1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Nuclear imaging of the breast: Translating achievements in instrumentation into clinical use
Rent:
Rent this article for
Access full text Article
/content/aapm/journal/medphys/40/5/10.1118/1.4802733
1.
1. R. E. Hendrick, “Radiation doses and cancer risks from breast imaging studies,” Radiology 257, 246253 (2010).
http://dx.doi.org/10.1148/radiol.10100570
2.
2. M. K. O'Connor, H. Li, D. J. Rhodes, C. B. Hruska, C. B. Clancy, and R. J. Vetter, “Comparison of radiation exposure and associated radiation-induced cancer risks from mammography and molecular imaging of the breast,” Med. Phys. 37, 61876198 (2010).
http://dx.doi.org/10.1118/1.3512759
3.
3. D. J. Rhodes, C. B. Hruska, S. W. Phillips, D. H. Whaley, and M. K. O'Connor, “Dedicated dual-head gamma imaging for breast cancer screening in women with mammographically dense breasts,” Radiology 258, 106118 (2011).
http://dx.doi.org/10.1148/radiol.10100625
4.
4. W. A. Berg, K. S. Madsen, K. Schilling, M. Tartar, E. D. Pisano, L. H. Larsen, D. Narayanan, A. Ozonoff, J. P. Miller, and J. E. Kalinyak, “Breast cancer: Comparative effectiveness of positron emission mammo- graphy and MR imaging in presurgical planning for the ipsilateral breast,” Radiology 258, 5972 (2011).
http://dx.doi.org/10.1148/radiol.10100454
5.
5. W. A. Berg, K. S. Madsen, K. Schilling, M. Tartar, E. D. Pisano, L. H. Larsen, D. Narayanan, and J. E. Kalinyak, “Comparative effectiveness of positron emission mammography and MRI in the contralateral breast of women with newly diagnosed breast cancer,” AJR, Am. J. Roentgenol. 198, 219232 (2012).
http://dx.doi.org/10.2214/AJR.10.6342
6.
6. R. F. Brem, C. Shahan, J. A. Rapleyea, C. A. Donnelly, L. R. Rechtman, A. B. Kidwell, C. B. Teal, A. McSwain, and J. Torrente, “Detection of occult foci of breast cancer using breast-specific gamma imaging in women with one mammographic or clinically suspicious breast lesion,” Acad. Radiol. 17, 735743 (2010).
http://dx.doi.org/10.1016/j.acra.2010.01.017
7.
7. D. L. Wahner-Roedler, J. C. Boughey, C. B. Hruska, B. Chen, D. J. Rhodes, C. L. Tortorelli, R. W. Maxwell, S. S. Cha, and M. K. O'Connor, “The use of molecular breast imaging to assess response in women undergoing neoadjuvant therapy for breast cancer: a pilot study,” Clin. Nucl. Med. 37, 344350 (2012).
http://dx.doi.org/10.1097/RLU.0b013e31824437b3
8.
8. R. Taillefer, “The role of 99mTc-sestamibi and other conventional radiopharmaceuticals in breast cancer diagnosis,” Semin Nucl. Med. 29, 1640 (1999).
http://dx.doi.org/10.1016/S0001-2998(99)80027-0
9.
9. G. R. Berg, L. Kalisher, J. D. Osmond, H. P. Pendergrass, and M. S. Potsaid, “99mTc-diphosphonate concentration in primary breast carcinoma,” Radiology 109, 393394 (1973).
http://dx.doi.org/10.1148/109.2.393
10.
10. K. Hisada, N. Tonami, T. Miyamae, Y. Hiraki, T. Yamazaki, T. Maeda, and M. Nakajo, “Clinical evaluation of tumor imaging with 201 TI chloride,” Radiology 129, 497500 (1978).
http://dx.doi.org/10.1148/129.2.497
11.
11. P. R. Ghosh, “FDA approves two new technetium-labeled cardiac agents and a pharmacologic alternative to exercise in stress-thallium studies,” J. Nucl. Med. 32, 11N19N (1991).
12.
12. C. Aktolun, H. Bayhan, and M. Kir, “Clinical experience with Tc-99m MIBI imaging in patients with malignant tumors. Preliminary results and comparison with Tl-201,” Clin. Nucl. Med. 17, 171176 (1992).
http://dx.doi.org/10.1097/00003072-199203000-00003
13.
13. P. F. Rambaldi, L. Mansi, E. Procaccini, F. Di Gregorio, and E. Del Vecchio, “Breast cancer detection with Tc-99m tetrofosmin,” Clin. Nucl. Med. 20, 703705 (1995).
http://dx.doi.org/10.1097/00003072-199508000-00009
14.
14. M. Liberman, F. Sampalis, D. S. Mulder, and J. S. Sampalis, “Breast cancer diagnosis by scintimammography: A meta-analysis and review of the literature,” Breast Cancer Res. Treat. 80, 115126 (2003).
http://dx.doi.org/10.1023/A:1024417331304
15.
15. I. Khalkhali, J. Villanueva-Meyer, S. L. Edell, J. L. Connolly, S. J. Schnitt, J. K. Baum, M. J. Houlihan, R. M. Jenkins, and S. B. Haber, “Diagnostic accuracy of 99mTc-sestamibi breast imaging: multicenter trial results,” J. Nucl. Med. 41, 19731979 (2000).
16.
16. H. Palmedo, H. J. Biersack, S. Lastoria, J. Maublant, E. Prats, H. E. Stegner, P. Bourgeois, R. Hustinx, A. J. Hilson, and A. Bischof-Delaloye, “Scintimammography with technetium-99m methoxyisobutylisonitrile: Results of a prospective European multicentre trial,” Eur. J. Nucl. Med. 25, 375385 (1998).
http://dx.doi.org/10.1007/s002590050235
17.
17. F. S. Sampalis, R. Denis, D. Picard, D. Fleiszer, G. Martin, E. Nassif, and J. S. Sampalis, “International prospective evaluation of scintimammography with (99m)technetium sestamibi,” Am. J. Surg. 185, 544549 (2003).
http://dx.doi.org/10.1016/S0002-9610(03)00077-1
18.
18. A. D. Waxman, “The role of (99m)Tc methoxyisobutylisonitrile in imaging breast cancer,” Semin Nucl. Med. 27, 4054 (1997).
http://dx.doi.org/10.1016/S0001-2998(97)80035-9
19.
19. R. F. Brem, J. M. Schoonjans, D. A. Kieper, S. Majewski, S. Goodman, and C. Civelek, “High-resolution scintimammography: A pilot study,” J. Nucl. Med. 43, 909915 (2002).
20.
20. V. Papantoniou, J. Christodoulidou, E. Papadaki, V. Valotassiou, A. Stipsanelli, A. Louvrou, D. Lazaris, M. Sotiropoulou, G. Pampouras, A. Keramopoulos, S. Michalas, and C. Zerva, “99mTc-(V)DMSA scintimammography in the assessment of breast lesions: Comparative study with 99mTc-MIBI,” Eur. J. Nucl. Med. 28, 923928 (2001).
http://dx.doi.org/10.1007/s002590100545
21.
21. I. Khalkhali, I. Mena, and L. Diggles, “Review of imaging techniques for the diagnosis of breast cancer: A new role of prone scintimammography using technetium-99m sestamibi,” Eur. J. Nucl. Med. 21, 357362 (1994).
http://dx.doi.org/10.1007/BF00947973
22.
22. C. Aktolun, “Exaggerated role of prone technique in breast cancer imaging with technetium-99m methoxyisobutylisonitrile,” Eur. J. Nucl. Med. 21, 12571260 (1994).
http://dx.doi.org/10.1007/BF00182366
23.
23. F. Scopinaro, R. Pani, G. De Vincentis, A. Soluri, R. Pellegrini, and L. M. Porfiri, “High-resolution scintimammography improves the accuracy of technetium-99m methoxyisobutylisonitrile scintimammography: Use of a new dedicated gamma camera,” Eur. J. Nucl. Med. 26, 12791288 (1999).
http://dx.doi.org/10.1007/s002590050584
24.
24. A. Spanu, G. Dettori, S. Nuvoli, A. Porcu, A. Falchi, P. Cottu, M. E. Solinas, A. M. Scanu, F. Chessa, and G. Madeddu, “(99)mTc-tetrofosmin SPET in the detection of both primary breast cancer and axillary lymph node metastasis,” Eur. J. Nucl. Med. 28, 17811794 (2001).
http://dx.doi.org/10.1007/s00259-001-0657-5
25.
25. A. Spanu, O. Schillaci, G. B. Meloni, A. Porcu, P. Cottu, S. Nuvoli, A. Falchi, F. Chessa, M. E. Solinas, and G. Madeddu, “The usefulness of 99mTc-tetrofosmin SPECT scintimammography in the detection of small size primary breast carcinomas,” Int. J. Oncol. 21, 831840 (2002).
26.
26. A. Aziz, R. Hashmi, Y. Ogawa, and K. Hayashi, “Tc-99m-MIBI scintimammography; SPECT versus planar imaging,” Cancer Biother. Radiopharm. 14, 495500 (1999).
http://dx.doi.org/10.1089/cbr.1999.14.495
27.
27. M. Myslivecek, P. Koranda, M. Kaminek, V. Husak, M. Hartlova, M. Duskova, and K. Cwiertka, “Technetium-99m-MIBI scintimammography by planar and SPECT imaging in the diagnosis of breast carcinoma and axillary lymph node involvement,” Nucl. Med. Rev. Cent. East. Eur. 7, 151155 (2004).
28.
28. O. Schillaci, R. Danieli, L. Filippi, P. Romano, E. Cossu, C. Manni, and G. Simonetti, “Scintimammography with a hybrid SPECT/CT imaging system,” Anticancer Res. 27, 557562 (2007).
29.
29. R. Tiling, K. Tatsch, H. Sommer, G. Meyer, M. Pechmann, K. Gebauer, W. Munzing, R. Linke, I. Khalkhali, and K. Hahn, “Technetium-99m-sestamibi scintimammography for the detection of breast carcinoma: comparison between planar and SPECT imaging,” J. Nucl. Med. 39, 849856 (1998).
