Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. L. Dixon, and A. C. Ballard, “Experimental validation of a versatile system of CT dosimetry using a conventional ion chamber: Beyond CTDI100,” Med. Phys. 34(8), 33993413 (2007).
2. R. L. Dixon and J. M. Boone, “Analytical equations for CT dose profiles derived using a scatter kernel of Monte Carlo parentage with broad applicability to CT dosimetry problems,” Med. Phys. 38, 42514264 (2011).
3.Medical Electrical Equipment—Part 2-44: Particular requirements for the basic safety and essential performance of x-ray equipment for computed tomography,” International Standard IEC 60601-2-44, 3rd ed. (International Electrotechnical Commission, Geneva, Switzerland, 2009).
4. R. L. Dixon, “A new look at CT dose measurement: Beyond CTDI,” Med. Phys. 30, 12721280 (2003).
5.Comprehensive methodology for the evaluation of radiation dose in x-ray computed tomography,” Report of AAPM Task Group 111 (American Association of Physicists in Medicine College Park, MD, 2010) [available URL:].
6.Size specific dose estimates (SSDE) in pediatric and adult body CT examinations,” AAPM Report No. 204 (AAPM, 2011) [available URL:].
7. R. L. Dixon and J. M. Boone, “Cone beam CT dosimetry: A unified and self-consistent approach including all scan modalities—with or without phantom motion,” Med. Phys. 37, 27032718 (2010).
8. A. C. Turner et al., “The feasibility of a scanner-independent technique to estimate organ dose using CTDIvol to account for differences between scanners,” Med. Phys. 37, 18161825 (2010).
9. W. Leitz, B. Axelson, and G. Szendro, “Computed tomography dose assessment: A practical approach,” Radiat. Prot. Dosim. 57, 377380 (1995).
10. R. N. Bracewell, The Fourier Transform and its Applications, 3rd ed. (McGraw Hill, Boston, 2000).
11. J. A. Bauhs, T. J. Vrieze, A. N. Primak, M. R. Bruesewitz, and C. J. McCollough, “CT dosimetry: Comparison of measurement techniques and devices,” Radiographics 28, 245253 (2008).
12. R. L. Dixon, M. T. Munley, and E. Bayram, “An improved analytical model for CT dose simulation with a new look at the theory of CT dose,” Med. Phys. 32, 37123728 (2005).
13. J. M. Boone, “Dose spread functions in computed tomography: A Monte Carlo study,” Med. Phys. 36, 45474554 (2009).
14. S. Mori, M. Endo, K. Nishizawa, T. Tsunoo, T. Aoyama, H. Fujiwara, and K. Murase, “Enlarged longitudinal dose profiles in cone-beam CT and the need for modified dosimetry,” Med. Phys. 32, 10611069 (2005).
15. X. Li, D. Zhang, and B. Liu, “Equations for CT dose calculations on axial lines based on the principle of symmetry,” Med. Phys. 39, 53475352 (2012).

Data & Media loading...


Article metrics loading...



The scanner-reported CTDI for automatic tube current modulation (TCM) has a different physical meaning from the traditional CTDI at constant mA, resulting in the dichotomy “CTDI of the first and second kinds” for which a physical interpretation is sought in hopes of establishing some commonality between the two.

Rigorous equations are derived to describe the accumulated dose distributions for TCM. A comparison with formulae for scanner-reported CTDI clearly identifies the source of their differences. Graphical dose simulations are also provided for a variety of TCM tube current distributions (including constant mA), all having the same scanner-reported CTDI .

These convolution equations and simulations show that the local dose at z depends only weakly on the local tube current(z) due to the strong influence of scatter from all other locations along , and that the “local CTDI (z)” does not represent a local dose but rather only a relative (z) ≡ mA(z). TCM is a shift-variant technique to which the CTDI-paradigm does not apply and its application to TCM leads to a CTDI of the second kind which lacks relevance.

While the traditional CTDI at constant mA conveys useful information (the peak dose at the center of the scan length), CTDI of the second kind conveys no useful information about the associated TCM dose distribution it purportedly represents and its physical interpretation remains elusive. On the other hand, the total energy absorbed (“integral dose”) as well as its surrogate DLP remain robust between variable () TCM and constant current techniques, both depending only on the total mAs = ⟨ = during the beam-on time .


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd