banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Nuclear imaging of the breast: Translating achievements in instrumentation into clinical use
Rent this article for
Access full text Article
1. R. E. Hendrick, “Radiation doses and cancer risks from breast imaging studies,” Radiology 257, 246253 (2010).
2. M. K. O'Connor, H. Li, D. J. Rhodes, C. B. Hruska, C. B. Clancy, and R. J. Vetter, “Comparison of radiation exposure and associated radiation-induced cancer risks from mammography and molecular imaging of the breast,” Med. Phys. 37, 61876198 (2010).
3. D. J. Rhodes, C. B. Hruska, S. W. Phillips, D. H. Whaley, and M. K. O'Connor, “Dedicated dual-head gamma imaging for breast cancer screening in women with mammographically dense breasts,” Radiology 258, 106118 (2011).
4. W. A. Berg, K. S. Madsen, K. Schilling, M. Tartar, E. D. Pisano, L. H. Larsen, D. Narayanan, A. Ozonoff, J. P. Miller, and J. E. Kalinyak, “Breast cancer: Comparative effectiveness of positron emission mammo- graphy and MR imaging in presurgical planning for the ipsilateral breast,” Radiology 258, 5972 (2011).
5. W. A. Berg, K. S. Madsen, K. Schilling, M. Tartar, E. D. Pisano, L. H. Larsen, D. Narayanan, and J. E. Kalinyak, “Comparative effectiveness of positron emission mammography and MRI in the contralateral breast of women with newly diagnosed breast cancer,” AJR, Am. J. Roentgenol. 198, 219232 (2012).
6. R. F. Brem, C. Shahan, J. A. Rapleyea, C. A. Donnelly, L. R. Rechtman, A. B. Kidwell, C. B. Teal, A. McSwain, and J. Torrente, “Detection of occult foci of breast cancer using breast-specific gamma imaging in women with one mammographic or clinically suspicious breast lesion,” Acad. Radiol. 17, 735743 (2010).
7. D. L. Wahner-Roedler, J. C. Boughey, C. B. Hruska, B. Chen, D. J. Rhodes, C. L. Tortorelli, R. W. Maxwell, S. S. Cha, and M. K. O'Connor, “The use of molecular breast imaging to assess response in women undergoing neoadjuvant therapy for breast cancer: a pilot study,” Clin. Nucl. Med. 37, 344350 (2012).
8. R. Taillefer, “The role of 99mTc-sestamibi and other conventional radiopharmaceuticals in breast cancer diagnosis,” Semin Nucl. Med. 29, 1640 (1999).
9. G. R. Berg, L. Kalisher, J. D. Osmond, H. P. Pendergrass, and M. S. Potsaid, “99mTc-diphosphonate concentration in primary breast carcinoma,” Radiology 109, 393394 (1973).
10. K. Hisada, N. Tonami, T. Miyamae, Y. Hiraki, T. Yamazaki, T. Maeda, and M. Nakajo, “Clinical evaluation of tumor imaging with 201 TI chloride,” Radiology 129, 497500 (1978).
11. P. R. Ghosh, “FDA approves two new technetium-labeled cardiac agents and a pharmacologic alternative to exercise in stress-thallium studies,” J. Nucl. Med. 32, 11N19N (1991).
12. C. Aktolun, H. Bayhan, and M. Kir, “Clinical experience with Tc-99m MIBI imaging in patients with malignant tumors. Preliminary results and comparison with Tl-201,” Clin. Nucl. Med. 17, 171176 (1992).
13. P. F. Rambaldi, L. Mansi, E. Procaccini, F. Di Gregorio, and E. Del Vecchio, “Breast cancer detection with Tc-99m tetrofosmin,” Clin. Nucl. Med. 20, 703705 (1995).
14. M. Liberman, F. Sampalis, D. S. Mulder, and J. S. Sampalis, “Breast cancer diagnosis by scintimammography: A meta-analysis and review of the literature,” Breast Cancer Res. Treat. 80, 115126 (2003).
15. I. Khalkhali, J. Villanueva-Meyer, S. L. Edell, J. L. Connolly, S. J. Schnitt, J. K. Baum, M. J. Houlihan, R. M. Jenkins, and S. B. Haber, “Diagnostic accuracy of 99mTc-sestamibi breast imaging: multicenter trial results,” J. Nucl. Med. 41, 19731979 (2000).