30.
30. R. Danielsson, B. Bone, B. Agren, L. Svensson, and P. Aspelin, “Comparison of planar and SPECT scintimammography with 99mTc-sestamibi in the diagnosis of breast carcinoma,” Acta Radiol. 40, 176180 (1999).
http://dx.doi.org/10.3109/02841859909177734
31.
31. E. L. Rosen, W. B. Eubank, and D. A. Mankoff, “FDG PET, PET/CT, and breast cancer imaging,” Radiographics 27(Suppl 1), S215S229 (2007).
http://dx.doi.org/10.1148/rg.27si075517
32.
32. J. R. Buscombe, B. Holloway, N. Roche, and E. Bombardieri, “Position of nuclear medicine modalities in the diagnostic work-up of breast cancer,” Q. J. Nucl. Med. Mol. Imaging 48, 109118 (2004).
33.
33. D. J. Samson, C. R. Flamm, E. D. Pisano, and N. Aronson, “Should FDG PET be used to decide whether a patient with an abnormal mammogram or breast finding at physical examination should undergo biopsy?,” Acad. Radiol. 9, 773783 (2002).
http://dx.doi.org/10.1016/S1076-6332(03)80347-1
34.
34. I. N. Weinberg, R. Pani, R. Pellegrini, F. Scopinaro, G. De Vincentis, A. Pergola, and A. Soluri, “Small lesion visualization in scintimammo- graphy,” IEEE Trans. Nucl. Sci. 44, 13981402 (1997).
http://dx.doi.org/10.1109/23.597019
35.
35. G. De Vincentis, F. Scopinaro, R. Pani, R. Pellegrini, A. Soluri, M. Ierardi, L. Ballesio, I. N. Weinberg, and A. Pergola, “99mTc MIBI scintimammography with a high resolution single tube gamma camera: Preliminary study,” Anticancer Res. 17, 16271630 (1997).
36.
36. M. B. Williams, A. R. Goode, V. Galbis-Reig, S. Majewski, A. G. Weisenberger, and R. Wojcik, “Performance of a PSPMT based detector for scintimammography,” Phys. Med. Biol. 45, 781800 (2000).
http://dx.doi.org/10.1088/0031-9155/45/3/315
37.
37. J. H. Kim, Y. Choi, K. S. Joo, B. S. Sihn, J. W. Chong, S. E. Kim, K. H. Lee, Y. S. Choe, and B. T. Kim, “Development of a miniature scintillation camera using an NaI(Tl) scintillator and PSPMT for scintimammography,” Phys. Med. Biol. 45, 34813488 (2000).
http://dx.doi.org/10.1088/0031-9155/45/11/326
38.
38. S. Majewski, D. Kieper, E. Curran, C. Keppel, B. Kross, A. Palumbo, V. Popov, A. G. Wisenberger, B. Welch, R. Wojcik, M. B. Williams, A. R. Goode, M. More, and G. Zhang, “Optimization of dedicated scintimammography procedure using detector prototypes and compressible phantoms,” IEEE Trans. Nucl. Sci. 48, 822829 (2001).
http://dx.doi.org/10.1109/23.940170
39.
39. R. Wojcik, S. Majewski, B. Kross, D. Steinbach, and A. G. Weisenberger, “High spatial resolution gamma imaging detector based on a 5″ diameter R3292 Hamamatsu PSPMT,” IEEE Trans. Nucl. Sci. 45, 487491 (1998).
http://dx.doi.org/10.1109/23.682432
40.
40. R. Pani, A. Soluri, R. Scafe, A. Pergola, R. Pellegrini, G. De Vincentis, G. Trotta, and F. Scopinaro, “Multi-PSPMT scintillation camera,” IEEE Trans. Nucl. Sci. 46, 702708 (1999).
http://dx.doi.org/10.1109/23.775602
41.
41. B. E. Patt, J. S. Iwanczyk, C. Rossington Tull, N. W. Wang, M. P. Tornai, and E. J. Hoffman, “High resolution CsI(Tl)/Si-PIN detector development for breast imaging,” IEEE Trans. Nucl. Sci. 45, 21262131 (1998).
http://dx.doi.org/10.1109/23.708319
42.
42. G. J. Gruber, W. W. Moses, S. E. Derenzo, N. W. Wang, E. Beuville, and H. Ho, “A discrete scintillation camera module using silicon photodiode readout of CsI(TI) crystals for breast cancer imaging,” IEEE Trans. Nucl. Sci. 45, 10631068 (1998).
http://dx.doi.org/10.1109/23.681979
43.
43. G. Trinci, R. Massari, M. Scandellari, F. Scopinaro, and A. Soluri, “Super spatial resolution (SSR) method for scintigraphic imaging,” Nucl. Instrum. Methods Phys. Res. A 626–627, 120127 (2011).
http://dx.doi.org/10.1016/j.nima.2010.10.077
44.
44. R. Pani, G. De Vincentis, F. Scopinaro, R. Pellegrini, A. Soluri, I. N. Weinberg, A. Pergola, R. Scafe, and G. Trotta, “Dedicated gamma camera for single photon emission mammography (SPEM),” IEEE Trans. Nucl. Sci. 45, 31273133 (1998).
http://dx.doi.org/10.1109/23.737675
45.
45. C. B. Hruska, M. K. O'Connor, and D. A. Collins, “Comparison of small field of view gamma camera systems for scintimammography,” Nucl. Med. Commun. 26, 441445 (2005).
http://dx.doi.org/10.1097/00006231-200505000-00008
46.
46. M. J. More, P. J. Goodale, S. Majewski, and M. B. Williams, “Evaluation of gamma cameras for use in dedicated breast imaging,” IEEE Trans. Nucl. Sci. 53, 26752679 (2006).
http://dx.doi.org/10.1109/TNS.2006.876003
47.
47. J. F. Butler, C. L. Lingren, S. J. Friesenhahn, F. P. Doty, W. L. Ashburn, R. L. Conwell, F. L. Augustine, B. Apotovsky, B. Pi, T. Collins, S. Zhao, and C. Isaacson, “CdZnTe solid-state gamma camera,” IEEE Trans. Nucl. Sci. 45, 359363 (1998).
http://dx.doi.org/10.1109/23.682408
48.
48. B. Mueller, M. K. O'Connor, I. Blevis, D. J. Rhodes, R. Smith, D. A. Collins, and S. W. Phillips, “Evaluation of a small cadmium zinc telluride detector for scintimammography,” J. Nucl. Med. 44, 602609 (2003).
49.
49. C. B. Hruska and M. K. O'Connor, “A Monte Carlo model for energy spectra analysis in dedicated nuclear breast imaging,” IEEE Trans. Nucl. Sci. 55, 491500 (2008).
http://dx.doi.org/10.1109/TNS.2007.910882
50.
50. C. B. Hruska and M. K. O'Connor, “CZT detectors: How important is energy resolution for nuclear breast imaging?,” Phys. Med. 21(Suppl 1), 7275 (2006).
http://dx.doi.org/10.1016/S1120-1797(06)80029-3
51.
51. C. Robert, G. Montemont, V. Rebuffel, I. Buvat, L. Guerin, and L. Verger, “Simulation-based evaluation and optimization of a new CdZnTe gamma-camera architecture (HiSens),” Phys. Med. Biol. 55, 27092726 (2010).
http://dx.doi.org/10.1088/0031-9155/55/9/019
52.
52. P. J. Slomka, D. Dey, W. L. Duvall, M. J. Henzlova, D. S. Berman, and G. Germano, “Advances in nuclear cardiac instrumentation with a view towards reduced radiation exposure,” Curr. Cardiol. Rep. 14, 208216 (2012).
http://dx.doi.org/10.1007/s11886-012-0248-z
53.
53. A. L. Weinmann, C. B. Hruska, and M. K. O'Connor, “Design of optimal collimation for dedicated molecular breast imaging systems,” Med. Phys. 36, 845856 (2009).
http://dx.doi.org/10.1118/1.3077119
54.
54. S. Lastoria, S. Piccolo, and P. Muto, “Invited commentary: One step forward,” J. Nucl. Med. 43, 916917 (2002).
55.
55. C. B. Hruska, S. W. Phillips, D. H. Whaley, D. J. Rhodes, and M. K. O'Connor, “Molecular breast imaging: use of a dual-head dedicated gamma camera to detect small breast tumors,” AJR, Am. J. Roentgenol. 191, 18051815 (2008).
http://dx.doi.org/10.2214/AJR.07.3693
56.
56. S. Majewski, R. Black, B. Kross, V. Popov, B. Welch, R. Wojecik, M. B. Williams, M. J. More, and P. Goodale, “Phantom evaluations of a dedicated dual-head scintimammography system,” Phys. Med. 21(Suppl 1), 3538 (2006).
http://dx.doi.org/10.1016/S1120-1797(06)80021-9
57.
57. P. G. Judy, B. Welch, T. St. Saviour, D. Kieper, S. Majewski, J. McKisson, B. Kross, J. Proffitt, A. Stolin, M. J. More, N. L. Dinion, and M. B. Williams, “Molecular breast imaging with directly opposing compact gamma cameras,” in Nuclear Science Symposium Conference Record, 2007. NSS ‘07. IEEE, Vol. 6 (IEEE, 2007), pp. 40404043.
58.
58. F. Garibaldi, E. Cisbani, S. Colilli, F. Cusanno, R. Fratoni, F. Giuliani, M. Gricia, M. Lucentini, M. L. Magliozzi, F. Santavenere, S. Torrioli, P. Musico, A. Argentieri, E. Cossu, F. Padovano, G. Simonetti, O. Schillaci, and S. Majewski, “A novel high resolution and high efficiency dual head detector for molecular breast imaging: New results from clinical trials,” Nucl. Instrum. Methods Phys. Res. A 617, 227229 (2010).
http://dx.doi.org/10.1016/j.nima.2009.10.015
59.
59. P. G. Judy, G. Zongyi, N. L. Dinion, B. L. Welch, T. S. Saviour, D. Kieper, S. Majewski, J. McKisson, B. Kross, J. Proffitt, A. V. Stolin, M. J. More, and M. B. Williams, “Analysis of image combination methods for conjugate breast scintigraphy,” IEEE Trans. Nucl. Sci. 57, 11461154 (2010).
http://dx.doi.org/10.1109/TNS.2009.2038472
60.
