Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/40/12/10.1118/1.4829514
1.
1. R. M. Lindell, T. E. Hartman, S. J. Swensen, J. R. Jett, D. E. Midthun, H. D. Tazelaar, and J. N. Mandrekar, “Five-year lung cancer screening experience: CT appearance, growth rate, location, and histologic features of 61 lung cancers,” Radiology 242(2), 555562 (2007).
http://dx.doi.org/10.1148/radiol.2422052090
2.
2. A. Gimenez, T. Franquet, R. Prats, P. Estrada, J. Villalba, and S. Bague, “Unusual primary lung tumors: A radiologic-pathologic overview,” Radiographics 22(3), 601619 (2002).
http://dx.doi.org/10.1148/radiographics.22.3.g02ma25601
3.
3. P. Lambin, E. Rios-Velazquez, R. Leijenaar, S. Carvalho, R. G. van Stiphout, P. Granton, C. M. Zegers, R. Gillies, R. Boellard, A. Dekker, and H. J. Aerts, “Radiomics: Extracting more information from medical images using advanced feature analysis,” Eur. J. Cancer 48(4), 441446 (2012).
http://dx.doi.org/10.1016/j.ejca.2011.11.036
4.
4. P. Therasse, S. G. Arbuck, E. A. Eisenhauer, J. Wanders, R. S. Kaplan, L. Rubinstein, J. Verweij, M. Van Glabbeke, A. T. van Oosterom, M. C. Christian, and S. G. Gwyther, “New guidelines to evaluate the response to treatment in solid tumors: European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada,” J. Natl. Cancer Inst. 92(3), 205216 (2000).
http://dx.doi.org/10.1093/jnci/92.3.205
5.
5. E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij, “New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1),” Eur. J. Cancer 45(2), 228247 (2009).
http://dx.doi.org/10.1016/j.ejca.2008.10.026
6.
6. C. Dehing-Oberije, H. Aerts, S. Yu, D. De Ruysscher, P. Menheere, M. Hilvo, H. van der Weide, B. Rao, and P. Lambin, “Development and validation of a prognostic model using blood biomarker information for prediction of survival of non-small-cell lung cancer patients treated with combined chemotherapy and radiation or radiotherapy alone (NCT00181519, NCT00573040, and NCT00572325),” Int. J. Radiat. Oncol., Biol., Phys. 81(2), 360368 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2010.06.011
7.
7. F. Davnall, C. S. Yip, G. Ljungqvist, M. Selmi, F. Ng, B. Sanghera, B. Ganeshan, K. A. Miles, G. J. Cook, and V. Goh, “Assessment of tumor heterogeneity: An emerging imaging tool for clinical practice?,” Insights Imaging 3(6), 573589 (2012).
http://dx.doi.org/10.1007/s13244-012-0196-6
8.
8. V. Kumar, Y. Gu, S. Basu, A. Berglund, S. A. Eschrich, M. B. Schabath, K. Forster, H. J. Aerts, A. Dekker, D. Fenstermacher, D. B. Goldgof, L. O. Hall, P. Lambin, Y. Balagurunathan, R. A. Gatenby, and R. J. Gillies, “Radiomics: The process and the challenges,” Magn. Reson. Imaging 30(9), 12341248 (2012).
http://dx.doi.org/10.1016/j.mri.2012.06.010
9.
9. B. Ganeshan, S. Abaleke, R. C. Young, C. R. Chatwin, and K. A. Miles, “Texture analysis of non-small cell lung cancer on unenhanced computed tomography: Initial evidence for a relationship with tumour glucose metabolism and stage,” Cancer Imaging 10, 137143 (2010).
http://dx.doi.org/10.1102/1470-7330.2010.0021
10.
10. B. Ganeshan, V. Goh, H. C. Mandeville, Q. S. Ng, P. J. Hoskin, and K. A. Miles, “Non-small cell lung cancer: Histopathologic correlates for texture parameters at CT,” Radiology 266(1), 326336 (2013).
http://dx.doi.org/10.1148/radiol.12112428
11.
11. S. Basu, L. O. Hall, D. B. Goldgof, Y. H. Gu, V. Kumar, J. Choi, R. J. Gillies, and R. A. Gatenby, Developing a classifier model for lung tumors in CT-scan images, 2011 IEEE International Conference on Systems, Man, and Cybernetics (Smc), pp. 13061312.
12.
12. O. S. Al-Kadi and D. Watson, “Texture analysis of aggressive and nonaggressive lung tumor CE CT images,” IEEE Trans. Biomed. Eng. 55(7), 18221830 (2008).
http://dx.doi.org/10.1109/TBME.2008.919735
13.
13. S. Kido, K. Kuriyama, M. Higashiyama, T. Kasugai, and C. Kuroda, “Fractal analysis of small peripheral pulmonary nodules in thin-section CT: Evaluation of the lung-nodule interfaces,” J. Comput. Assist. Tomogr. 26(4), 573578 (2002).
http://dx.doi.org/10.1097/00004728-200207000-00017
14.
14.CT Volumetry Technical Committee (2009), see QIBA website: http://qibawiki.rsna.org/.
15.
