1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Comparative performance of modern digital mammography systems in a large breast screening program
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/40/12/10.1118/1.4829516
1.
1. A. M. Chiarelli, E. Halapy, V. Nadalin, R. Shumak, F. O’Malley, and V. Mai, “Performance measures from 10 years of breast screening in the Ontario Breast Screening Program, 1990/91 to 2000,” Eur. J. Cancer Prev. 15(1), 3442 (2006).
http://dx.doi.org/10.1097/01.cej.0000195713.02567.36
2.
2. E. D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J. K. Baum, S. Acharyya, E. F. Conant, L. L. Fajardo, L. Bassett, C. D’Orsi, R. Jong, and M. Rebner, “Diagnostic accuracy of digital versus film mammography for breast cancer screening: The results of the American College of Radiology Imaging Network (ACRIN) Digital Mammographic Imaging Screening Trial (DMIST)N. Engl. J. Med. 353, 17731783 (2005).
http://dx.doi.org/10.1056/NEJMoa052911
3.
3. A. G. Haus and M. J. Yaffe, “Screen-film and digital mammography. Image quality and radiation dose considerations,” Radiol. Clin. North Am. 38, 87198 (2000).
http://dx.doi.org/10.1016/S0033-8389(05)70207-4
4.
4. M. J. Yaffe and J. A. Rowlands, “X-ray detectors for digital radiography,” Phys. Med. Biol. 42(1), 139 (1997).
http://dx.doi.org/10.1088/0031-9155/42/1/001
5.
5. Detectors for Digital Mammography, in Digital Mammography, Series: Medical Radiology; Subseries: Diagnostic Imaging, edited by B. Ulrich and D. Felix (Springer, Berlin-Heidelberg, 2010), Vol. XVI, p. 220.
6.
6. A. Noel and F. Thibault, “Digital detectors for mammography: The technical challenges,” Eur. Radiol. 14, 19901998 (2004).
http://dx.doi.org/10.1007/s00330-004-2446-6
7.
7. P. Monnin, D. Gutierrez, S. Bulling, D. Guntern, and F. R. Verdun, “A comparison of the performance of digital mammography systems,” Med. Phys. 34, 906914 (2007).
http://dx.doi.org/10.1118/1.2432072
9.
9. A. K. Bloomquist, M. J. Yaffe, E. D. Pisano, R. E. Hendrick, G. E. Mawdsley, S. Bright, S. Z. Shen, M. Mahesh, E. L. Nickoloff, R. C. Fleischman, M. B. Williams, A. D. A. Maidment, D. J. Beideck, J. Och, and J. A. Seibert, “Quality control for digital mammography in the ACRIN DMIST trial: Part I,” Med. Phys. 33(4), 719736 (2006).
http://dx.doi.org/10.1118/1.2163407
10.
10. International Atomic Energy Agency, Quality Assurance Programme for Digital Mammography IAEA Human Health Series 17 Subject Classification: 0103-Medical physics (including dosimetry) STI/PUB/1482, 2011.
11.
11. A. M. Chiarelli, S. A. Edwards, M. V. Prummel, D. Muradali, V. Majpruz, S. J. Done, P. Brown, R. S. Shumak, and M. J. Yaffe, “Digital compared with screen- film mammography: Performance measures in concurrent cohorts within an organized breast screening program,” Radiology 268(3), 684693 (2013).
http://dx.doi.org/10.1148/radiol.13122567
12.
12. E. Samei, M. J. Flynn and D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25(1), 102113 (1998).
http://dx.doi.org/10.1118/1.598165
13.
13. K. C. Young and J. M. Oduko, Evaluation of Kodak DirectView Mammography Computerised Radiography System National Coordinating Centre for the Physics of Mammography NHSBSP Equipment Report 0504, December 2005, see www.cancerscreening.nhs.uk.
14.
14. H. H. Barrett, J. P. Rolland, R. F. Wagner, and K. J. Myers, “Detection of known signals in inhomogeneous, random backgrounds,” Proc. SPIE 1090, 176182 (1989).
http://dx.doi.org/10.1117/12.953202
15.
15. A. K. Bloomquist, J. G. Mainprize, G. E. Mawdsley, and M. J. Yaffe, “A quality control framework using task-based detectability measurements for digital mammography,” Lect. Notes Comput. Sci. 7361, 197204 (2012).
http://dx.doi.org/10.1007/978-3-642-31271-7_26
16.
16. P. Monnin, N. W. Marshall, H. Bosmans, F. O. Bochud, and F. R. Verdun, “Image quality assessment in digital mammography: Part II. NPWE as a validated alternative for contrast detail analysis,” Phys. Med. Biol. 56(14), 42214238 (2011).
http://dx.doi.org/10.1088/0031-9155/56/14/003
17.
17. A. E. Burgess and B. Colborne, “Visual signal detection. IV: Observer inconsistency,” J. Opt. Soc. Am. A 5(4), 617627 (1988).
http://dx.doi.org/10.1364/JOSAA.5.000617
18.
18. H. H. Barrett, J. L. Denny, R. F. Wagner, and K. J. Myers, “Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance.” J. Opt. Soc. Am. A 12(5), 834852 (1995).
http://dx.doi.org/10.1364/JOSAA.12.000834
19.
19. A. E. Burgess, “Statistically defined backgrounds: Performance of a modified nonprewhitening observer model,” J. Opt. Soc. Am. A 11(4), 12371242 (1994).
http://dx.doi.org/10.1364/JOSAA.11.001237
20.
20. W. T. Sobol and X. Wu, “Parametrization of Mammography normalized average glandular dose tables,” Med. Phys. 24(4), 547554 (1997), see http://www.ncbi.nlm.nih.gov/pubmed/9127307.
http://dx.doi.org/10.1118/1.597937
21.
21. D. R. Dance, C. L. Skinner, K. C. Young, J. R. Beckett, and C. J. Kotre, “Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol,” Phys. Med. Biol. 45(11), 32253240 (2000), see http://www.ncbi.nlm.nih.gov/pubmed/11098900.
http://dx.doi.org/10.1088/0031-9155/45/11/308
22.
22. D. R. Dance, K. C. Young, and R. E. van Engen, “Further factors for the estimation of mean glandular dose using the United Kingdom, European and IAEA breast dosimetry protocols,” Phys. Med. Biol. 54(14), 43614372 (2009), see http://www.ncbi.nlm.nih.gov/pubmed/19550001.
http://dx.doi.org/10.1088/0031-9155/54/14/002
25.
25. R. Schulz-Wendtland, M. Lell, E. Wenkel, C. Böhner, M. S. Dassel, and W. Bautz, “DR (a-Se) versus CR (DLR) is an improvement of the accuracy possible? A retrospective histologic analysis (n = 100),” Rontgenpraxis 56(4), 129135 (2007).
http://dx.doi.org/10.1016/j.rontge.2006.10.001
26.
26. H. Bosmans, A. De Hauwere, K. Lemmens, F. Zanca, H. Thierens, C. Van Ongeval, K. Van Herck, A. Van Steen, P. Martens, L. Bleyen, G. Vande Putte, E. Kellen, G. Mortier, and E. Van Limbergen, “Technical and clinical breast cancer screening performance indicators for computed radiography versus direct digital radiography,” Eur. Radiol. 23(10), 28912898 (2013).
http://dx.doi.org/10.1007/s00330-013-2876-0
27.
27. C. Van Ongeval, S. Postema, A. van Steen, G. Vande Putte, E. van Limbergen, F. Zancal, and H. Bosmans, “Performance of computed radiography and direct digital radiography in a screening setting: Effect on the screening indicators,” in IWDM 2012, Lecture Notes in Computer Science, edited by A. D. A. Maidment, P. R. Bakic, and S. Gavenonis (Springer-Verlag, Berlin/Heidelberg, 2012), Vol. 7361, pp. 189196.
28.
28. P. Leblans, L. Struye, and P. Williams, “A new needle-crystalline computed radiography detector,” J. Digit. Imaging 13(1 Suppl.), 117120 (2000).
http://dx.doi.org/10.1007/BF03167640
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/12/10.1118/1.4829516
Loading
/content/aapm/journal/medphys/40/12/10.1118/1.4829516
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/40/12/10.1118/1.4829516
2013-11-27
2014-07-23