60. C. B. Hruska and M. K. O'Connor, “Quantification of lesion size, depth, and uptake using a dual-head molecular breast imaging system,” Med. Phys. 35, 13651376 (2008).
http://dx.doi.org/10.1118/1.2885371
61.
61. C. J. Thompson, K. Murthy, I. N. Weinberg, and F. Mako, “Feasibility study for positron emission mammography,” Med. Phys. 21, 529538 (1994).
http://dx.doi.org/10.1118/1.597169
62.
62. I. N. Weinberg, “Applications for positron emission mammography,” Phys. Med. 21(Suppl 1), 132137 (2006).
http://dx.doi.org/10.1016/S1120-1797(06)80045-1
63.
63. A. Joshi, R. A. Koeppe, and J. A. Fessler, “Reducing between scanner differences in multi-center PET studies,” Neuroimage 46, 154159 (2009).
http://dx.doi.org/10.1016/j.neuroimage.2009.01.057
64.
64. I. Weinberg, “The promise of PEM,” in Advance for Imaging & Radiation Oncology (Merion Matters, 2004), Vol. 14, p. 91.
65.
65. I. Weinberg, S. Majewski, A. Weisenberger, A. Markowitz, L. Aloj, L. Majewski, D. Danforth, J. Mulshine, K. Cowan, J. Zujewski, C. Chow, E. Jones, V. Chang, W. Berg, and J. Frank, “Preliminary results for positron emission mammography: Real-time functional breast imaging in a conventional mammography gantry,” Eur. J. Nucl. Med. 23, 804806 (1996).
http://dx.doi.org/10.1007/BF00843710
66.
66. N. K. Doshi, Y. Shao, R. W. Silverman, and S. R. Cherry, “Design and evaluation of an LSO PET detector for breast cancer imaging,” Med. Phys. 27, 15351543 (2000).
http://dx.doi.org/10.1118/1.599019
67.
67. R. Freifelder and J. S. Karp, “Dedicated PET scanners for breast imaging,” Phys. Med. Biol. 42, 24632480 (1997).
http://dx.doi.org/10.1088/0031-9155/42/12/012
68.
68. J. S. Huber, W. W. Moses, S. E. Derenzo, M. H. Ho, M. S. Andreaco, M. J. Paulus, and R. Nutt, “Characterization of a 64 channel PET detector using photodiodes for crystal identification,” IEEE Trans. Nucl. Sci. 44, 11971201 (1997).
http://dx.doi.org/10.1109/23.596987
69.
69. M. B. Williams, R. M. Sealock, S. Majewski, and A. G. Weisenberger, “PET detector using waveshifting optical fibers and microchannel plate PMT with delay line readout,” IEEE Trans. Nucl. Sci. 45, 195205 (1998).
http://dx.doi.org/10.1109/23.664171
70.
70. W. Worstell, O. Johnson, H. Kudrolli, and V. Zavarzin, “First results with high-resolution PET detector modules using wavelength-shifting fibers,” IEEE Trans. Nucl. Sci. 45, 29932999 (1998).
http://dx.doi.org/10.1109/23.737655
71.
71. R. R. Raylman, S. Majewski, R. Wojcik, A. G. Weisenberger, B. Kross, V. Popov, and H. A. Bishop, “The potential role of positron emission mammography for detection of breast cancer. A phantom study,” Med. Phys. 27, 19431954 (2000).
http://dx.doi.org/10.1118/1.1287439
72.
72. M. F. Smith, R. R. Raylman, S. Majewski, and A. G. Weisenberger, “Positron emission mammography with tomographic acquisition using dual planar detectors: Initial evaluations,” Phys. Med. Biol. 49, 24372452 (2004).
http://dx.doi.org/10.1088/0031-9155/49/11/022
73.
73. J. Zhang, A. M. K. Foudray, P. D. Olcott, R. Farrell, K. Shah, and C. S. Levin, “Performance Characterization of a novel thin position-sensitive avalanche photodiode for 1 mm resolution positron emission tomography,” IEEE Trans. Nucl. Sci. 54, 415421 (2007).
http://dx.doi.org/10.1109/TNS.2007.894128
74.
74. H. Peng and C. S. Levin, “Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors,” Phys. Med. Biol. 55, 27612788 (2010).
http://dx.doi.org/10.1088/0031-9155/55/9/022
75.
75. L. MacDonald, J. Edwards, T. Lewellen, D. Haseley, J. Rogers, and P. Kinahan, “Clinical imaging characteristics of the positron emission mammography camera: PEM Flex Solo II,” J. Nucl. Med. 50, 16661675 (2009).
http://dx.doi.org/10.2967/jnumed.109.064345
76.
76. W. Luo, E. Anashkin, and C. G. Matthews, “Performance evaluation of a pem scanner using the NEMA NU 4-2008 small animal PET standards,” IEEE Trans. Nucl. Sci. 57, 94103 (2010).
http://dx.doi.org/10.1109/TNS.2009.2036847
77.
77. L. Moliner et al., “Design and evaluation of the MAMMI dedicated breast PET,” Med. Phys. 39, 53935404 (2012).
http://dx.doi.org/10.1118/1.4742850
78.
78. L. Moliner, J. M. Benlloch, M. Carles, C. Correcher, A. J. Gonzalez, A. Orero, F. Sanchez, and A. Soriano, “Performance characteristics of the MAMMI PEMT scanner based on NEMA NU 2–2007,” Nuclear Science Symposium Conference Record (NSS/MIC) (IEEE, 2010), pp. 25912594.
http://dx.doi.org/10.1109/NSSMIC.2010.5874256
79.
79. A. Soriano, A. González, A. Orero, L. Moliner, M. Carles, F. Sánchez, J. M. Benlloch, C. Correcher, V. Carrilero, and M. Seimetz, “Attenuation correction without transmission scan for the MAMMI breast PET,” Nucl. Instrum. Methods Phys. Res. A 648(Suppl 1), S75S78 (2011).
http://dx.doi.org/10.1016/j.nima.2010.12.138
80.
80. Y. Wu, S. L. Bowen, K. Yang, N. Packard, L. Fu, G. Burkett, J. Qi, J. M. Boone, S. R. Cherry, and R. D. Badawi, “PET characteristics of a dedicated breast PET/CT scanner prototype,” Phys. Med. Biol. 54, 42734287 (2009).
http://dx.doi.org/10.1088/0031-9155/54/13/020
81.
81. S. L. Bowen, Y. Wu, A. J. Chaudhari, L. Fu, N. J. Packard, G. W. Burkett, K. Yang, K. K. Lindfors, D. K. Shelton, R. Hagge, A. D. Borowsky, S. R. Martinez, J. Qi, J. M. Boone, S. R. Cherry, and R. D. Badawi, “Initial characterization of a dedicated breast PET/CT scanner during human imaging,” J. Nucl. Med. 50, 14011408 (2009).
http://dx.doi.org/10.2967/jnumed.109.064428
82.
82. G. C. Wang, J. S. Huber, W. W. Moses, J. Qi, and W. S. Choong, “Characterization of the LBNL PEM camera,” IEEE Trans. Nucl. Sci. 53, 11291135 (2006).
http://dx.doi.org/10.1109/TNS.2006.874956
83.
83. B. Ravindranath, S. H. Maramraju, S. S. Junnarkar, S. S. Southekal, S. P. Stoll, J. F. Pratte, M. L. Purschke, X. Hong, D. Bennett, K. Cheng, D. Tomasi, D. S. Smith, S. Krishnamoorthy, P. Vaska, C. L. Woody, and D. J. Schlyer, “A simultaneous PET/MRI breast scanner based on the RatCAP,” Nuclear Science Symposium Conference Record, 2008. NSS '08 (IEEE, 2008), pp. 46504655.
http://dx.doi.org/10.1109/NSSMIC.2008.4774460
84.
84. J. Zhang, G. Chinn, A. M. Foudray, F. Habte, P. Olcott, and C. S. Levin, “Evaluation of a dual-panel PET camera design to breast cancer imaging,” Phys. Med. 21(Suppl 1), 9498 (2006).
http://dx.doi.org/10.1016/S1120-1797(06)80035-9
85.
85. E. L. Rosen, T. G. Turkington, M. S. Soo, J. A. Baker, and R. E. Coleman, “Detection of primary breast carcinoma with a dedicated, large-field-of-view FDG PET mammography device: Initial experience1,” Radiology 234, 527534 (2005).
http://dx.doi.org/10.1148/radiol.2342040654
86.
86. R. R. Raylman, S. Majewski, M. F. Smith, J. Proffitt, W. Hammond, A. Srinivasan, J. McKisson, V. Popov, A. Weisenberger, C. O. Judy, B. Kross, S. Ramasubramanian, L. E. Banta, P. E. Kinahan, and K. Champley, “The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): Design, construction and phantom-based measurements,” Phys. Med. Biol. 53, 637653 (2008).
http://dx.doi.org/10.1088/0031-9155/53/3/009
87.
87. R. R. Raylman, J. Abraham, H. Hazard, C. Koren, S. Filburn, J. S. Schreiman, S. Kurian, S. Majewski, and G. D. Marano, “Initial clinical test of a breast-PET scanner,” J. Med. Imaging Radiat. Oncol. 55, 5864 (2011).
http://dx.doi.org/10.1111/j.1754-9485.2010.02230.x
88.
88. Y. Zhang, R. A. Ramirez, L. Hongdi, L. Shitao, A. Shaohui, W. Chao, H. Baghaei, and W. Wai-Hoi, “The system design, engineering architecture, and preliminary results of a lower-cost high-sensitivity high-resolution positron emission mammography camera,” IEEE Trans. Nucl. Sci. 57, 104110 (2010).
http://dx.doi.org/10.1109/TNS.2009.2031644
89.
89. M. Camarda, N. Belcari, A. D. Guerra, S. Galeotti, F. Morsani, D. J. Herbert, and A. Vaiano, “Development of the YAP-PEM scanner for breast cancer imaging,” Phys. Med. 21(Suppl 1), 114116 (2006).
http://dx.doi.org/10.1016/S1120-1797(06)80040-2
90.
