. Haworth, J. B. Fowlkes, P. L. Carson, and O. D. Kripfgans, “Towards aberration correction of transcranial ultrasound using acoustic droplet vaporization,” Ultrasound Med. Biol. 34(3), 435445 (2008).
22. J. Gâteau, L. Marsac, M. Pernot, J.-F. Aubry, M. Tanter, and M. Fink, “Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature,” IEEE Trans. Biomed. Eng. 57(1), 134144 (2010).
23. N. Bobroff, “Position measurements with a resolution and noise-limited instrument,” Rev. Sci. Instrum. 57(6), 11521157 (1986).
24. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 16421645 (2006).
25. K. W. Stock, S. G. Wetzel, P. A. Lyrer, and E. W. Radü, “Quantification of blood flow in the middle cerebral artery with phase-contrast mr imaging,” Eur. Radiol. 10(11), 17951800 (2000).
26. E. Talu, R. L. Powell, M. L. Longo, and P. A. Dayton, “Needle size and injection rate impact microbubble contrast agent population,” Ultrasound Med. Biol. 34(7), 11821185 (2008).
27. G. T. Clement and K. Hynynen, “Micro-receiver guided transcranial beam steering,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(4), 447453 (2002).
28. R. M. Jones, M. A. O'Reilly, and K. Hynynen, “Transcranial passive acoustic mapping with hemispherical sparse arrays using ct-based skull-specific aberration corrections: A simulation study,” Phys. Med. Biol. 58(14), 49815005 (2013).
29. J. White, G. T. Clement, and K. Hynynen, “Transcranial ultrasound focus reconstruction with phase and amplitude correction,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 15181522 (2005).
30. P. N. Burns, S. R. Wilson, and D. H. Simpson, “Pulse inversion imaging of liver blood flow: Improved method for characterizing focal masses with microbubble contrast.” Invest. Radiol. 35(1), 5871 (2000).
31. P. M. Shankar, P. Dala Krishna, and V. L. Newhouse, “Advantages of subharmonic over second harmonic backscatter for contrast-to-tissue echo enhancement,” Ultrasound Med. Biol. 24(3), 395399 (1998).

Data & Media loading...


Article metrics loading...



High-resolution vascular imaging has not been achieved in the brain due to limitations of current clinical imaging modalities. The authors present a method for transcranial ultrasound imaging of single micrometer-size bubbles within a tube phantom.

Emissions from single bubbles within a tube phantom were mapped through an human skull using a sparse hemispherical receiver array and a passive beamforming algorithm. Noninvasive phase and amplitude correction techniques were applied to compensate for the aberrating effects of the skull bone. The positions of the individual bubbles were estimated beyond the diffraction limit of ultrasound to produce a super-resolution image of the tube phantom, which was compared with microcomputed tomography (micro-CT).

The resulting super-resolution ultrasound image is comparable to results obtained via the micro-CT for small tissue specimen imaging.

This method provides superior resolution to deep-tissue contrast ultrasound and has the potential to be extended to provide complete vascular network imaging in the brain.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd