Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/40/11/10.1118/1.4823785
1.
1. P. J. Keall, G. Starkschall, H. Shukla, K. M. Forster, V. Ortiz, C. W. Stevens, S. S. Vedam, R. George, T. Guerrero, and R. Mohan, “Acquiring 4D thoracic CT scans using a multislice helical method,” Phys. Med. Biol. 49, 20532067 (2004).
http://dx.doi.org/10.1088/0031-9155/49/10/015
2.
2. W. D. D’Souza, D. P. Nazareth, B. Zhang, C. Deyoung, M. Suntharalingam, Y. Kwok, C. X. Yu, and W. F. Regine, “The use of gated and 4D CT imaging in planning for stereotactic body radiation therapy,” Med. Dosim. 32, 92101 (2007).
http://dx.doi.org/10.1016/j.meddos.2007.01.006
3.
3. P. Keall, “4-dimensional computed tomography imaging and treatment planning,” Semin. Radiat. Oncol. 14, 8190 (2004).
http://dx.doi.org/10.1053/j.semradonc.2003.10.006
4.
4. E. Rietzel, T. Pan, and G. T. Chen, “Four-dimensional computed tomography: Image formation and clinical protocol,” Med. Phys. 32, 874889 (2005).
http://dx.doi.org/10.1118/1.1869852
5.
5. R. W. Underberg, F. J. Lagerwaard, J. P. Cuijpers, B. J. Slotman, J. R. van Sornsen de Koste, and S. Senan, “Four-dimensional CT scans for treatment planning in stereotactic radiotherapy for stage I lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. 60, 12831290 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.07.665
6.
6. H. H. Liu, P. Balter, T. Tutt, B. Choi, J. Zhang, C. Wang, M. Chi, D. Luo, T. Pan, S. Hunjan, G. Starkschall, I. Rosen, K. Prado, Z. Liao, J. Chang, R. Komaki, J. D. Cox, R. Mohan, and L. Dong, “Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. 68, 531540 (2007).
http://dx.doi.org/10.1016/j.ijrobp.2006.12.066
7.
7. G. Starkschall, N. Desai, P. Balter, K. Prado, D. Luo, D. Cody, and T. Pan, “Quantitative assessment of four-dimensional computed tomography image acquisition quality,” J. Appl. Clin. Med. Phys. 8, 23622381 (2007).
http://dx.doi.org/10.1120/jacmp.v8i3.2362
8.
8. U. W. Langner and P. J. Keall, “Quantification of artifact reduction with real-time cine four-dimensional computed tomography acquisition methods,” Int. J. Radiat. Oncol., Biol., Phys. 76, 12421250 (2010).
http://dx.doi.org/10.1016/j.ijrobp.2009.07.013
9.
9. R. Werner, J. Ehrhardt, T. Frenzel, D. Saring, W. Lu, D. Low, and H. Handels, “Motion artifact reducing reconstruction of 4D CT image data for the analysis of respiratory dynamics,” Methods Inf. Med. 46, 254260 (2007).
10.
10. R. W. Underberg, F. J. Lagerwaard, B. J. Slotman, J. P. Cuijpers, and S. Senan, “Use of maximum intensity projections (MIP) for target volume generation in 4DCT scans for lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. 63, 253260 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2005.05.045
11.
11. R. Muirhead, S. G. McNee, C. Featherstone, K. Moore, and S. Muscat, “Use of maximum intensity projections (MIPs) for target outlining in 4DCT radiotherapy planning,” J. Thorac. Oncol. 3, 14331438 (2008).
http://dx.doi.org/10.1097/JTO.0b013e31818e5db7
12.
12. S. Mori, N. Kanematsu, H. Asakura, and M. Endo, “Projection-data based temporal maximum attenuation computed tomography: Determination of internal target volume for lung cancer against intra-fraction motion,” Phys. Med. Biol. 52, 10271038 (2007).
http://dx.doi.org/10.1088/0031-9155/52/4/011
13.
13. S. Napel, M. P. Marks, G. D. Rubin, M. D. Dake, C. H. McDonnell, S. M. Song, D. R. Enzmann, and R. B. Jeffrey, Jr., “CT angiography with spiral CT and maximum intensity projection,” Radiology 185, 607610 (1992).
14.
14. K. Park, L. Huang, H. Gagne, and L. Papiez, “Do maximum intensity projection images truly capture tumor motion?,” Int. J. Radiat. Oncol., Biol., Phys. 73, 618625 (2009).
http://dx.doi.org/10.1016/j.ijrobp.2008.10.008
15.
15. D. A. Zamora, A. C. Riegel, X. Sun, P. Balter, G. Starkschall, O. Mawlawi, and T. Pan, “Thoracic target volume delineation using various maximum-intensity projection computed tomography image sets for radiotherapy treatment planning,” Med. Phys. 37, 58115820 (2010).
http://dx.doi.org/10.1118/1.3504605
16.
16. J. D. Bradley, A. N. Nofal, I. M. El Naqa, W. Lu, J. Liu, J. Hubenschmidt, D. A. Low, R. E. Drzymala, and D. Khullar, “Comparison of helical, maximum intensity projection (MIP), and averaged intensity (AI) 4D CT imaging for stereotactic body radiation therapy (SBRT) planning in lung cancer,” Radiother. Oncol. 81, 264268 (2006).
http://dx.doi.org/10.1016/j.radonc.2006.10.009
17.
17. H. Hof, B. Rhein, P. Haering, A. Kopp-Schneider, J. Debus, and K. Herfarth, “4D-CT-based target volume definition in stereotactic radiotherapy of lung tumours: Comparison with a conventional technique using individual margins,” Radiother. Oncol. 93, 419423 (2009).
http://dx.doi.org/10.1016/j.radonc.2009.08.040
18.
18. J. R. van Sornsen de Koste, F. J. Lagerwaard, M. R. Nijssen-Visser, W. J. Graveland, and S. Senan, “Tumor location cannot predict the mobility of lung tumors: A 3D analysis of data generated from multiple CT scans,” Int. J. Radiat. Oncol., Biol., Phys. 56, 348354 (2003).
http://dx.doi.org/10.1016/S0360-3016(02)04467-X
19.
19. C. Plathow, S. Ley, C. Fink, M. Puderbach, W. Hosch, A. Schmahl, J. Debus, and H. U. Kauczor, “Analysis of intrathoracic tumor mobility during whole breathing cycle by dynamic MRI,” Int. J. Radiat. Oncol., Biol., Phys. 59, 952959 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2003.12.035
20.
20. P. Cheung, K. Sixel, G. Morton, D. A. Loblaw, R. Tirona, G. Pang, R. Choo, E. Szumacher, G. Deboer, and J. P. Pignol, “Individualized planning target volumes for intrafraction motion during hypofractionated intensity-modulated radiotherapy boost for prostate cancer,” Int. J. Radiat. Oncol., Biol., Phys. 62, 418425 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2004.09.051
21.
21. E. Rietzel, A. K. Liu, K. P. Doppke, J. A. Wolfgang, A. B. Chen, G. T. Chen, and N. C. Choi, “Design of 4D treatment planning target volumes,” Int. J. Radiat. Oncol., Biol., Phys. 66, 287295 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2006.05.024
22.
22. S. H. Benedict, K. M. Yenice, D. Followill, J. M. Galvin, W. Hinson, B. Kavanagh, P. Keall, M. Lovelock, S. Meeks, L. Papiez, T. Purdie, R. Sadagopan, M. C. Schell, B. Salter, D. J. Schlesinger, A. S. Shiu, T. Solberg, D. Y. Song, V. Stieber, R. Timmerman, W. A. Tome, D. Verellen, L. Wang, and F. F. Yin, “Stereotactic body radiation therapy: The report of AAPM Task Group 101,” Med. Phys. 37, 40784101 (2010).
http://dx.doi.org/10.1118/1.3438081
23.
23. M. G. Cavalcanti, “Cone beam computed tomographic imaging: Perspective, challenges, and the impact of near-trend future applications,” J. Craniofac. Surg. 23, 279282 (2012).
http://dx.doi.org/10.1097/SCS.0b013e318241ba64
24.
24. J. J. Sonke, M. Rossi, J. Wolthaus, M. van Herk, E. Damen, and J. Belderbos, “Frameless stereotactic body radiotherapy for lung cancer using four-dimensional cone beam CT guidance,” Int. J. Radiat. Oncol., Biol., Phys. 74, 567574 (2009).
http://dx.doi.org/10.1016/j.ijrobp.2008.08.004
25.