16. H. Palmedo, H. J. Biersack, S. Lastoria, J. Maublant, E. Prats, H. E. Stegner, P. Bourgeois, R. Hustinx, A. J. Hilson, and A. Bischof-Delaloye, “Scintimammography with technetium-99m methoxyisobutylisonitrile: Results of a prospective European multicentre trial,” Eur. J. Nucl. Med. 25, 375385 (1998).
17. F. S. Sampalis, R. Denis, D. Picard, D. Fleiszer, G. Martin, E. Nassif, and J. S. Sampalis, “International prospective evaluation of scintimammography with (99m)technetium sestamibi,” Am. J. Surg. 185, 544549 (2003).
18. A. D. Waxman, “The role of (99m)Tc methoxyisobutylisonitrile in imaging breast cancer,” Semin Nucl. Med. 27, 4054 (1997).
19. R. F. Brem, J. M. Schoonjans, D. A. Kieper, S. Majewski, S. Goodman, and C. Civelek, “High-resolution scintimammography: A pilot study,” J. Nucl. Med. 43, 909915 (2002).
20. V. Papantoniou, J. Christodoulidou, E. Papadaki, V. Valotassiou, A. Stipsanelli, A. Louvrou, D. Lazaris, M. Sotiropoulou, G. Pampouras, A. Keramopoulos, S. Michalas, and C. Zerva, “99mTc-(V)DMSA scintimammography in the assessment of breast lesions: Comparative study with 99mTc-MIBI,” Eur. J. Nucl. Med. 28, 923928 (2001).
21. I. Khalkhali, I. Mena, and L. Diggles, “Review of imaging techniques for the diagnosis of breast cancer: A new role of prone scintimammography using technetium-99m sestamibi,” Eur. J. Nucl. Med. 21, 357362 (1994).
22. C. Aktolun, “Exaggerated role of prone technique in breast cancer imaging with technetium-99m methoxyisobutylisonitrile,” Eur. J. Nucl. Med. 21, 12571260 (1994).
23. F. Scopinaro, R. Pani, G. De Vincentis, A. Soluri, R. Pellegrini, and L. M. Porfiri, “High-resolution scintimammography improves the accuracy of technetium-99m methoxyisobutylisonitrile scintimammography: Use of a new dedicated gamma camera,” Eur. J. Nucl. Med. 26, 12791288 (1999).
24. A. Spanu, G. Dettori, S. Nuvoli, A. Porcu, A. Falchi, P. Cottu, M. E. Solinas, A. M. Scanu, F. Chessa, and G. Madeddu, “(99)mTc-tetrofosmin SPET in the detection of both primary breast cancer and axillary lymph node metastasis,” Eur. J. Nucl. Med. 28, 17811794 (2001).
25. A. Spanu, O. Schillaci, G. B. Meloni, A. Porcu, P. Cottu, S. Nuvoli, A. Falchi, F. Chessa, M. E. Solinas, and G. Madeddu, “The usefulness of 99mTc-tetrofosmin SPECT scintimammography in the detection of small size primary breast carcinomas,” Int. J. Oncol. 21, 831840 (2002).
26. A. Aziz, R. Hashmi, Y. Ogawa, and K. Hayashi, “Tc-99m-MIBI scintimammography; SPECT versus planar imaging,” Cancer Biother. Radiopharm. 14, 495500 (1999).
27. M. Myslivecek, P. Koranda, M. Kaminek, V. Husak, M. Hartlova, M. Duskova, and K. Cwiertka, “Technetium-99m-MIBI scintimammography by planar and SPECT imaging in the diagnosis of breast carcinoma and axillary lymph node involvement,” Nucl. Med. Rev. Cent. East. Eur. 7, 151155 (2004).
28. O. Schillaci, R. Danieli, L. Filippi, P. Romano, E. Cossu, C. Manni, and G. Simonetti, “Scintimammography with a hybrid SPECT/CT imaging system,” Anticancer Res. 27, 557562 (2007).