Abstract

To compare physical measures pertaining to image quality among digital mammography systems utilized in a large breast screening program. To examine qualitatively differences in these measures and differences in clinical cancer detection rates between CR and DR among sites within that program.

As part of the routine quality assurance program for screening, field measurements are made of several variables considered to correlate with the diagnostic quality of medical images including: modulation transfer function, noise equivalent quanta, d′ (an index of lesion detectability) and air kerma to allow estimation of mean glandular dose. In addition, images of the mammography accreditation phantom are evaluated.

It was found that overall there were marked differences between the performance measures of DR and CR mammography systems. In particular, the modulation transfer functions obtained with the DR systems were found to be higher, even for larger detector element sizes. Similarly, the noise equivalent quanta, d′, and the phantom scores were higher, while the failure rates associated with low signal-to-noise ratio and high dose were lower with DR. These results were consistent with previous findings in the authors’ program that the breast cancer detection rates at sites employing CR technology were, on average, 30.6% lower than those that used DR mammography.

While the clinical study was not large enough to allow a statistically powered system-by-system assessment of cancer detection accuracy, the physical measures expressing spatial resolution, and signal-to-noise ratio are consistent with the published finding that sites employing CR systems had lower cancer detection rates than those using DR systems for screening mammography.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/40/12/1.4829516.html;jsessionid=6ao0ctl7kkp0f.x-aip-live-02?itemId=/content/aapm/journal/medphys/40/12/10.1118/1.4829516&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Comparative performance of modern digital mammography systems in a large breast screening program
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/12/10.1118/1.4829516
10.1118/1.4829516
SEARCH_EXPAND_ITEM