25. F. F. Yin, Z. Wang, S. Yoo, Q. J. Wu, J. Kirkpatrick, N. Larrier, J. Meyer, C. G. Willett, and L. B. Marks, “Integration of cone-beam CT in stereotactic body radiation therapy,” Technol. Cancer Res. Treat. 7, 133139 (2008).
26.
26. D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-panel cone-beam computed tomography for image-guided radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 53, 13371349 (2002).
http://dx.doi.org/10.1016/S0360-3016(02)02884-5
27.
27. T. Fatunase, Z. Wang, S. Yoo, J. L. Hubbs, R. G. Prosnitz, F. F. Yin, and L. B. Marks, “Assessment of the residual error in soft tissue setup in patients undergoing partial breast irradiation: Results of a prospective study using cone-beam computed tomography,” Int. J. Radiat. Oncol., Biol., Phys. 70, 10251034 (2008).
http://dx.doi.org/10.1016/j.ijrobp.2007.07.2344
28.
28. L. Wang, S. Feigenberg, J. Fan, L. Jin, A. Turaka, L. Chen, and C. M. Ma, “Target repositional accuracy and PTV margin verification using three-dimensional cone-beam computed tomography (CBCT) in stereotactic body radiotherapy (SBRT) of lung cancers,” J. Appl. Clin. Med. Phys. 13, 37083721 (2012).
http://dx.doi.org/10.1120/jacmp.v13i2.3708
29.
29. J. Y. Song, T. K. Nam, S. J. Ahn, W. K. Chung, M. S. Yoon, and B. S. Nah, “Respiratory motional effect on cone-beam CT in lung radiation surgery,” Med. Dosim. 34, 117125 (2009).
http://dx.doi.org/10.1016/j.meddos.2008.07.004
30.
30. T. E. Marchant, G. J. Price, B. J. Matuszewski, and C. J. Moore, “Reduction of motion artefacts in on-board cone beam CT by warping of projection images,” Br. J. Radiol. 84, 251264 (2011).
http://dx.doi.org/10.1259/bjr/90983944
31.
31. U. V. Elstrom, L. P. Muren, J. B. Petersen, and C. Grau, “Evaluation of image quality for different kV cone-beam CT acquisition and reconstruction methods in the head and neck region,” Acta Oncol. 50, 908917 (2011).
http://dx.doi.org/10.3109/0284186X.2011.590525
32.
32. L. Wang, J. Li, K. Paskalev, P. Hoban, W. Luo, L. Chen, S. McNeeley, R. Price, and C. Ma, “Commissioning and quality assurance of a commercial stereotactic treatment-planning system for extracranial IMRT,” J. Appl. Clin. Med. Phys. 7, 2134 (2006).
http://dx.doi.org/10.1120/jacmp.2027.25368
33.
33. A. E. Lujan, E. W. Larsen, J. M. Balter, and R. K. Ten Haken, “A method for incorporating organ motion due to breathing into 3D dose calculations,” Med. Phys. 26, 715720 (1999).
http://dx.doi.org/10.1118/1.598577
34.
34. J. Xie, Y. Jiang, H. T. Tsui, and P. A. Heng, “Boundary enhancement and speckle reduction for ultrasound images via salient structure extraction,” IEEE Trans. Biomed. Eng. 53, 23002309 (2006).
http://dx.doi.org/10.1109/TBME.2006.878088
35.
35. I. Vergalasova, J. Maurer, and F. F. Yin, “Potential underestimation of the internal target volume (ITV) from free-breathing CBCT,” Med. Phys. 38, 46894699 (2011).
http://dx.doi.org/10.1118/1.3613153
36.
36. N. Clements, T. Kron, R. Franich, L. Dunn, P. Roxby, Y. Aarons, B. Chesson, S. Siva, D. Duplan, and D. Ball, “The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy,” Med. Phys. 40, 021904 (10pp.) (2013).
http://dx.doi.org/10.1118/1.4773310
37.
37. L. Jin, L. Wang, J. Li, W. Luo, S. J. Feigenberg, and C. M. Ma, “Investigation of optimal beam margins for stereotactic radiotherapy of lung-cancer using Monte Carlo dose calculations,” Phys. Med. Biol. 52, 35493561 (2007).
http://dx.doi.org/10.1088/0031-9155/52/12/014
38.
38. R. Timmerman, J. Heinzerling, R. Abdulrahman, H. Choy, and J. L. Meyer, “Stereotactic body radiation therapy for thoracic cancers: Recommendations for patient selection, setup and therapy,” Front. Radiat. Ther. Oncol. 43, 395411 (2011).
http://dx.doi.org/10.1159/000322503
39.
