Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/40/11/10.1118/1.4826166
1.
1. W. A. Shewhart, Statistical Method from the Viewpoint of Quality Control (Department of Agriculture, Washington D. C., 1939).
2.
2. W. E. Deming, Out of the Crisis (MIT Press, Cambridge, MA, 1986).
3.
3. R. Aguayo, Dr. Deming: The American Who Taught the Japanese About Quality (Simon and Schuster, NY, 1991).
4.
4. G. Taguchi, S. Chowdhury, and Y. Wu, Taguchi's Quality Engineering Handbook (Wiley, Hoboken, NJ, 2005).
5.
5. G. A. Ezzell et al., “IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119,” Med. Phys. 36(11), 53595373 (2009).
http://dx.doi.org/10.1118/1.3238104
6.
6. B. E. Nelms and J. A. Simon, “A survey on planar IMRT QA analysis,” J. Appl. Clin. Med. Phys. 8(3), 7690 (2007).
7.
7. D. A. Low, J. M. Moran, J. F. Dempsey, L. Dong, and M. Oldham, “Dosimetry tools and techniques for IMRT,” Med. Phys. 38(3), 1313 (2011).
http://dx.doi.org/10.1118/1.3514120
8.
8. D. A. Low, D. Morele, P. Chow, T. H. Dou, and T. Ju, “Does the γ dose distribution comparison technique default to the distance to agreement test in clinical dose distributions?,” Med. Phys. 40(7), 071722 (6pp.) (2013).
http://dx.doi.org/10.1118/1.4811141
9.
9. D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, “A technique for the quantitative evaluation of dose distributions,” Med. Phys. 25(5), 656661 (1998).
http://dx.doi.org/10.1118/1.598248
10.
10. B. E. Nelms, H. Zhen, and W. A. Tomé, “Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors.,” Med. Phys. 38(2), 10371044 (2011).
http://dx.doi.org/10.1118/1.3544657
11.
11. H. Zhen, B. E. Nelms, W. A. Tomeé, and W. A. Tome, “Moving from gamma passing rates to patient DVH-based QA metrics in pretreatment dose QA,” Med. Phys. 38(10), 54775489 (2011).
http://dx.doi.org/10.1118/1.3633904
12.
12. P. Carrasco, N. N. Jornet, A. Latorre, T. Eudaldo, A. A. Ruiz, and M. Ribas, “3D DVH-based metric analysis versus per-beam planar analysis in IMRT pretreatment verification,” Med. Phys. 39(8), 50405049 (2012).
http://dx.doi.org/10.1118/1.4736949
13.
13. M. Stasi, S. Bresciani, A. Miranti, A. Maggio, V. Sapino, and P. Gabriele, “Pretreatment patient-specific IMRT quality assurance: A correlation study between gamma index and patient clinical dose volume histogram,” Med. Phys. 39(12), 76267634 (2012).
http://dx.doi.org/10.1118/1.4767763
14.
14. J. J. Kruse, “On the insensitivity of single field planar dosimetry to IMRT inaccuracies,” Med. Phys. 37(6), 25162524 (2010).
http://dx.doi.org/10.1118/1.3425781
15.
15. M. F. Chan, J. Li, K. Schupak, and C. Burman, “Using a novel dose QA tool to quantify the impact of systematic errors otherwise undetected by conventional QA methods: Clinical head and neck case studies,” Technol. Cancer Res. Treat. 12(6) (2013) [Epub ahead of print].
16.
16. B. Fraass et al., “American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning,” Med. Phys. 25(10), 17731829 (1998).
http://dx.doi.org/10.1118/1.598373
17.
17. P. F. Cadman, “Comment on ‘IMRT commissioning: Some causes for concern’,” Med. Phys. 38(7), 4464 (2011).
http://dx.doi.org/10.1118/1.3602464
18.
18. A. Molineu, N. Hernandez, T. Nguyen, G. Ibbott, and D. Followill, “Credentialing results from IMRT irradiations of an anthropomorphic head and neck phantom,” Med. Phys. 40(2), 022101 (8pp.) (2013).
http://dx.doi.org/10.1118/1.4773309
19.