90. P. Lecoq and J. Varela, “Clear-PEM, a dedicated PET camera for mammography,” Nucl. Instrum. Methods Phys. Res. A 486, 16 (2002).
http://dx.doi.org/10.1016/S0168-9002(02)00666-6
91.
91. M. C. Abreu, D. Aguiar, E. Albuquerque, F. G. Almeida, P. Almeida, P. Amaral, E. Auffray, P. Bento, P. Bruyndonckx, R. Bugalho, B. Carriço, H. Cordeiro, M. Ferreira, N. C. Ferreira, F. Gonçalves, P. Lecoq, C. Leong, F. Lopes, P. Lousã, J. Luyten, M. V. Martins, N. Matela, P. R. Mendes, R. Moura, J. Nobre, N. Oliveira, C. Ortigão, L. Peralta, J. Rego, R. Ribeiro, P. Rodrigues, A. I. Santos, J. C. Silva, M. M. Silva, S. Tavernier, I. C. Teixeira, J. P. Teixeira, A. Trindade, J. Trummer, and J. Varela, “Clear-PEM: A PET imaging system dedicated to breast cancer diagnostics,” Nucl. Instrum. Methods Phys. Res. A 571, 8184 (2007).
http://dx.doi.org/10.1016/j.nima.2006.10.034
92.
92. J. Varela, “A PET imaging system dedicated to mammography,” Radiat. Phys. Chem. 76, 347350 (2007).
http://dx.doi.org/10.1016/j.radphyschem.2006.03.065
93.
93. K. Kitamura, O. Junichi, T. Hiromichi, Y. Yoshihiro, F. Tetsuo, F. Masafumi, S. Masanobu, T. Tomoaki, N. Masayuki, H. Nobuya, Y. Yoshiyuki, K. Ayako, and K. Yoshihiko, “Development of a C-shaped breast PET scanner equipped with four-layer DOI detectors,” Nuclear Science Symposium Conference Record, 2008, NSS '08 (IEEE, 2008), pp. 56625665.
http://dx.doi.org/10.1109/NSSMIC.2008.4774517
94.
94. M. Furuta, K. Kitamura, J. Ohi, H. Tonami, Y. Yamada, T. Furumiya, M. Satoh, T. Tsuda, M. Nakazawa, N. Hashizume, Y. Yamakawa, A. Kawashima, and Y. Kumazawa, “Basic evaluation of a C-shaped breast PET scanner,” Nuclear Science Symposium Conference Record (NSS/MIC) (IEEE, 2009), pp. 25482552.
http://dx.doi.org/10.1109/NSSMIC.2009.5402027
95.
95. M. Iima, Y. Nakamoto, S. Kanao, T. Sugie, T. Ueno, M. Kawada, Y. Mikami, M. Toi, and K. Togashi, “Clinical performance of 2 dedicated PET scanners for breast imaging: Initial evaluation,” J. Nucl. Med. 53, 15341542 (2012).
http://dx.doi.org/10.2967/jnumed.111.100958
96.
96. C. Cohade, M. Osman, J. Leal, and R. L. Wahl, “Direct comparison of (18)F-FDG PET and PET/CT in patients with colorectal carcinoma,” J. Nucl. Med. 44, 17971803 (2003).
97.
97. D. Lardinois, W. Weder, T. F. Hany, E. M. Kamel, S. Korom, B. Seifert, G. K. von Schulthess, and H. C. Steinert, “Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography,” N Engl. J. Med. 348, 25002507 (2003).
http://dx.doi.org/10.1056/NEJMoa022136
98.
98. A. M. Bergman, C. J. Thompson, K. Murthy, J. L. Robar, R. L. Clancy, M. J. English, A. Loutfi, R. Lisbona, and J. Gagnon, “Technique to obtain positron emission mammography images in registration with x-ray mammograms,” Med. Phys. 25, 21192129 (1998).
http://dx.doi.org/10.1118/1.598408
99.
99. L. P. Adler, I. N. Weinberg, M. S. Bradbury, E. A. Levine, N. M. Lesko, K. R. Geisinger, W. A. Berg, and R. I. Freimanis, “Method for combined FDG-PET and radiographic imaging of primary breast cancers,” Breast J. 9, 163166 (2003).
http://dx.doi.org/10.1046/j.1524-4741.2003.09306.x
100.
100. K. Murthy, M. Aznar, A. M. Bergman, C. J. Thompson, J. L. Robar, R. Lisbona, A. Loutfi, and J. H. Gagnon, “Positron emission mammographic instrument: Initial results.,” Radiology 215, 280285 (2000).
101.
101. L. R. Coover, G. Caravaglia, and P. Kuhn, “Scintimammography with dedicated breast camera detects and localizes occult carcinoma,” J. Nucl. Med. 45, 553558 (2004).
102.
102. M. B. Williams, M. J. More, D. Narayanan, S. Majewski, A. G. Weisenberger, R. Wojcik, M. Stanton, W. Phillips, and A. Stewart, “Combined structural and functional imaging of the breast,” Technol. Cancer Res. Treat. 1, 3942 (2002).
103.
103. M. B. Williams, P. G. Judy, S. Gunn, and S. Majewski, “Dual-modality breast tomosynthesis,” Radiology 255, 191198 (2010).
http://dx.doi.org/10.1148/radiol.09091160
104.
104. C. N. Brzymialkiewicz, M. P. Tornai, R. L. McKinley, S. J. Cutler, and J. E. Bowsher, “Performance of dedicated emission mammotomography for various breast shapes and sizes,” Phys. Med. Biol. 51, 50515064 (2006).
http://dx.doi.org/10.1088/0031-9155/51/19/021
105.
105. D. J. Crotty, S. J. Cutler, R. L. McKinley, P. Madhav, K. L. Perez, and M. P. Tornai, “Improved chest wall imaging through combined complex trajectories in dedicated dual modality SPECT-CT breast molecular imaging,” Nuclear Science Symposium Conference Record, 2008, NSS '08 (IEEE, 2008), pp. 26505656.
http://dx.doi.org/10.1109/NSSMIC.2008.4774525
106.
106. P. Madhav, S. J. Cutler, K. L. Perez, D. J. Crotty, R. L. McKinley, T. Z. Wong, and M. P. Tornai, “Comparison of reduced angle and fully 3D acquisition sequencing and trajectories for dual-modality mammotomography,” Nuclear Science Symposium Conference Record, 2007, NSS '07 (IEEE, 2007), Vol. 6, pp. 40444050.
http://dx.doi.org/10.1109/NSSMIC.2007.4437016
107.
107. K. K. Lindfors, J. M. Boone, T. R. Nelson, K. Yang, A. L. Kwan, and D. F. Miller, “Dedicated breast CT: initial clinical experience,” Radiology 246, 725733 (2008).
http://dx.doi.org/10.1148/radiol.2463070410
108.
108. E. Albuquerque, F. G. Almeida, P. Almeida, E. Auffray, J. Barbosa, A. L. Bastos, V. Bexiga, R. Bugalho, S. Carmona, B. Carrico, C. S. Ferreira, N. C. Ferreira, M. Ferreira, M. Frade, J. Godinho, F. Goncalves, C. Guerreiro, P. Lecoq, C. Leong, P. Lousa, P. Machado, M. V. Martins, N. Matela, R. Moura, P. Neves, N. Oliveira, C. Ortigao, F. Piedade, J. F. Pinheiro, P. Relvas, A. Rivetti, P. Rodrigues, I. Rolo, J. Sampaio, A. I. Santos, J. Santos, M. M. Silva, S. Tavernier, I. C. Teixeira, J. P. Teixeira, R. Silva, J. C. Silva, A. Trindade, and J. Varela, “An overview of the Clear-PEM breast imaging scanner,” Nuclear Science Symposium Conference Record, 2008. NSS '08 (IEEE, 2008), pp. 56165618.
http://dx.doi.org/10.1109/NSSMIC.2008.4774518
109.
109. K. Hede, “Preoperative MRI in breast cancer grows contentious,” J. Natl. Cancer Inst. 101, 16671669 (2009).
http://dx.doi.org/10.1093/jnci/djp461
110.
110. R. Katipamula, A. C. Degnim, T. Hoskin, J. C. Boughey, C. Loprinzi, C. S. Grant, K. R. Brandt, S. Pruthi, C. G. Chute, J. E. Olson, F. J. Couch, J. N. Ingle, and M. P. Goetz, “Trends in mastectomy rates at the Mayo Clinic Rochester: Effect of surgical year and preoperative magnetic resonance imaging,” J. Clin. Oncol. 27, 40824088 (2009).
http://dx.doi.org/10.1200/JCO.2008.19.4225
111.
111. N. Houssami, R. Turner, and M. Morrow, “Preoperative magnetic resonance imaging in breast cancer: meta-analysis of surgical outcomes,” Ann. Surg. 257, 249255 (2013).
http://dx.doi.org/10.1097/SLA.0b013e31827a8d17
112.
112. M. D. Schnall, J. Blume, D. A. Bluemke, G. A. Deangelis, N. Debruhl, S. Harms, S. H. Heywang-Kobrunner, N. Hylton, C. K. Kuhl, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, C. Lehman, P. T. Weatherall, and C. A. Gatsonis, “MRI detection of distinct incidental cancer in women with primary breast cancer studied in IBMC 6883,” J. Surg. Oncol. 92, 3238 (2005).
http://dx.doi.org/10.1002/jso.20381
113.
113. C. D. Lehman, C. Gatsonis, C. K. Kuhl, R. E. Hendrick, E. D. Pisano, L. Hanna, S. Peacock, S. F. Smazal, D. D. Maki, T. B. Julian, E. R. DePeri, D. A. Bluemke, and M. D. Schnall, “MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer,” N. Engl. J. Med. 356, 12951303 (2007).
http://dx.doi.org/10.1056/NEJMoa065447
114.
