Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/40/11/10.1118/1.4824926
1.
1. T. J. Collins, “ImageJ for microscopy,” BioTechniques 43(1 Suppl), S25S30 (2007).
http://dx.doi.org/10.2144/000112517
2.
2. T. S. Yoo, J. Ackerman, W. E. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxes, and R. Whitaker, “Engineering and algorithm design for an image processing API: A Technical Report on ITK - The insight toolkit,” in Proceedings of Medicine Meets Virtual Reality (IOS Press, Amsterdam, 2002), pp. 586592.
3.
3. J. Allison et al., “Geant4 developments and applications,” IEEE Trans. Nucl. Sci. 53(1), 270278 (2006).
http://dx.doi.org/10.1109/TNS.2006.869826
4.
4. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and H. Witten, “The WEKA data mining software: An update,” SIGKDD Explor. 11(1), 1018 (2009).
http://dx.doi.org/10.1145/1656274.1656278
5.
5. W. P. Segars, M. Mahesh, T. J. Beck, E. C. Frey, and B. M. W. Tsui, “Realistic CT simulation using the 4D XCAT phantom,” Med. Phys. 35, 38003808 (2008).
http://dx.doi.org/10.1118/1.2955743
6.
6. L. A. Shepp and B. F. Logan, “The Fourier reconstruction of a head section,” IEEE Trans. Nucl. Sci. 21, 2143 (1974).
http://dx.doi.org/10.1109/TNS.1974.6499235
7.
7. W. P. Segars, D. S. Lalush, and B. M. W. Tsui, “A realistic spline-based dynamic heart phantom,” IEEE Trans. Nucl. Sci. 46(3), 503506 (1999).
http://dx.doi.org/10.1109/23.775570
8.
8. W. P. Segars, D. S. Lalush, and B. W. M. Tsui, “Modeling respiratory mechanics in the MCAT and spline-based MCAT phantoms,” IEEE Trans. Nucl. Sci. 48(1), 8997 (2001).
http://dx.doi.org/10.1109/23.910837
9.
9. J. H. Hubbell and S. M. Seltzer, “Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest,” NISTIR 5632 (1989).
10.
10. T. Buzug, Computed Tomography - From Photon Statistics to Modern Cone-Beam CT, 2nd ed. (Springer, Berlin, Germany, 2008).
11.
11. A. Maier, H. G. Hofmann, C. Schwemmer, J. Hornegger, A. Keil, and R. Fahrig, “Fast simulation of x-ray projections of spline-based surfaces using an append buffer,” Phys. Med. Biol. 57(19), 61936210 (2012).
http://dx.doi.org/10.1088/0031-9155/57/19/6193
12.
12. M. Bögel, A. Maier, H. G. Hofmann, J. Hornegger, and R. Fahrig, “Diaphragm tracking for respiratory motion compensated cardiac C-Arm CT,” in Proceedings of 2nd CT Meeting, Salt Lake City, UT (University of Utah, Salt Lake City, UT, 2012), pp. 1316.
13.
13. J. H. Choi, A. Maier, A. Keil, and R. Fahrig, “Acquisition of 3D knee geometry under weight-bearing conditions using a C-arm CT scanner,” in Proceedings of RSNA, Chicago, IL, 2011.
14.
14. K. Mueller, Y. Zheng, G. Lauritsch, C. Rohkohl, C. Schwemmer, A. K. Maier, R. Fahrig, and J. Hornegger, “Evaluation of interpolation methods for motion compensated tomographic reconstruction for cardiac angiographic C-arm data,” in Proceedings of CT Meeting, Salt Lake City, UT (University of Utah, Salt Lake City, UT, 2012), pp. 58.
15.
15. K. Müller, C. Schwemmer, J. Hornegger, Y. Zheng, Y. Wang, G. Lauritsch, C. Rohkohl, A. Maier, C. Schultz, and R. Fahrig, “Evaluation of interpolation methods for surface-based motion compensated tomographic reconstruction for cardiac angiographic C-arm data,” Med. Phys. 40(3), 031107 (12pp.) (2013).
http://dx.doi.org/10.1118/1.4789593
16.
16. K. Müller, C. Schwemmer, G. Lauritsch, C. Rohkohl, A. Maier, H. Heidbüchel, S. De Buck, D. Nuyens, Y. Kyriakou, C. Köhler, R. Fahrig, and J. Hornegger, “Image artifact influence on motion compensated tomographic reconstruction in cardiac C-arm CT,” in Proceedings of the 12th Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Lake Tahoe, CA (University of California, Davis, CA, 2013), pp. 98101.
17.
17. H. Wu, A. Maier, H. Hofmann, R. Fahrig, and J. Hornegger, “4D-CT reconstrucion using sparsity level constrained compressed sensing,” in Proceedings of 2nd CT Meeting, Salt Lake City, UT (University of Utah, Salt Lake City, UT, 2012), pp. 206209.
18.
18. P. M. Joseph and R. D. Spital, “A method for correcting bone induced artifacts in computed tomography scanners,” J. Comput. Assist. Tomogr. 2, 100108 (1978).
http://dx.doi.org/10.1097/00004728-197801000-00017
19.
19. D. F. Malin, “Unsharp masking,” AAS Photo-Bull. 16(3), 1013 (1977).
20.
20. E. P. Rührnschopf and K. Klingenbeck, “A general framework and review of scatter correction methods in x-ray cone-beam computerized tomography. Part 1: Scatter compensation approaches,” Med. Phys. 38(7), 42964311 (2011).
http://dx.doi.org/10.1118/1.3599033
21.
21. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Service Center, Piscataway, NJ, 1988).
22.
22. B. Ohnesorge, T. Flohr, K. Schwarz, J. P. Heiken, and K. T. Bae, “Efficient correction for CT image artifacts caused by objects extending outside the scan field of view,” Med. Phys. 27(1), 3946 (2000).
http://dx.doi.org/10.1118/1.598855
23.
23. D. L. Parker, “Optimal short scan convolution reconstruction for fanbeam CT,” Med. Phys. 9(2), 254257 (1982).
http://dx.doi.org/10.1118/1.595078
24.
24. S. Wesarg, M. Ebert, and T. Bortfeld, “Parker weights revisited,” Med. Phys. 29(3), 372378 (2002).
http://dx.doi.org/10.1118/1.1450132
25.
25. M. D. Silver, “A method for including redundant data in computed tomography,” Med. Phys. 27(4), 773774 (2000).
http://dx.doi.org/10.1118/1.598939
26.
26. F. Noo, M. Defrise, R. Clackdoyle, and H. Kudo, “Image reconstruction from fan-beam projections on less than a short scan,” Phys. Med. Biol. 47(14), 25252546 (2002).
http://dx.doi.org/10.1088/0031-9155/47/14/311
27.
27. C. Riess, M. Berger, H. Wu, M. Manhart, R. Fahrig, and A. Maier, “TV or not TV? That is the question,” in Proceedings Fully3D, Lake Tahoe, CA (University of California, Davis, CA, 2013), pp. 341344.
28.
28. D. W. R. Paulus and J. Hornegger, Applied Pattern Recognition, 4th ed. (GWV-Vieweg, Wiesbaden, Germany, 2003).
29.
29. P. Perona and J. Malik, “Scale space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 629639 (1990).
http://dx.doi.org/10.1109/34.56205
30.
30. A. Maier, L. Wigström, H. G. Hofmann, J. Hornegger, L. Zhu, N. Strobel, and R. Fahrig, “Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT,” Med. Phys. 38(11), 58965909 (2011).
http://dx.doi.org/10.1118/1.3633901
31.
31. H. Knutsson, L. Haglund, H. Bårman, and G. H. Granlund, “A framework for anisotropic adaptive filtering and analysis of image sequences and volumes,” in Internationcal Conference on Acoustics, Speech, and Signal Processing (ICASSP), San Francisco, CA (IEEE Consortium, 1992), pp. 469472.
32.
32. S. C. Kak, “The discrete Hilbert transform,” Proc. IEEE 58(4), 585586 (1970).
http://dx.doi.org/10.1109/PROC.1970.7696
33.
33. H. Yu and G. Wang, “Feldkamp-type VOI reconstruction from super-short-scan cone-beam data,” Med. Phys. 31(6), 13571362 (2004).
http://dx.doi.org/10.1118/1.1739298
34.
34. C. Rohkohl, B. Keck, H. Hofmann, and J. Hornegger, “RabbitCT - An open platform for benchmarking 3D cone-beam reconstruction algorithms,” Med. Phys. 36(9), 39403944 (2009).
http://dx.doi.org/10.1118/1.3180956
35.
35. H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger, “Fast GPU-based CT reconstruction using the common unified device architecture (CUDA),” in IEEE Nuclear Science Symposium, Medical Imaging Conference Record, Honolulu, HI (IEEE Consortium, 2008), pp. 6446464466.
36.
36. C. Siegl, H. G. Hofmann, B. Keck, M. Prümmer, and J. Hornegger, “OpenCL, a viable solution for high-performance medical image reconstruction?,” Proc. SPIE 7961, 79612Q (2011).
http://dx.doi.org/10.1117/12.878058
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/11/10.1118/1.4824926
Loading
/content/aapm/journal/medphys/40/11/10.1118/1.4824926
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/40/11/10.1118/1.4824926
2013-10-21
2016-08-25