39. C. J. Haasbeek, F. O. Spoelstra, F. J. Lagerwaard, J. R. van Sornsen de Koste, J. P. Cuijpers, B. J. Slotman, and S. Senan, “Impact of audio-coaching on the position of lung tumors,” Int. J. Radiat. Oncol., Biol., Phys. 71, 11181123 (2008).
http://dx.doi.org/10.1016/j.ijrobp.2007.11.061
40.
40. T. Neicu, R. Berbeco, J. Wolfgang, and S. B. Jiang, “Synchronized moving aperture radiation therapy (SMART): Improvement of breathing pattern reproducibility using respiratory coaching,” Phys. Med. Biol. 51, 617636 (2006).
http://dx.doi.org/10.1088/0031-9155/51/3/010
41.
41. Y. Seppenwoolde, H. Shirato, K. Kitamura, S. Shimizu, M. van Herk, J. V. Lebesque, and K. Miyasaka, “Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 53, 822834 (2002).
http://dx.doi.org/10.1016/S0360-3016(02)02803-1
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/11/10.1118/1.4823785
Loading
/content/aapm/journal/medphys/40/11/10.1118/1.4823785
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/40/11/10.1118/1.4823785
2013-10-08
2016-10-01

Abstract

To investigate whether the three-dimensional cone-beam CT (CBCT) is clinically equivalent to the four-dimensional computed tomography (4DCT) maximum intensity projection (MIP) reconstructed images for internal target volume (ITV) localization in image-guided lung stereotactic radiotherapy.

A ball-shaped polystyrene phantom with built-in cube, sphere, and cone of known volumes was attached to a motor-driven platform, which simulates a sinusoidal movement with changeable motion amplitude and frequency. Target motion was simulated in the patient in a superior-inferior (S-I) direction with three motion periods and 2 cm peak-to-peak amplitudes. The Varian onboard Exact-Arms kV CBCT system and the GE LightSpeed four-slice CT integrated with the respiratory-position-management 4DCT scanner were used to scan the moving phantom. MIP images were generated from the 4DCT images. The clinical equivalence of the two sets of images was evaluated by comparing the extreme locations of the moving objects along the motion direction, the centroid position of the ITV, and the ITV volumes that were contoured automatically by Velocity or calculated with an imaging gradient method. The authors compared the ITV volumes determined by the above methods with those theoretically predicted by taking into account the physical object dimensions and the motion amplitudes. The extreme locations were determined by the gradient method along the S-I axis through the center of the object. The centroid positions were determined by autocenter functions. The effect of motion period on the volume sizes was also studied.

It was found that the extreme locations of the objects determined from the two image modalities agreed with each other satisfactorily. They were not affected by the motion period. The average difference between the two modalities in the extreme locations was 0.68% for the cube, 1.35% for the sphere, and 0.5% for the cone, respectively. The maximum difference in the centroid position of the cylinder, sphere, and cone was less than 1.4 mm between the two modalities for all motion periods studied. For the ITV volume evaluation, the authors found that both MIP-based and CBCT-based ITVs increased with increases of motion period. Furthermore, the MIP-based ITV volumes were generally larger than those determined from the CBCT images, with the difference in autocontoured volumes being 2.57%, 1.66%, and 1.82% for the sphere, cylinder, and cone, respectively, while these differences increased to 9.57%, 3.52%, 8.71% for the above objects when the gradient method was used. The authors found that the autocontour method was accurate enough to predict the actual ITV values with the absolute differences less than 2.4% comparing to the theoretically predicted values.

The extreme location and the centroid position of the objects agree with each other between the two image modalities when the breathing motion is sinusoidal. Although the ITV volumes delineated from both image modalities changed with the motion period, the differences in ITV between the two modalities were minimal when an optimized window level was used. The authors’ results suggest that CBCT and MIP images are equivalent in determining an ITV's position in the conditions studied. The CBCT is adequate in providing imaging-guidance for lung cancer treatment.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/40/11/1.4823785.html;jsessionid=S4yc6S5Q-3rOcn-Xy6AYHfEW.x-aip-live-03?itemId=/content/aapm/journal/medphys/40/11/10.1118/1.4823785&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/40/11/10.1118/1.4823785&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/40/11/10.1118/1.4823785'
Right1,Right2,Right3,