114. A. N. Khan, M. Hoosein, H. Khan, L. Grosvenor, and M. Al-Attar, “Does breast magnetic resonance imaging measurement correlate with pathology in assessment of primary breast cancer? [abstract],” Breast Cancer Res. 11, P3 (2009).
http://dx.doi.org/10.1186/bcr2373
115.
115. K. A. Caprio, A. B. Chagpar, R. Hooley, F. Tavassoli, H. Honarpishe, D. R. Lannin, B. K. Killelea, and N. R. Horowitz, “Accuracy of breast MRI in predicting pathologic tumor size [abstract],” J. Clin. Oncol. 30, 1109 (2012).
116.
116. J. K. Onesti, B. E. Mangus, S. D. Helmer, and J. S. Osland, “Breast cancer tumor size: Correlation between magnetic resonance imaging and pathology measurements,” Am. J. Surg. 196, 844850 (2008).
http://dx.doi.org/10.1016/j.amjsurg.2008.07.028
117.
117. W. A. Berg, L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, and O. B. Ioffe, “Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer,” Radiology 233, 830849 (2004).
http://dx.doi.org/10.1148/radiol.2333031484
118.
118. S. Malur, S. Wurdinger, A. Moritz, W. Michels, and A. Schneider, “Comparison of written reports of mammography, sonography and magnetic resonance mammography for preoperative evaluation of breast lesions, with special emphasis on magnetic resonance mammography,” Breast Cancer Res. 3, 5560 (2001).
http://dx.doi.org/10.1186/bcr271
119.
119. B. Bone, M. K. Wiberg, B. K. Szabo, A. Szakos, and R. Danielsson, “Comparison of 99mTc-sestamibi scintimammography and dynamic MR imaging as adjuncts to mammography in the diagnosis of breast cancer,” Acta Radiol. 44, 2834 (2003).
http://dx.doi.org/10.1034/j.1600-0455.2003.00012.x
120.
120. L. Liberman, E. A. Morris, D. D. Dershaw, A. F. Abramson, and L. K. Tan, “MR imaging of the ipsilateral breast in women with percutaneously proven breast cancer,” AJR, Am. J. Roentgenol. 180, 901910 (2003).
http://dx.doi.org/10.2214/ajr.180.4.1800901
121.
121. B. K. Killelea, A. Gillego, L. J. Kirstein, J. Asad, M. Shpilko, A. Shah, S. Feldman, and S. K. Boolbol, “George Peters Award: How does breast-specific gamma imaging affect the management of patients with newly diagnosed breast cancer?,” Am. J. Surg. 198, 470474 (2009).
http://dx.doi.org/10.1016/j.amjsurg.2009.06.016
122.
122. M. Zhou, N. Johnson, S. Gruner, G. W. Ecklund, P. Meunier, S. Bryn, M. Glissmeyer, and K. Steinbock, “Clinical utility of breast-specific gamma imaging for evaluating disease extent in the newly diagnosed breast cancer patient,” Am. J. Surg. 197, 159163 (2009).
http://dx.doi.org/10.1016/j.amjsurg.2008.10.002
123.
123. B. Kim, “Usefulness of breast-specific gamma imaging as an adjunct modality in breast cancer patients with dense breast: A comparative study with MRI,” Ann. Nucl. Med. 26, 131137 (2012).
http://dx.doi.org/10.1007/s12149-011-0544-5
124.
124. A. Spanu, F. Chessa, G. Battista Meloni, D. Sanna, P. Cottu, A. Manca, S. Nuvoli, and G. Madeddu, “Scintimammography with high resolution dedicated breast camera and mammography in multifocal, multicentric and bilateral breast cancer detection: A comparative study,” Q J. Nucl. Med. Mol. Imaging 53, 133143 (2009).
125.
125. M. K. O'Connor, C. B. Hruska, D. J. Rhodes, A. L. Conners, C. L. Tortorelli, R. Maxwell, and J. C. Boughey, “Molecular breast imaging (MBI) in the preoperative evaluation of women with biopsy-proven breast cancer [abstract],” J. Nucl. Med. 52, 660675 (2011).
126.
126. L. Tafra, Z. Cheng, J. Uddo, M. B. Lobrano, W. Stein, W. A. Berg, E. Levine, I. N. Weinberg, D. Narayanan, E. Ross, D. Beylin, S. Yarnall, R. Keen, K. Sawyer, J. Van Geffen, R. L. Freimanis, E. Staab, L. P. Adler, J. Lovelace, P. Shen, J. Stewart, and S. Dolinsky, “Pilot clinical trial of 18F-fluorodeoxyglucose positron-emission mammography in the surgical management of breast cancer,” Am. J. Surg. 190, 628632 (2005).
http://dx.doi.org/10.1016/j.amjsurg.2005.06.029
127.
127. K. Schilling, D. Narayanan, J. E. Kalinyak, J. The, M. V. Velasquez, S. Kahn, M. Saady, R. Mahal, and L. Chrystal, “Positron emission mammography in breast cancer presurgical planning: Comparisons with magnetic resonance imaging,” Eur. J. Nucl. Med. Mol Imaging 38, 2336 (2011).
http://dx.doi.org/10.1007/s00259-010-1588-9
128.
128. J. S. Eo, I. K. Chun, J. C. Paeng, K. W. Kang, S. M. Lee, W. Han, D.-Y. Noh, J.-K. Chung, and D. S. Lee, “Imaging sensitivity of dedicated positron emission mammography in relation to tumor size,” Breast 21, 6671 (2012).
http://dx.doi.org/10.1016/j.breast.2011.08.002
129.
129. A. B. Chagpar, L. P. Middleton, A. A. Sahin, P. Dempsey, A. U. Buzdar, A. N. Mirza, F. C. Ames, G. V. Babiera, B. W. Feig, K. K. Hunt, H. M. Kuerer, F. Meric-Bernstam, M. I. Ross, and S. E. Singletary, “Accuracy of physical examination, ultrasonography, and mammography in predicting residual pathologic tumor size in patients treated with neoadjuvant chemotherapy,” Ann. Surg. 243, 257264 (2006).
http://dx.doi.org/10.1097/01.sla.0000197714.14318.6f
130.
130. M. A. Helvie, L. K. Joynt, R. L. Cody, L. J. Pierce, D. D. Adler, and S. D. Merajver, “Locally advanced breast carcinoma: Accuracy of mammography versus clinical examination in the prediction of residual disease after chemotherapy,” Radiology 198, 327332 (1996).
131.
131. R. Croshaw, H. Shapiro-Wright, E. Svensson, K. Erb, and T. Julian, “Accuracy of clinical examination, digital mammogram, ultrasound, and MRI in determining postneoadjuvant pathologic tumor response in operable breast cancer patients,” Ann. Surg. Oncol. 18, 31603163 (2011).
http://dx.doi.org/10.1245/s10434-011-1919-5
132.
132. C. L. Maini, A. Tofani, R. Sciuto, A. Semprebene, R. Cavaliere, M. Mottolese, M. Benevolo, F. Ferranti, M. L. Grandinetti, P. Vici, M. Lopez, and C. Botti, “Technetium-99m-MIBI scintigraphy in the assessment of neoadjuvant chemotherapy in breast carcinoma,” J. Nucl. Med. 38, 15461551 (1997).
133.
133. D. A. Mankoff, L. K. Dunnwald, J. R. Gralow, G. K. Ellis, M. J. Drucker, and R. B. Livingston, “Monitoring the response of patients with locally advanced breast carcinoma to neoadjuvant chemotherapy using [technetium 99m]-sestamibi scintimammography,” Cancer 85, 24102423 (1999).
http://dx.doi.org/10.1002/(SICI)1097-0142(19990601)85:11<2410::AID-CNCR16>3.0.CO;2-K
134.
134. R. Tiling, M. Kessler, M. Untch, H. Sommer, R. Linke, K. Brinkbaumer, and K. Hahn, “Breast cancer: monitoring response to neoadjuvant chemotherapy using Tc-99m sestamibi scintimammography,” Onkologie 26, 2731 (2003).
http://dx.doi.org/10.1159/000069860
135.
135. L. K. Dunnwald, J. R. Gralow, G. K. Ellis, R. B. Livingston, H. M. Linden, T. J. Lawton, W. E. Barlow, E. K. Schubert, and D. A. Mankoff, “Residual tumor uptake of [99mTc]-sestamibi after neoadjuvant chemotherapy for locally advanced breast carcinoma predicts survival,” Cancer 103, 680688 (2005).
http://dx.doi.org/10.1002/cncr.20831
136.
136. D. Fuster, M. Munoz, J. Pavia, A. Palacin, N. Bellet, J. J. Mateos, F. Martin, M. Ortega, F. J. Setoain, and F. Pons, “Quantified 99mTc-MIBI scintigraphy for predicting chemotherapy response in breast cancer patients: Factors that influence the level of 99m Tc-MIBI uptake,” Nucl. Med. Commun. 23, 3138 (2002).
http://dx.doi.org/10.1097/00006231-200201000-00006
137.
137. I. C. Smith, A. E. Welch, A. W. Hutcheon, I. D. Miller, S. Payne, F. Chilcott, S. Waikar, T. Whitaker, A. K. Ah-See, O. Eremin, S. D. Heys, F. J. Gilbert, and P. F. Sharp, “Positron emission tomography using [(18)F]-fluorodeoxy-D-glucose to predict the pathologic response of breast cancer to primary chemotherapy,” J. Clin. Oncol. 18, 16761688 (2000).
138.
138. S. J. Kim, S. K. Kim, E. S. Lee, J. Ro, and S. Kang, “Predictive value of [18F]FDG PET for pathological response of breast cancer to neo-adjuvant chemotherapy,” Ann. Oncol. 15, 13521357 (2004).
http://dx.doi.org/10.1093/annonc/mdh345
139.
139. A. Spanu, A. Farris, F. Chessa, D. Sanna, M. Pittalis, A. Manca, and G. Madeddu, “Planar scintimammography and SPECT in neoadjuvant chemo or hormonotherapy response evaluation in locally advanced primary breast cancer,” Int. J. Oncol. 32, 12751283 (2008).
140.