19. D. A. Low and J. F. Dempsey, “Evaluation of the gamma dose distribution comparison method,” Med. Phys. 30(9), 24552464, (2003).
http://dx.doi.org/10.1118/1.1598711
20.
20.AAPM, TG-119 IMRT Commissioning Tests Instructions for Planning, Measurement, and Analysis (2009) (available URL: http://www.aapm.org/pubs/tg119/TG119_Instructions_102109.pdf).
21.
21.SNC Patient Reference Guide (Sun Nuclear Corporation, Melbourne, FL, 2013).
22.
22. P. A. Jursinic and B. E. Nelms, “A 2-D diode array and analysis software for verification of intensity modulated radiation therapy delivery,” Med. Phys. 30(5), 870879 (2003).
http://dx.doi.org/10.1118/1.1567831
23.
23. D. Letourneau, M. Gulam, D. Yan, M. Oldham, and J. W. Wong, “Evaluation of a 2D diode array for IMRT quality assurance,” Radiother. Oncol. 70(2), 199206 (2004).
http://dx.doi.org/10.1016/j.radonc.2003.10.014
24.
24. B. E. Nelms, K. H. Rasmussen, and W. A. Tome, “Evaluation of a fast method of EPID-based dosimetry for intensity-modulated radiation therapy,” J. Appl. Clin. Med. Phys. 11(2), 140157 (2010).
25.
25. D. W. Bailey, L. Kumaraswamy, M. Bakhtiari, H. K. Malhotra, and M. B. Podgorsak, “EPID dosimetry for pretreatment quality assurance with two commercial systems,” J. Appl. Clin. Med. Phys. 13(4), 8299 (2012).
26.
26. Y. Nakaguchi, F. Araki, T. Kouno, T. Ono, and K. Hioki, “Development of multi-planar dose verification by use of a flat panel EPID for intensity-modulated radiation therapy,” Radiol. Phys. Technol. 6(1), 226232 (2013).
http://dx.doi.org/10.1007/s12194-012-0192-z
27.
27. D. Tatsumi et al., “Electronic portal image device dosimetry for volumetric modulated arc therapy,” Nihon Hoshasen Gijutsu Gakkai Zasshi 69(1), 1118 (2013).
http://dx.doi.org/10.6009/jjrt.2013_JSRT_69.1.11
28.
28. V. Feygelman, K. Forster, and D. Opp, “Evaluation of a biplanar diode array dosimeter for quality assurance of step-and-shoot IMRT,” J. Appl. Clin. Med. Phys. 10(4), 6478 (2009).
http://dx.doi.org/10.1120/jacmp.v10i4.3080
29.
29. J. L. Bedford, Y. K. Lee, P. Wai, C. P. South, and A. P. Warrington, “Evaluation of the Delta4 phantom for IMRT and VMAT verification,” Phys. Med. Biol. 54(9), N167N176 (2009).
http://dx.doi.org/10.1088/0031-9155/54/9/N04
30.
30. V. Feygelman, D. Opp, K. Javedan, A. J. Saini, and G. Zhang, “Evaluation of a 3D diode array dosimeter for helical tomotherapy delivery QA,” Med. Dosim. 35(4), 324329 (2010).
http://dx.doi.org/10.1016/j.meddos.2009.10.007
31.
31. D. Letourneau, J. Publicover, J. Kozelka, D. J. Moseley, and D. A. Jaffray, “Novel dosimetric phantom for quality assurance of volumetric modulated arc therapy,” Med. Phys. 36(5), 18131821 (2009).
http://dx.doi.org/10.1118/1.3117563
32.
32. J. Kozelka, J. Robinson, B. Nelms, G. Zhang, D. Savitskij, and V. Feygelman, “Optimizing the accuracy of a helical diode array dosimeter: A comprehensive calibration methodology coupled with a novel virtual inclinometer,” Med. Phys. 38(9), 50215032 (2011).
http://dx.doi.org/10.1118/1.3622823
33.
33. H. Fakir, S. Gaede, M. Mulligan, and J. Z. Chen, “Development of a novel ArcCHECK insert for routine quality assurance of VMAT delivery including dose calculation with inhomogeneities,” Med. Phys. 39(7), 42034208 (2012).
http://dx.doi.org/10.1118/1.4728222
34.