15. B. Ganeshan, K. Burnand, R. Young, C. Chatwin, and K. Miles, “Dynamic contrast-enhanced texture analysis of the liver: Initial assessment in colorectal cancer,” Invest. Radiol. 46(3), 160168 (2011).
http://dx.doi.org/10.1097/RLI.0b013e3181f8e8a2
16.
16. S. G. Armato, 3rd, C. R. Meyer, M. F. McNitt-Gray, G. McLennan, A. P. Reeves, B. Y. Croft, and L. P. Clarke, “The reference image database to evaluate response to therapy in lung cancer (RIDER) project: A resource for the development of change-analysis software,” Clin. Pharmacol. Ther. 84(4), 448456 (2008).
http://dx.doi.org/10.1038/clpt.2008.161
17.
17. G. Starkschall, P. Balter, K. Britton, M. F. McAleer, J. D. Cox, and R. Mohan, “Interfractional reproducibility of lung tumor location using various methods of respiratory motion mitigation,” Int. J. Radiat. Oncol., Biol., Phys. 79(2), 596601 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2010.03.039
18.
18. B. Zhao, L. P. James, C. S. Moskowitz, P. Guo, M. S. Ginsberg, R. A. Lefkowitz, Y. Qin, G. J. Riely, M. G. Kris, and L. H. Schwartz, “Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non-small cell lung cancer,” Radiology 252(1), 263272 (2009).
http://dx.doi.org/10.1148/radiol.2522081593
19.
19. R. M. Haralick, K. Shanmuga, and I. Dinstein, “Textural features for image classification,” IEEE Trans. Syst. Man Cybern. Smc3(6), 610621 (1973).
http://dx.doi.org/10.1109/TSMC.1973.4309314
20.
20. M. M. Galloway, “Texture analysis using gray level run lengths,” Comput. Graph. Image Process. 4(2), 172179 (1975).
http://dx.doi.org/10.1016/S0146-664X(75)80008-6
21.
21. L. I. K. Lin, “A concordance correlation coefficient to evaluate reproducibility,” Biometrics 45(1), 255268 (1989).
http://dx.doi.org/10.2307/2532051
22.
22. G. McBride, “A proposal for strength-of-agreement criteria for Lin's concordance correlation coefficient,” NIWA Client Report: HAM2005–062, Report to Ministry of Health, 2005.
23.
23. L. R. Dice, “Measures of the amount of ecologic association between species,” Ecology 26(3), 297302 (1945).
http://dx.doi.org/10.2307/1932409
24.
24. P. Jaccard, “Distribution de la flore alpine dans le bassin des Dranses et dans quelques regions voisines,” Bull. Soc. Vaud. Sci. Nat. 37, 241272 (1901).
25.
25. M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster analysis and display of genome-wide expression patterns,” Proc. Natl. Acad. Sci. U.S.A. 95(25), 1486314868 (1998).
http://dx.doi.org/10.1073/pnas.95.25.14863
26.
26. W. T. Watkins, R. Li, J. Lewis, J. C. Park, A. Sandhu, S. B. Jiang, and W. Y. Song, “Patient-specific motion artifacts in 4DCT,” Med. Phys. 37(6), 28552861 (2010).
http://dx.doi.org/10.1118/1.3432615
27.
27. P. J. Keall, G. Starkschall, H. Shukla, K. M. Forster, V. Ortiz, C. W. Stevens, S. S. Vedam, R. George, T. Guerrero, and R. Mohan, “Acquiring 4D thoracic CT scans using a multislice helical method,” Phys. Med. Biol. 49(10), 20532067 (2004).
http://dx.doi.org/10.1088/0031-9155/49/10/015
28.
28. J. W. Wolthaus, C. Schneider, J. J. Sonke, M. van Herk, J. S. Belderbos, M. M. Rossi, J. V. Lebesque, and E. M. Damen, “Mid-ventilation CT scan construction from four-dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients,” Int. J. Radiat. Oncol., Biol., Phys. 65(5), 15601571 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2006.04.031
29.
29. N. Sharma and L. M. Aggarwal, “Automated medical image segmentation techniques,” J. Med. Phys. 35(1), 314 (2010).
http://dx.doi.org/10.4103/0971-6203.58777
30.
30. L. E. Court, J. Seco, X. Q. Lu, K. Ebe, C. Mayo, D. Ionascu, B. Winey, N. Giakoumakis, M. Aristophanous, R. Berbeco, J. Rottman, M. Bogdanov, D. Schofield, and T. Lingos, “Use of a realistic breathing lung phantom to evaluate dose delivery errors,” Med. Phys. 37(11), 58505857 (2010).
http://dx.doi.org/10.1118/1.3496356
31.
31. T. S. Yoo, T. Hamilton, D. E. Hurt, J. Caban, D. Liao, and D. T. Chen, Toward quantitative X-ray CT phantoms of metastatic tumors using rapid prototyping technology, Biomedical Imaging: From Nano to Macro, 2011, pp. 17701773.
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/12/10.1118/1.4829514
Loading
/content/aapm/journal/medphys/40/12/10.1118/1.4829514
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/40/12/10.1118/1.4829514
2013-12-02
2016-09-27

Abstract

For nonsmall cell lung cancer (NSCLC) patients, quantitative image features extracted from computed tomography (CT) images can be used to improve tumor diagnosis, staging, and response assessment. For these findings to be clinically applied, image features need to have high intra and intermachine reproducibility. The objective of this study is to identify CT image features that are reproducible, nonredundant, and informative across multiple machines.

Noncontrast-enhanced, test-retest CT image pairs were obtained from 56 NSCLC patients imaged on three CT machines from two institutions. Two machines (“M1” and “M2”) used cine 4D-CT and one machine (“M3”) used breath-hold helical 3D-CT. Gross tumor volumes (GTVs) were semiautonomously segmented then pruned by removing voxels with CT numbers less than a prescribed Hounsfield unit (HU) cutoff. Three hundred and twenty eight quantitative image features were extracted from each pruned GTV based on its geometry, intensity histogram, absolute gradient image, co-occurrence matrix, and run-length matrix. For each machine, features with concordance correlation coefficient values greater than 0.90 were considered reproducible. The Dice similarity coefficient (DSC) and the Jaccard index (JI) were used to quantify reproducible feature set agreement between machines. Multimachine reproducible feature sets were created by taking the intersection of individual machine reproducible feature sets. Redundant features were removed through hierarchical clustering based on the average correlation between features across multiple machines.

For all image types, GTV pruning was found to negatively affect reproducibility (reported results use no HU cutoff). The reproducible feature percentage was highest for average images (M1 = 90.5%, M2 = 94.5%, M1∩M2 = 86.3%), intermediate for end-exhale images (M1 = 75.0%, M2 = 71.0%, M1∩M2 = 52.1%), and lowest for breath-hold images (M3 = 61.0%). Between M1 and M2, the reproducible feature sets generated from end-exhale images were relatively machine-sensitive (DSC = 0.71, JI = 0.55), and the reproducible feature sets generated from average images were relatively machine-insensitive (DSC = 0.90, JI = 0.87). Histograms of feature pair correlation distances indicated that feature redundancy was machine-sensitive and image type sensitive. After hierarchical clustering, 38 features, 28 features, and 33 features were found to be reproducible and nonredundant for M1∩M2 (average images), M1∩M2 (end-exhale images), and M3, respectively. When blinded to the presence of test-retest images, hierarchical clustering showed that the selected features were informative by correctly pairing 55 out of 56 test-retest images using only their reproducible, nonredundant feature set values.

Image feature reproducibility and redundancy depended on both the CT machine and the CT image type. For each image type, the authors found a set of cross-machine reproducible, nonredundant, and informative image features that would be useful for future image-based models. Compared to end-exhale 4D-CT and breath-hold 3D-CT, average 4D-CT derived image features showed superior multimachine reproducibility and are the best candidates for clinical correlation.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/40/12/1.4829514.html;jsessionid=fOdIM9Jgxc6BYwYG3VYT6TMP.x-aip-live-06?itemId=/content/aapm/journal/medphys/40/12/10.1118/1.4829514&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/40/12/10.1118/1.4829514&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/40/12/10.1118/1.4829514'
Right1,Right2,Right3,