140. C. B. Hruska, D. L. Wahner-Roedler, J. C. Boughey, A. L. Conners, C. L. Tortorelli, R. Maxwell, M. K. O'Connor, and D. J. Rhodes, “Molecular breast imaging (MBI) in monitoring treatment response to neoadjuvant chemotherapy [abstract],” J. Nucl. Med. 52, 660675 (2011).
141.
141. W. T. Yang, J. Chang, M. Cristofanilli, W. Wei, S. Krishnamurthy, E. Rohren, N. Ueno, V. Valero, and T. Buchholz, “Evaluation of response to targeted therapy using positron emission mammography (PEM) [abstract],” presented at Radiological Society of North America Annual Meeting (unpublished).
142.
142. A. Ferrero, A. J. Chaudhari, S. L. Bowen, K. Yang, K. K. Lindfors, J. M. Boone, S. R. Martinez, and R. D. Badawi, “Quantification of early response to neoadjuvant chemotherapy in breast cancer: initial studies in humans using a high resolution PET/CT scanner [abstract],” J. Nucl. Med. 52, 660675 (2011).
143.
143. R. F. Brem, I. Petrovitch, J. A. Rapelyea, H. Young, C. Teal, and T. Kelly, “Breast-specific gamma imaging with 99mTc-Sestamibi and magnetic resonance imaging in the diagnosis of breast cancer–A comparative study,” Breast J. 13, 465469 (2007).
http://dx.doi.org/10.1111/j.1524-4741.2007.00466.x
144.
144. R. F. Brem, M. Fishman, and J. A. Rapelyea, “Detection of ductal carcinoma in situ with mammography, breast specific gamma imaging, and magnetic resonance imaging: A comparative study,” Acad. Radiol. 14, 945950 (2007).
http://dx.doi.org/10.1016/j.acra.2007.04.004
145.
145. R. F. Brem, M. Ioffe, J. A. Rapelyea, K. G. Yost, J. M. Weigert, M. L. Bertrand, and L. H. Stern, “Invasive lobular carcinoma: Detection with mammography, sonography, MRI, and breast-specific gamma imaging,” AJR, Am. J. Roentgenol. 192, 379383 (2009).
http://dx.doi.org/10.2214/AJR.07.3827
146.
146. J. Keto, L. Kirstein, D. Sanchez, T. Fulop, L. McPartland, I. Cohen, and S. Boolbol, “MRI versus breast-specific gamma imaging (BSGI) in newly diagnosed ductal cell carcinoma insitu: A prospective head-to-head trial,” Ann. Surg. Oncol. 19, 249252 (2012).
http://dx.doi.org/10.1245/s10434-011-1848-3
147.
147. C. B. Hruska, S. W. Phillips, D. J. Rhodes, and M. K. O'Connor, “Concordance of molecular breast imaging and breast MRI findings: A retrospective review [abstract],” Eur. J. Nucl. Med. Mol. Imaging 35, 199210 (2008).
http://dx.doi.org/10.1007/s00259-008-0906-y
148.
148. C. I. D'Orsi, L. W. Bassett, and W. A. Berg, Breast Imaging Reporting and Data System, BI-RADS: Mammography (American College of Radiology, Reston, VA, 2003).
149.
149. H. J. de Koning, “Mammographic screening: Evidence from randomised controlled trials,” Ann. Oncol. 14, 11851189 (2003).
http://dx.doi.org/10.1093/annonc/mdg319
150.
150. H. D. Nelson, K. Tyne, A. Naik, C. Bougatsos, B. K. Chan, and L. Humphrey, “Screening for breast cancer: An update for the U.S. Preventive Services Task Force,” Ann. Intern Med. 151, 727737 (2009).
http://dx.doi.org/10.7326/0003-4819-151-10-200911170-00009
151.
151. M. T. Mandelson, N. Oestreicher, P. L. Porter, D. White, C. A. Finder, S. H. Taplin, and E. White, “Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers,” J. Natl. Cancer Inst. 92, 10811087 (2000).
http://dx.doi.org/10.1093/jnci/92.13.1081
152.
152. T. M. Kolb, J. Lichy, and J. H. Newhouse, “Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations,” Radiology 225, 165175 (2002).
http://dx.doi.org/10.1148/radiol.2251011667
153.
153. P. A. Carney, D. L. Miglioretti, B. C. Yankaskas, K. Kerlikowske, R. Rosenberg, C. M. Rutter, B. M. Geller, L. A. Abraham, S. H. Taplin, M. Dignan, G. Cutter, and R. Ballard-Barbash, “Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography,” Ann. Intern Med. 138, 168175 (2003).
http://dx.doi.org/10.7326/0003-4819-138-3-200302040-00008
154.
154. D. S. Buist, P. L. Porter, C. Lehman, S. H. Taplin, and E. White, “Factors contributing to mammography failure in women aged 40-49 years,” J. Natl. Cancer Inst. 96, 14321440 (2004).
http://dx.doi.org/10.1093/jnci/djh269
155.
155. E. D. Pisano, R. E. Hendrick, M. J. Yaffe, J. K. Baum, S. Acharyya, J. B. Cormack, L. A. Hanna, E. F. Conant, L. L. Fajardo, L. W. Bassett, C. J. D'Orsi, R. A. Jong, M. Rebner, A. N. Tosteson, and C. A. Gatsonis, “Diagnostic accuracy of digital versus film mammography: Exploratory analysis of selected population subgroups in DMIST,” Radiology 246, 376383 (2008).
http://dx.doi.org/10.1148/radiol.2461070200
156.
156. N. Houssami et al., “Accuracy and outcomes of screening mammography in women with a personal history of early-stage breast cancer,” JAMA, J. Am. Med. Assoc. 305, 790799 (2011).
http://dx.doi.org/10.1001/jama.2011.188
157.
157. R. Z. Bigenwald, E. Warner, A. Gunasekara, K. A. Hill, P. A. Causer, S. J. Messner, A. Eisen, D. B. Plewes, S. A. Narod, L. Zhang, and M. J. Yaffe, “Is Mammography Adequate for Screening Women with Inherited BRCA Mutations and Low Breast Density?,” Cancer Epidem. Biomarkers Prev. 17, 706711 (2008).
http://dx.doi.org/10.1158/1055-9965.EPI-07-0509
158.
158. C. M. Vachon, C. H. van Gils, T. A. Sellers, K. Ghosh, S. Pruthi, K. R. Brandt, and V. S. Pankratz, “Mammographic density, breast cancer risk and risk prediction,” Breast Cancer Res. 9, 217225 (2007).
http://dx.doi.org/10.1186/bcr1829
159.
159. N. F. Boyd, H. Guo, L. J. Martin, L. Sun, J. Stone, E. Fishell, R. A. Jong, G. Hislop, A. Chiarelli, S. Minkin, and M. J. Yaffe, “Mammographic density and the risk and detection of breast cancer,” N Engl. J. Med. 356, 227236 (2007).
http://dx.doi.org/10.1056/NEJMoa062790
160.
160. E. A. Rafferty, J. M. Park, L. E. Philpotts, S. P. Poplack, J. H. Sumkin, E. F. Halpern, and L. T. Niklason, “Assessing radiologist performance using combined digital mammography and breast tomosynthesis compared with digital mammography alone: Results of a multicenter, multireader trial,” Radiology 266, 104113 (2013).
http://dx.doi.org/10.1148/radiol.12120674
161.
161. P. Skaane, A. I. Bandos, R. Gullien, E. B. Eben, U. Ekseth, U. Haakenaasen, M. Izadi, I. N. Jebsen, G. Jahr, M. Krager, L. T. Niklason, S. Hofvind, and D. Gur, “Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program,” Radiology 267, 4756 (2013).
http://dx.doi.org/10.1148/radiol.12121373
162.
162. W. A. Berg, Z. Zhang, D. Lehrer, R. A. Jong, E. D. Pisano, R. G. Barr, M. Bohm-Velez, M. C. Mahoney, W. P. Evans 3rd, L. H. Larsen, M. J. Morton, E. B. Mendelson, D. M. Farria, J. B. Cormack, H. S. Marques, A. Adams, N. M. Yeh, and G. Gabrielli, “Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk,” JAMA, J. Am. Med. Assoc. 307, 13941404 (2012).
http://dx.doi.org/10.1001/jama.2012.388
163.
163. V. Corsetti, N. Houssami, M. Ghirardi, A. Ferrari, M. Speziani, S. Bellarosa, G. Remida, C. Gasparotti, E. Galligioni, and S. Ciatto, “Evidence of the effect of adjunct ultrasound screening in women with mammography-negative dense breasts: Interval breast cancers at 1 year follow-up,” Eur. J. Cancer 47, 10211026 (2011).
http://dx.doi.org/10.1016/j.ejca.2010.12.002
164.
164. K. Kelly, J. Dean, W. Comulada, and S.-J. Lee, “Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts,” Eur. Radiol. 20, 734742 (2010).
http://dx.doi.org/10.1007/s00330-009-1588-y
165.
165. D. Saslow, C. Boetes, W. Burke, S. Harms, M. O. Leach, C. D. Lehman, E. Morris, E. Pisano, M. Schnall, S. Sener, R. A. Smith, E. Warner, M. Yaffe, K. S. Andrews, and C. A. Russell, “American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography,” Ca-Cancer J. Clin. 57, 7589 (2007).
http://dx.doi.org/10.3322/canjclin.57.2.75
166.
166. R. F. Brem, J. A. Rapelyea, G. Zisman, K. Mohtashemi, J. Raub, C. B. Teal, S. Majewski, and B. L. Welch, “Occult breast cancer: Scintimammography with high-resolution breast-specific gamma camera in women at high risk for breast cancer,” Radiology 237, 274280 (2005).
http://dx.doi.org/10.1148/radiol.2371040758
167.
167. C. B. Hruska, D. J. Rhodes, D. A. Collins, C. L. Tortorelli, J. W. Askew, and M. K. O'Connor, “Evaluation of molecular breast imaging in women undergoing myocardial perfusion imaging with tc-99m sestamibi,” J. Womens Health (Larchmt) 21, 730738 (2012).
http://dx.doi.org/10.1089/jwh.2011.3267
168.