29. R. Tiling, K. Tatsch, H. Sommer, G. Meyer, M. Pechmann, K. Gebauer, W. Munzing, R. Linke, I. Khalkhali, and K. Hahn, “Technetium-99m-sestamibi scintimammography for the detection of breast carcinoma: comparison between planar and SPECT imaging,” J. Nucl. Med. 39, 849856 (1998).
30. R. Danielsson, B. Bone, B. Agren, L. Svensson, and P. Aspelin, “Comparison of planar and SPECT scintimammography with 99mTc-sestamibi in the diagnosis of breast carcinoma,” Acta Radiol. 40, 176180 (1999).
31. E. L. Rosen, W. B. Eubank, and D. A. Mankoff, “FDG PET, PET/CT, and breast cancer imaging,” Radiographics 27(Suppl 1), S215S229 (2007).
32. J. R. Buscombe, B. Holloway, N. Roche, and E. Bombardieri, “Position of nuclear medicine modalities in the diagnostic work-up of breast cancer,” Q. J. Nucl. Med. Mol. Imaging 48, 109118 (2004).
33. D. J. Samson, C. R. Flamm, E. D. Pisano, and N. Aronson, “Should FDG PET be used to decide whether a patient with an abnormal mammogram or breast finding at physical examination should undergo biopsy?,” Acad. Radiol. 9, 773783 (2002).
34. I. N. Weinberg, R. Pani, R. Pellegrini, F. Scopinaro, G. De Vincentis, A. Pergola, and A. Soluri, “Small lesion visualization in scintimammo- graphy,” IEEE Trans. Nucl. Sci. 44, 13981402 (1997).
35. G. De Vincentis, F. Scopinaro, R. Pani, R. Pellegrini, A. Soluri, M. Ierardi, L. Ballesio, I. N. Weinberg, and A. Pergola, “99mTc MIBI scintimammography with a high resolution single tube gamma camera: Preliminary study,” Anticancer Res. 17, 16271630 (1997).
36. M. B. Williams, A. R. Goode, V. Galbis-Reig, S. Majewski, A. G. Weisenberger, and R. Wojcik, “Performance of a PSPMT based detector for scintimammography,” Phys. Med. Biol. 45, 781800 (2000).
37. J. H. Kim, Y. Choi, K. S. Joo, B. S. Sihn, J. W. Chong, S. E. Kim, K. H. Lee, Y. S. Choe, and B. T. Kim, “Development of a miniature scintillation camera using an NaI(Tl) scintillator and PSPMT for scintimammography,” Phys. Med. Biol. 45, 34813488 (2000).
38. S. Majewski, D. Kieper, E. Curran, C. Keppel, B. Kross, A. Palumbo, V. Popov, A. G. Wisenberger, B. Welch, R. Wojcik, M. B. Williams, A. R. Goode, M. More, and G. Zhang, “Optimization of dedicated scintimammography procedure using detector prototypes and compressible phantoms,” IEEE Trans. Nucl. Sci. 48, 822829 (2001).
39. R. Wojcik, S. Majewski, B. Kross, D. Steinbach, and A. G. Weisenberger, “High spatial resolution gamma imaging detector based on a 5″ diameter R3292 Hamamatsu PSPMT,” IEEE Trans. Nucl. Sci. 45, 487491 (1998).
40. R. Pani, A. Soluri, R. Scafe, A. Pergola, R. Pellegrini, G. De Vincentis, G. Trotta, and F. Scopinaro, “Multi-PSPMT scintillation camera,” IEEE Trans. Nucl. Sci. 46, 702708 (1999).
41. B. E. Patt, J. S. Iwanczyk, C. Rossington Tull, N. W. Wang, M. P. Tornai, and E. J. Hoffman, “High resolution CsI(Tl)/Si-PIN detector development for breast imaging,” IEEE Trans. Nucl. Sci. 45, 21262131 (1998).
42. G. J. Gruber, W. W. Moses, S. E. Derenzo, N. W. Wang, E. Beuville, and H. Ho, “A discrete scintillation camera module using silicon photodiode readout of CsI(TI) crystals for breast cancer imaging,” IEEE Trans. Nucl. Sci. 45, 10631068 (1998).
43. G. Trinci, R. Massari, M. Scandellari, F. Scopinaro, and A. Soluri, “Super spatial resolution (SSR) method for scintigraphic imaging,” Nucl. Instrum. Methods Phys. Res. A 626–627, 120127 (2011).