34. A. J. Olch, “Evaluation of the accuracy of 3DVH software estimates of dose to virtual ion chamber and film in composite IMRT QA,” Med. Phys. 39(1), 8186 (2012).
http://dx.doi.org/10.1118/1.3666771
35.
35. B. E. Nelms et al., “VMAT QA: Measurement-guided 4D dose reconstruction on a patient,” Med. Phys. 39(7), 42284238 (2012).
http://dx.doi.org/10.1118/1.4729709
36.
36. V. Feygelman et al., “Motion as a perturbation: Measurement-guided dose estimates to moving patient voxels during modulated arc deliveries,” Med. Phys. 40(2), 021708 (11pp.) (2013).
http://dx.doi.org/10.1118/1.4773887
37.
37. D. Opp, B. E. Nelms, G. Zhang, C. Stevens, and V. Feygelman, “Validation of measurement-guided 3D VMAT dose reconstruction on a heterogeneous anthropomorphic phantom,” J. Appl. Clin. Med. Phys. 14(4), 7084 (2013).
38.
38. G. M. Mancuso, J. D. Fontenot, J. P. Gibbons, and B. C. Parker, “Comparison of action levels for patient-specific quality assurance of intensity modulated radiation therapy and volumetric modulated arc therapy treatments,” Med. Phys. 39(7), 43784385 (2012).
http://dx.doi.org/10.1118/1.4729738
39.
39. G. Jarry, D. Martin, M. Lemire, M. Ayles, and P. Pater, “Evaluation of IMRT QA using 3DVH, a 3D patient dose and verification analysis software,” Med. Phys. 38(6), 3581 (2011).
http://dx.doi.org/10.1118/1.3612359
40.
40. M. R. Arnfield, K. Otto, V. R. Aroumougame, and R. D. Alkins, “The use of film dosimetry of the penumbra region to improve the accuracy of intensity modulated radiotherapy,” Med. Phys. 32(1), 1218 (2005).
http://dx.doi.org/10.1118/1.1829246
41.
41. E. E. Klein et al., “Task Group 142 report: Quality assurance of medical accelerators,” Med. Phys. 36(9), 41974212 (2009).
http://dx.doi.org/10.1118/1.3190392
42.
42. M. J. Harry, R. L. Hulbert, and C. J. Lacke, Practitioner's Guide to Statistics and Lean Six Sigma for Process Improvements, 1st ed. (Wiley and Sons, Hoboken, NJ, 2010).
43.
43. Y. Watanabe and Y. Nakaguchi, “3D evaluation of 3DVH program using BANG3 polymer gel dosimeter,” Med. Phys. 40(8), 082101 (11pp.) (2013).
http://dx.doi.org/10.1118/1.4813301
44.
44. H. S. Sakhalkar, J. Adamovics, G. Ibbott, and M. Oldham, “A comprehensive evaluation of the PRESAGE/optical-CT 3D dosimetry system,” Med. Phys. 36(1), 7182 (2009).
http://dx.doi.org/10.1118/1.3005609
45.
45. A. Thomas, J. Newton, J. Adamovics, and M. Oldham, “Commissioning and benchmarking a 3D dosimetry system for clinical use,” Med. Phys. 38(8), 48464857 (2011).
http://dx.doi.org/10.1118/1.3611042
46.
46. M. Oldham et al., “A quality assurance method that utilizes 3D dosimetry and facilitates clinical interpretation,” Int. J. Radiat. Oncol., Biol., Phys. 84(2), 5406, (2012).
http://dx.doi.org/10.1016/j.ijrobp.2011.12.015
47.
47. M. Alber et al., Guidelines for the Verification of IMRT (ESTRO, Brussels, Belgium, 2008).
48.
48. J. R. Palta, S. Kim, J. G. Li, and C. Liu, “Tolerance limits and action levels for planning and delivery of IMRT,” in Intensity-Modulated Radiation Therapy: The State of the Art AAPM Medical Physics Monograph No. 29 (Medical Physics Publishing, Madison, WI, 2003), pp. 593612.
49.
