1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The feasibility of an inverse geometry CT system with stationary source arrays
Rent:
Rent this article for
USD
10.1118/1.4789918
/content/aapm/journal/medphys/40/3/10.1118/1.4789918
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/3/10.1118/1.4789918

Figures

Image of FIG. 1.
FIG. 1.

Conventional CT, IGCT, and the proposed SS-IGCT. (a) Standard, third-generation CT uses a rotating source and detector to collect a fan beam of data. (b) IGCT inverts the geometry by using a small detector and a series of sources opposite the detector. A fan-like shape of data, analogous to the fan-beam of conventional CT, is collected. Note that these x-ray beams are not illuminated simultaneously, but instead in sequence. The requirements on the rotating source array are very demanding, and the source array itself is very large. (c) The proposed system, SS-IGCT, increases temporal resolution and avoids the complexity of rotating source arrays by using three stationary source arrays. The gaps between the source arrays lead to missing data. Note that the inverted fan beam, beginning at the detector and ending at the source arrays, is missing a portion of the data because of the gap. These missing data prevent the direct use of conventional reconstruction algorithms. (d) The SS-IGCT system shown with additional hardware. In this schematic, the stationary source array is implemented using electron guns. The collimator and detector rotate together. Only a single x-ray beam is shown, corresponding to a single moment in time. The FOV here is the scanner field of view. [Reprinted with permission from S. S. Hsieh and N. J. Pelc, “A volumetric reconstruction algorithm for stationary source inverse-geometry CT,” Proc. SPIE 8313, Medical Imaging 2012: Physics of Medical Imaging, 83133N (2012)].

Image of FIG. 2.
FIG. 2.

Volumetric depiction of SS-IGCT, showing the detector, source arrays, source trajectory and the x-ray beam. The five source rows, which constitute the source trajectory of the system, are drawn on the source array as circular stripes. Some elements, such as the collimator, have been omitted in this schematic. (a) Two x-ray beams are emitted from two different source rows. (b) The triangular field of view is shown.

Image of FIG. 3.
FIG. 3.

(a) The voxel-by-voxel conjugate ray. Typically, the standard conjugate ray would be used as a substitute for the missing ray. The standard conjugate ray is symmetric to the missing ray. In the starting reconstruction, we choose to use a voxel-by-voxel conjugate ray. For Voxel A, which lies on the axis of rotation (the black dotted line), the voxel-by-voxel conjugate ray is equivalent to the standard conjugate ray. For Voxel B, which lies off the axis of rotation, the voxel-by-voxel conjugate ray is coplanar to the missing ray and the standard conjugate ray but also passes through Voxel B. (b) Reconstruction using the standard conjugate ray as a substitute for the missing ray. A longitudinal slice is shown of four water spheres, each 1 cm in diameter and 10 cm from the isocenter. The top sphere is in the plane of the source row, and the bottom sphere is 4 cm from the isocenter. (c) Reconstruction using the voxel-by-voxel conjugate ray as a substitute for the missing ray. The voxel-by-voxel conjugate ray reduces artifacts and the faint, ghost spheres that appeared with the standard conjugate ray. [WL, WW] = [−1000, 80].

Image of FIG. 4.
FIG. 4.

Detector stitching, the collimator, and the set of angles Φ. (a) A conventional system is shown with a large detector, collimator, and x-ray source emitting a fan beam of radiation directed toward the detector. (b) The SS-IGCT system is shown with a smaller detector and the collimator. The collimator (drawn thick) lies just within the source ring, and the collimator itself has three holes. To minimize confusion, gaps between source arrays are not shown. We use . A source spot lies on one of the three stationary source arrays, which illuminates the detector through a hole in the collimator. (c) and (d) The collimator and detector have rotated such that another collimator hole is present in front of the same source spot. The source spot is re-energized. The data collected from the three source firings, illustrated in (b)–(d), are equivalent to the single image with the large detector in (a). The thickness of the collimator has been exaggerated in these figures to show more clearly the directionality of each collimator hole, which allows the collimator to filter out radiation which is not directed toward the detector.

Image of FIG. 5.
FIG. 5.

Sampling in a longitudinal (for example, a coronal) plane with the proposed system parameters. (a) The SS-IGCT system, with five source rows and with maximum cone angle α. (b) A reference, conventional CT system with 4 cm of coverage in the axial direction. Its worst case minimum tilt angle (equivalently, the half-cone angle) is α.

Image of FIG. 6.
FIG. 6.

Modulation transfer function of the proposed system as compared to the FDK reference.

Image of FIG. 7.
FIG. 7.

Noise performance of (a) the reference FDK system and (b) our proposed system. Window width is 800 and level is 0. The standard deviations in the water spheres were measured to be 320 HU for the reference system, and 301 HU for our proposed system.

Image of FIG. 8.
FIG. 8.

Sagittal slices of the (a) reference system and (b) the proposed system, and axial slices through the (c) reference system and (d) the proposed system for a FORBILD thorax phantom. Window width is 200 and level is 0. [Reprinted with permission from S. S. Hsieh and N. J. Pelc, “A volumetric reconstruction algorithm for stationary source inverse-geometry CT,” Proc. SPIE 8313, Medical Imaging 2012: Physics of Medical Imaging, 83133N (2012)].

Tables

Generic image for table
TABLE I.

System flux comparison to a wide-cone reference scanner for imaging tasks requiring wide, volumetric scanning. SS-IGCT may produce flux sufficient for many clinical applications, such as whole-organ perfusion.

Generic image for table
TABLE II.

System flux comparison to a standard clinical scanner operating in helical mode to capture a 16 cm volume. SS-IGCT captures the volume in a single axial scan and with increased temporal resolution.

Generic image for table
TABLE III.

Proposed system parameters. The “worst case minimum cone angle” refers to the smallest tilt angle for which any voxel along isocenter will be seen by at least one source row. This is diagrammed in Fig. 5 .

Loading

Article metrics loading...

/content/aapm/journal/medphys/40/3/10.1118/1.4789918
2013-02-14
2014-04-25
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The feasibility of an inverse geometry CT system with stationary source arrays
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/3/10.1118/1.4789918
10.1118/1.4789918
SEARCH_EXPAND_ITEM