168. M. J. Schell, B. C. Yankaskas, R. Ballard-Barbash, B. F. Qaqish, W. E. Barlow, R. D. Rosenberg, and R. Smith-Bindman, “Evidence-based target recall rates for screening mammography,” Radiology 243, 681689 (2007).
http://dx.doi.org/10.1148/radiol.2433060372
169.
169. M. Kriege, C. T. Brekelmans, C. Boetes, S. H. Muller, H. M. Zonderland, I. M. Obdeijn, R. A. Manoliu, T. Kok, E. J. Rutgers, H. J. de Koning, and J. G. Klijn, “Differences between first and subsequent rounds of the MRISC breast cancer screening program for women with a familial or genetic predisposition,” Cancer 106, 23182326 (2006).
http://dx.doi.org/10.1002/cncr.21863
170.
170. C. B. Hruska, A. L. Weinmann, and M. K. O'Connor, “Proof of concept for low-dose molecular breast imaging with a dual-head CZT gamma camera. Part I. Evaluation in phantoms,” Med. Phys. 39, 34663475 (2012).
http://dx.doi.org/10.1118/1.4718665
171.
171. C. B. Hruska, A. L. Weinmann, C. M. Tello Skjerseth, E. M. Wagenaar, A. L. Conners, C. L. Tortorelli, R. W. Maxwell, D. J. Rhodes, and M. K. O'Connor, “Proof of concept for low-dose molecular breast imaging with a dual-head CZT gamma camera. Part II. Evaluation in patients,” Med. Phys. 39, 34763483 (2012).
http://dx.doi.org/10.1118/1.4719959
172.
172. D. Rhodes, C. Hruska, A. Conners, C. Tortorelli, R. Maxwell, and M. O'Connor, “Low-dose molecular breast imaging with Tc-99m sestamibi for screening in women with mammographically dense breasts [abstract],” presented at Radiological Society of North America Annual Meeting (unpublished).
173.
173. S. J. Goldsmith, W. Parsons, M. J. Guiberteau, L. H. Stern, L. Lanzkowsky, J. Weigert, T. F. Heston, E. Jones, J. Buscombe, and M. G. Stabin, “SNM practice guideline for breast scintigraphy with breast-specific gamma-cameras 1.0,” J. Nucl. Med. Technol. 38, 219224 (2010).
http://dx.doi.org/10.2967/jnmt.110.082271
174.
174. M. J. Silverstein, A. Recht, M. D. Lagios, I. J. Bleiweiss, P. W. Blumencranz, T. Gizienski, S. E. Harms, J. Harness, R. J. Jackman, V. S. Klimberg, R. Kuske, G. M. Levine, M. N. Linver, E. A. Rafferty, H. Rugo, K. Schilling, D. Tripathy, F. A. Vicini, P. W. Whitworth, and S. C. Willey, “Special report: Consensus conference. III. Image-detected breast cancer: state-of-the-art diagnosis and treatment,” J. Am. Coll. Surg. 209, 504520 (2009).
http://dx.doi.org/10.1016/j.jamcollsurg.2009.07.006
175.
175. W. A. Berg, J. D. Blume, A. M. Adams, R. A. Jong, R. G. Barr, D. E. Lehrer, E. D. Pisano, W. P. Evans, 3rd, M. C. Mahoney, L. Hovanessian Larsen, G. J. Gabrielli, and E. B. Mendelson, “Reasons women at elevated risk of breast cancer refuse breast MR imaging screening: ACRIN 6666,” Radiology 254, 7987 (2010).
http://dx.doi.org/10.1148/radiol.2541090953
176.
176. O. Schillaci and J. R. Buscombe, “Breast scintigraphy today: Indications and limitations,” Eur. J. Nucl. Med. Mol Imaging 31(Suppl 1), S35S45 (2004).
http://dx.doi.org/10.1007/s00259-004-1525-x
177.
177. M. Zhou, N. Johnson, D. Blanchard, S. Bryn, and J. Nelson, “Real-world application of breast-specific gamma imaging, initial experience at a community breast center and its potential impact on clinical care,” Am. J. Surg. 195, 631635 (2008).
http://dx.doi.org/10.1016/j.amjsurg.2008.01.006
178.
178. R. Kessler, J. B. Sutcliffe, L. Bell, Y. C. Bradley, S. Anderson, and K. P. Banks, “Negative predictive value of breast-specific gamma imaging in low suspicion breast lesions: A potential means for reducing benign biopsies,” Breast J. 17, 319321 (2011).
http://dx.doi.org/10.1111/j.1524-4741.2011.01077.x
179.
179. I. Khalkhali, F. S. Mishkin, L. E. Diggles, and S. R. Klein, “Radionuclide-guided stereotactic prebiopsy localization of nonpalpable breast lesions with normal mammograms,” J. Nucl. Med. 38, 10191022 (1997).
180.
180. L. R. Coover and P. J. Malaspina, “Breast tumor localization using sestamibi,” Clin. Nucl. Med. 27, 161164 (2002).
http://dx.doi.org/10.1097/00003072-200203000-00001
181.
181. A. G. Weisenberger, F. Barbosa, T. D. Green, R. Hoefer, C. Keppel, B. Kross, S. Majewski, V. Popov, R. Wojcik, and D. C. Wymer, “Small field of view scintimammography gamma camera integrated to a stereotactic core biopsy digital x-ray system,” IEEE Trans. Nucl. Sci. 49, 22562261 (2002).
http://dx.doi.org/10.1109/TNS.2002.803778
182.
182. B. Welch, R. Brem, B. Kross, V. Popov, R. Wojcik, and S. Majewski, “Gamma-guided stereotactic breast biopsy system,” IEEE Trans. Nucl. Sci. 53, 26902697 (2006).
http://dx.doi.org/10.1109/TNS.2006.876002
183.
183. R. M. Moadel, “Breast Cancer Imaging Devices,” Semin Nucl. Med. 41, 229241 (2011).
http://dx.doi.org/10.1053/j.semnuclmed.2010.12.005
184.
184. C. Lorino, D. A. Chiarella, B. Welch, T. Hodge, and D. Kieper, “Clinical performance of a stereotactic breast-specific gamma imaging apparatus in the localization of breast lesions for vacuum-assisted needle biopsy procedure [abstract],” presented at Radiological Society of North America Annual Meeting (unpublished).
185.
185. J. E. Kalinyak, K. Schilling, W. A. Berg, D. Narayanan, J. P. Mayberry, R. Rai, E. B. Dupree, D. K. Shusterman, M. A. Gittleman, W. Luo, and C. G. Matthews, “PET-guided breast biopsy,” Breast J. 17, 143151 (2011).
http://dx.doi.org/10.1111/j.1524-4741.2010.01044.x
186.
186. C. B. Hruska, A. L. Conners, K. N. Jones, C. L. Tortorelli, R. M. Maxwell, D. J. Rhodes, and M. K. O'Connor, “Diagnostic workup of new findings on screening molecular breast imaging [abstract],presented at Radiological Society of North America Annual Meeting (unpublished).
187.
187. A. L. Weinmann, C. B. Hruska, A. L. Conners, and M. K. O'Connor, “Collimator design for a dedicated molecular breast imaging-guided biopsy system: Proof-of-concept,” Med. Phys. 40, 012503 (12pp.) (2013).
http://dx.doi.org/10.1118/1.4770274
188.
188. National Research Council. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2 (The National Academies Press, 2006).
189.
189. M. J. Yaffe and J. G. Mainprize, “Risk of radiation-induced breast cancer from mammographic screening,” Radiology 258, 98105 (2011).
http://dx.doi.org/10.1148/radiol.10100655
190.
190. G. Mercier, N. Vassilakis, J. Brennan, F. DeVita, and L. Kachnic, “Clinical performance of low dose positron emission mammography [abstract],” J. Nucl. Med. 53, 1231 (2012).
191.
191. B. B. Koolen, W. V. Vogel, M. J. Vrancken Peeters, C. E. Loo, E. J. Rutgers, and R. A. Valdes Olmos, “Molecular imaging in breast cancer: From whole body PET/CT to dedicated breast PET,” J. Oncol. (2012) (available online).
http://dx.doi.org/10.1155/2012/438647
192.
192. P. Aguiar and C. Lois, “Analytical study of the effect of the system geometry on photon sensitivity and depth of interaction of positron emission mammography,” J. Oncol. 2012, 605076.
http://dx.doi.org/10.1155/2012/605076
193.
193. C. B. Hruska and M. K. O'Connor, “Effect of collimator selection on tumor detection for dedicated nuclear breast imaging systems,” IEEE Trans. Nucl. Sci. 53, 26802689 (2006).
http://dx.doi.org/10.1109/TNS.2006.879824
194.
194. J. Maublant, M. de Latour, D. Mestas, A. Clemenson, S. Charrier, V. Feillel, G. Le Bouedec, P. Kaufmann, J. Dauplat, and A. Veyre, “Technetium-99m-sestamibi uptake in breast tumor and associated lymph nodes,” J. Nucl. Med. 37, 922925 (1996).
195.
195. J. C. Maublant, Z. Zhang, M. Rapp, M. Ollier, J. Michelot, and A. Veyre, “In vitro uptake of technetium-99m-teboroxime in carcinoma cell lines and normal cells: comparison with technetium-99m-sestamibi and thallium-201,” J. Nucl. Med. 34, 19491952 (1993).
196.
196. F. L. Kong, E. E. Kim, and D. J. Yang, “Targeted nuclear imaging of breast cancer: status of radiotracer development and clinical applications,” Cancer Biother. Radiopharm. 27, 105112 (2012).
http://dx.doi.org/10.1089/cbr.2011.1025
197.
197. Z. Zhu, W. Miao, Q. Li, H. Dai, Q. Ma, F. Wang, A. Yang, B. Jia, X. Jing, S. Liu, J. Shi, Z. Liu, Z. Zhao, and F. Li, “99mTc-3PRGD2 for integrin receptor imaging of lung cancer: a multicenter study,” J. Nucl. Med. 53, 716722 (2012).
http://dx.doi.org/10.2967/jnumed.111.098988
198.