Abstract

In the community of x-ray imaging, there is a multitude of tools and applications that are used in scientific practice. Many of these tools are proprietary and can only be used within a certain lab. Often the same algorithm is implemented multiple times by different groups in order to enable comparison. In an effort to tackle this problem, the authors created CONRAD, a software framework that provides many of the tools that are required to simulate basic processes in x-ray imaging and perform image reconstruction with consideration of nonlinear physical effects.

CONRAD is a Java-based state-of-the-art software platform with extensive documentation. It is based on platform-independent technologies. Special libraries offer access to hardware acceleration such as OpenCL. There is an easy-to-use interface for parallel processing. The software package includes different simulation tools that are able to generate up to 4D projection and volume data and respective vector motion fields. Well known reconstruction algorithms such as FBP, DBP, and ART are included. All algorithms in the package are referenced to a scientific source.

A total of 13 different phantoms and 30 processing steps have already been integrated into the platform at the time of writing. The platform comprises 74.000 nonblank lines of code out of which 19% are used for documentation. The software package is available for download athttp://conrad.stanford.edu. To demonstrate the use of the package, the authors reconstructed images from two different scanners, a table top system and a clinical C-arm system. Runtimes were evaluated using the RabbitCT platform and demonstrate state-of-the-art runtimes with 2.5 s for the 256 problem size and 12.4 s for the 512 problem size.

As a common software framework, CONRAD enables the medical physics community to share algorithms and develop new ideas. In particular this offers new opportunities for scientific collaboration and quantitative performance comparison between the methods of different groups.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/40/11/1.4824926.html;jsessionid=5geqaUcAPmWB2AEmFjv4ykVD.x-aip-live-06?itemId=/content/aapm/journal/medphys/40/11/10.1118/1.4824926&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/40/11/10.1118/1.4824926&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/40/11/10.1118/1.4824926'
Right1,Right2,Right3,