49. M. Carlone, C. Cruje, A. Rangel, R. McCabe, M. Nielsen, and M. Macpherson, “ROC analysis in patient specific quality assurance,” Med. Phys. 40(4), 042103 (7pp.) (2013).
http://dx.doi.org/10.1118/1.4795757
50.
50. J. Cashmore, G. Golubev, J. Dumont, M. Sikora, M. Alber, and M. Ramtohul, “Validation of a virtual source model for Monte Carlo dose calculations of a flattening filter free linac,” Med. Phys. 39(6), 32623269 (2012).
http://dx.doi.org/10.1118/1.4709601
51.
51. F. Albertini, M. Casiraghi, S. Lorentini, B. Rombi, and A. Lomax, “Experimental verification of IMPT treatment plans in an anthropomorphic phantom in the presence of delivery uncertainties,” Phys. Med. Biol. 56(14), 44154431 (2011).
http://dx.doi.org/10.1088/0031-9155/56/14/012
52.
52. M. Wendling et al., “In aqua vivo EPID dosimetry,” Med. Phys. 39(1), 367377 (2012).
http://dx.doi.org/10.1118/1.3665709
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/11/10.1118/1.4826166
Loading
/content/aapm/journal/medphys/40/11/10.1118/1.4826166
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/40/11/10.1118/1.4826166
2013-10-25
2016-09-28

Abstract

This study (1) examines a variety of real-world cases where systematic errors were not detected by widely accepted methods for IMRT/VMAT dosimetric accuracy evaluation, and (2) drills-down to identify failure modes and their corresponding means for detection, diagnosis, and mitigation. The primary goal of detailing these case studies is to explore different, more sensitive methods and metrics that could be used more effectively for evaluating accuracy of dose algorithms, delivery systems, and QA devices.

The authors present seven real-world case studies representing a variety of combinations of the treatment planning system (TPS), linac, delivery modality, and systematic error type. These case studies are typical to what might be used as part of an IMRT or VMAT commissioning test suite, varying in complexity. Each case study is analyzed according to TG-119 instructions for gamma passing rates and action levels for per-beam and/or composite plan dosimetric QA. Then, each case study is analyzed in-depth with advanced diagnostic methods (dose profile examination, EPID-based measurements, dose difference pattern analysis, 3D measurement-guided dose reconstruction, and dose grid inspection) and more sensitive metrics (2% local normalization/2 mm DTA and estimated DVH comparisons).

For these case studies, the conventional 3%/3 mm gamma passing rates exceeded 99% for IMRT per-beam analyses and ranged from 93.9% to 100% for composite plan dose analysis, well above the TG-119 action levels of 90% and 88%, respectively. However, all cases had systematic errors that were detected only by using advanced diagnostic techniques and more sensitive metrics. The systematic errors caused variable but noteworthy impact, including estimated target dose coverage loss of up to 5.5% and local dose deviations up to 31.5%. Types of errors included TPS model settings, algorithm limitations, and modeling and alignment of QA phantoms in the TPS. Most of the errors were correctable after detection and diagnosis, and the uncorrectable errors provided useful information about system limitations, which is another key element of system commissioning.

: Many forms of relevant systematic errors can go undetected when the currently prevalent metrics for IMRT/VMAT commissioning are used. If alternative methods and metrics are used instead of (or in addition to) the conventional metrics, these errors are more likely to be detected, and only once they are detected can they be properly diagnosed and rooted out of the system. Removing systematic errors should be a goal not only of commissioning by the end users but also product validation by the manufacturers. For any systematic errors that cannot be removed, detecting and quantifying them is important as it will help the physicist understand the limits of the system and work with the manufacturer on improvements. In summary, IMRT and VMAT commissioning, along with product validation, would benefit from the retirement of the 3%/3 mm passing rates as a primary metric of performance, and the adoption instead of tighter tolerances, more diligent diagnostics, and more thorough analysis.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/40/11/1.4826166.html;jsessionid=O9_FM9CwZ2OIlYze6pz_Tiwq.x-aip-live-06?itemId=/content/aapm/journal/medphys/40/11/10.1118/1.4826166&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/40/11/10.1118/1.4826166&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/40/11/10.1118/1.4826166'
Right1,Right2,Right3,