198. Z. Liu, S. Liu, F. Wang, and X. Chen, “Noninvasive imaging of tumor integrin expression using (18)F-labeled RGD dimer peptide with PEG (4) linkers,” Eur. J. Nucl. Med. Mol Imaging 36, 12961307 (2009).
http://dx.doi.org/10.1007/s00259-009-1112-2
199.
199. T. Bach-Gansmo, T. V. Bogsrud, and A. Skretting, “Integrin scintimammography using a dedicated breast imaging, solid-state gamma-camera and (99m)Tc-labelled NC100692,” Clin. Physiol. Funct. Imaging 28, 235239 (2008).
http://dx.doi.org/10.1111/j.1475-097X.2008.00801.x
200.
200. R. Axelsson, T. Bach-Gansmo, J. Castell-Conesa, and B. J. McParland, “An open-label, multicenter, phase 2a study to assess the feasibility of imaging metastases in late-stage cancer patients with the alpha v beta 3-selective angiogenesis imaging agent 99mTc-NC100692,” Acta Radiol. 51, 4046 (2010).
http://dx.doi.org/10.3109/02841850903273974
201.
201.NC100692 Kit (for the preparation of Technetium (99mTc) NC100692 Injection) [package insert],” (GE Healthcare Limited, Little Chalfont, Buckinghamshire, UK).
202.
202. J. E. Mortimer, F. Dehdashti, B. A. Siegel, J. A. Katzenellenbogen, P. Fracasso, and M. J. Welch, “Positron emission tomography with 2-[18F]Fluoro-2-deoxy-D-glucose and 16alpha-[18F]fluoro-17beta-estradiol in breast cancer: correlation with estrogen receptor status and response to systemic therapy,” Clin. Cancer Res. 2, 933939 (1996).
203.
203. D. E. Kenady, E. J. Pavlik, K. Nelson, J. R. van Nagell, H. Gallion, P. D. DePriest, U. Y. Ryo, and R. J. Baranczuk, “Images of estrogen-receptor-positive breast tumors produced by estradiol labeled with iodine I 123 at 16 alpha,” Arch. Surg. 128, 13731381 (1993).
http://dx.doi.org/10.1001/archsurg.1993.01420240081016
204.
204. D. F. Preston, J. A. Spicer, C. Baranczuk, C. Fabian, N. L. Baxter, W. R. Martin, and R. G. Jewell, “Clinical results of breast cancer detedtion by imageable estradiol (I-123 E2) [abstract],” Eur. J. Nucl. Med. Mol. Imaging 16, S123 (1990).
205.
205. R. J. Bennink, L. J. Rijks, G. van Tienhoven, L. A. Noorduyn, A. G. Janssen, and G. W. Sloof, “Estrogen receptor status in primary breast cancer: Iodine 123–labeled cis-11β-Methoxy-17α-iodovinyl Estradiol Scintigraphy1,” Radiology 220, 774779 (2001).
http://dx.doi.org/10.1148/radiol.2203001639
206.
206. L. Sundararajan, H. M. Linden, J. M. Link, K. A. Krohn, and D. A. Mankoff, “18F-Fluoroestradiol,” Semin Nucl. Med. 37, 470476 (2007).
http://dx.doi.org/10.1053/j.semnuclmed.2007.08.003
207.
207. B. S. Pio, C. K. Park, R. Pietras, W. A. Hsueh, N. Satyamurthy, M. D. Pegram, J. Czernin, M. E. Phelps, and D. H. Silverman, “Usefulness of 3′-[F-18]fluoro-3′-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy,” Mol. Imaging Biol. 8, 3642 (2006).
http://dx.doi.org/10.1007/s11307-005-0029-9
208.
208. V. J. Papantoniou, M. A. Souvatzoglou, V. J. Valotassiou, A. N. Louvrou, C. Ambela, J. Koutsikos, D. Lazaris, J. K. Christodoulidou, M. G. Sotiropoulou, M. J. Melissinou, A. Perperoglou, S. Tsiouris, and C. J. Zerva, “Relationship of cell proliferation (Ki-67) to 99mTc-(V)DMSA uptake in breast cancer,” Breast Cancer Res. 6, R56R62 (2004).
http://dx.doi.org/10.1186/bcr751
209.
209. H. Kurihara, D. J. Yang, M. Cristofanilli, W. D. Erwin, D. F. Yu, S. Kohanim, R. Mendez, and E. E. Kim, “Imaging and dosimetry of 99mTc EC annexin V: Preliminary clinical study targeting apoptosis in breast tumors,” Appl. Radiat. Isot. 66, 11751182 (2008).
http://dx.doi.org/10.1016/j.apradiso.2008.01.012
210.
210. M. L. Thakur, “Genomic biomarkers for molecular imaging: Predicting the future,” Semin. Nucl. Med. 39, 236246 (2009).
http://dx.doi.org/10.1053/j.semnuclmed.2009.03.006
211.
211. C. L. Maini, F. de Notaristefani, A. Tofani, F. Iacopi, R. Sciuto, A. Semprebene, T. Malatesta, F. Vittori, F. Frezza, C. Botti, S. Giunta, and P. G. Natali, “99mTc-MIBI scintimammography using a dedicated nuclear mammograph,” J. Nucl. Med. 40, 4651 (1999).
212.
212. M. K. O'Connor, S. W. Phillips, C. B. Hruska, D. J. Rhodes, and D. A. Collins, “Molecular breast imaging: Advantages and limitations of a scintimammographic technique in patients with small breast tumors,” Breast J. 13, 311 (2007).
http://dx.doi.org/10.1111/j.1524-4741.2006.00356.x
213.
213. A. Spanu, P. Cottu, A. Manca, F. Chessa, D. Sanna, and G. Madeddu, “Scintimammography with dedicated breast camera in unifocal and multifocal/multicentric primary breast cancer detection: A comparative study with SPECT,” Int. J. Oncol. 31, 369377 (2007).
214.
214. R. F. Brem, A. C. Floerke, J. A. Rapelyea, C. Teal, T. Kelly, and V. Mathur, “Breast-specific gamma imaging as an adjunct imaging modality for the diagnosis of breast cancer,” Radiology 247, 651657 (2008).
http://dx.doi.org/10.1148/radiol.2473061678
215.
215. A. Spanu, F. Chessa, G. B. Meloni, D. Sanna, P. Cottu, A. Manca, S. Nuvoli, and G. Madeddu, “The role of planar scintimammography with high-resolution dedicated breast camera in the diagnosis of primary breast cancer,” Clin. Nucl. Med. 33, 739742 (2008).
http://dx.doi.org/10.1097/RLU.0b013e318187ee75
216.
216. K. Murthy, M. Aznar, C. J. Thompson, A. Loutfi, R. Lisbona, and J. H. Gagnon, “Results of preliminary clinical trials of the positron emission mammography system PEM-I: A dedicated breast imaging system producing glucose metabolic images using FDG,” J. Nucl. Med. 41, 18511858 (2000).
217.
217. E. A. Levine, R. I. Freimanis, N. D. Perrier, K. Morton, N. M. Lesko, S. Bergman, K. R. Geisinger, R. C. Williams, C. Sharpe, V. Zavarzin, I. N. Weinberg, P. Y. Stepanov, D. Beylin, K. Lauckner, M. Doss, J. Lovelace, and L. P. Adler, “Positron emission mammography: initial clinical results,” Ann. Surg. Oncol. 10, 8691 (2003).
http://dx.doi.org/10.1245/ASO.2003.03.047
218.
218. W. A. Berg, I. N. Weinberg, D. Narayanan, M. E. Lobrano, E. Ross, L. Amodei, L. Tafra, L. P. Adler, J. Uddo, W. Stein 3rd, and E. A. Levine, “High-resolution fluorodeoxyglucose positron emission tomography with compression (“positron emission mammography”) is highly accurate in depicting primary breast cancer,” Breast J. 12, 309323 (2006).
http://dx.doi.org/10.1111/j.1075-122X.2006.00269.x
219.
219. A. L. Conners, C. B. Hruska, C. L. Tortorelli, R. W. Maxwell, D. J. Rhodes, J. C. Boughey, and W. A. Berg, “Lexicon for standardized interpretation of gamma camera molecular breast imaging: observer agreement and diagnostic accuracy,” Eur. J. Nucl. Med. Mol. Imaging 39, 971982 (2012).
http://dx.doi.org/10.1007/s00259-011-2054-z
220.
220. A. L. Conners, R. W. Maxwell, C. L. Tortorelli, C. B. Hruska, D. J. Rhodes, J. C. Boughey, and W. A. Berg, “Gamma camera molecular breast imaging lexicon: A pictoral essay,” AJR, Am. J. Roentgenol. 199, W76774 (2012).
http://dx.doi.org/10.2214/AJR.11.8298
221.
221. D. Narayanan, K. S. Madsen, J. E. Kalinyak, and W. A. Berg, “Interpretation of positron emission mammography and MRI by experienced breast imaging radiologists: Performance and observer reproducibility,” AJR, Am. J. Roentgenol. 196, 971981 (2011).
http://dx.doi.org/10.2214/AJR.10.5081
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/5/10.1118/1.4802733
Loading
/content/aapm/journal/medphys/40/5/10.1118/1.4802733
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/40/5/10.1118/1.4802733
2013-05-01
2014-07-13

Abstract

Approaches to imaging the breast with nuclear medicine and/or molecular imaging methods have been under investigation since the late 1980s when a technique called scintimammography was first introduced. This review charts the progress of nuclear imaging of the breast over the last 20 years, covering the development of newer techniques such as breast specific gamma imaging, molecular breast imaging, and positron emission mammography. Key issues critical to the adoption of these technologies in the clinical environment are discussed, including the current status of clinical studies, the efforts at reducing the radiation dose from procedures associated with these technologies, and the relevant radiopharmaceuticals that are available or under development. The necessary steps required to move these technologies from bench to bedside are also discussed.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/40/5/1.4802733.html;jsessionid=2a148ssicp3eq.x-aip-live-03?itemId=/content/aapm/journal/medphys/40/5/10.1118/1.4802733&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Nuclear imaging of the breast: Translating achievements in instrumentation into clinical use
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/40/5/10.1118/1.4802733
10.1118/1.4802733
SEARCH_EXPAND_ITEM