44. R. Pani, G. De Vincentis, F. Scopinaro, R. Pellegrini, A. Soluri, I. N. Weinberg, A. Pergola, R. Scafe, and G. Trotta, “Dedicated gamma camera for single photon emission mammography (SPEM),” IEEE Trans. Nucl. Sci. 45, 31273133 (1998).
45. C. B. Hruska, M. K. O'Connor, and D. A. Collins, “Comparison of small field of view gamma camera systems for scintimammography,” Nucl. Med. Commun. 26, 441445 (2005).
46. M. J. More, P. J. Goodale, S. Majewski, and M. B. Williams, “Evaluation of gamma cameras for use in dedicated breast imaging,” IEEE Trans. Nucl. Sci. 53, 26752679 (2006).
47. J. F. Butler, C. L. Lingren, S. J. Friesenhahn, F. P. Doty, W. L. Ashburn, R. L. Conwell, F. L. Augustine, B. Apotovsky, B. Pi, T. Collins, S. Zhao, and C. Isaacson, “CdZnTe solid-state gamma camera,” IEEE Trans. Nucl. Sci. 45, 359363 (1998).
48. B. Mueller, M. K. O'Connor, I. Blevis, D. J. Rhodes, R. Smith, D. A. Collins, and S. W. Phillips, “Evaluation of a small cadmium zinc telluride detector for scintimammography,” J. Nucl. Med. 44, 602609 (2003).
49. C. B. Hruska and M. K. O'Connor, “A Monte Carlo model for energy spectra analysis in dedicated nuclear breast imaging,” IEEE Trans. Nucl. Sci. 55, 491500 (2008).
50. C. B. Hruska and M. K. O'Connor, “CZT detectors: How important is energy resolution for nuclear breast imaging?,” Phys. Med. 21(Suppl 1), 7275 (2006).
51. C. Robert, G. Montemont, V. Rebuffel, I. Buvat, L. Guerin, and L. Verger, “Simulation-based evaluation and optimization of a new CdZnTe gamma-camera architecture (HiSens),” Phys. Med. Biol. 55, 27092726 (2010).
52. P. J. Slomka, D. Dey, W. L. Duvall, M. J. Henzlova, D. S. Berman, and G. Germano, “Advances in nuclear cardiac instrumentation with a view towards reduced radiation exposure,” Curr. Cardiol. Rep. 14, 208216 (2012).
53. A. L. Weinmann, C. B. Hruska, and M. K. O'Connor, “Design of optimal collimation for dedicated molecular breast imaging systems,” Med. Phys. 36, 845856 (2009).
54. S. Lastoria, S. Piccolo, and P. Muto, “Invited commentary: One step forward,” J. Nucl. Med. 43, 916917 (2002).
55. C. B. Hruska, S. W. Phillips, D. H. Whaley, D. J. Rhodes, and M. K. O'Connor, “Molecular breast imaging: use of a dual-head dedicated gamma camera to detect small breast tumors,” AJR, Am. J. Roentgenol. 191, 18051815 (2008).
56. S. Majewski, R. Black, B. Kross, V. Popov, B. Welch, R. Wojecik, M. B. Williams, M. J. More, and P. Goodale, “Phantom evaluations of a dedicated dual-head scintimammography system,” Phys. Med. 21(Suppl 1), 3538 (2006).
57. P. G. Judy, B. Welch, T. St. Saviour, D. Kieper, S. Majewski, J. McKisson, B. Kross, J. Proffitt, A. Stolin, M. J. More, N. L. Dinion, and M. B. Williams, “Molecular breast imaging with directly opposing compact gamma cameras,” in Nuclear Science Symposium Conference Record, 2007. NSS ‘07. IEEE, Vol. 6 (IEEE, 2007), pp. 40404043.
58. F. Garibaldi, E. Cisbani, S. Colilli, F. Cusanno, R. Fratoni, F. Giuliani, M. Gricia, M. Lucentini, M. L. Magliozzi, F. Santavenere, S. Torrioli, P. Musico, A. Argentieri, E. Cossu, F. Padovano, G. Simonetti, O. Schillaci, and S. Majewski, “A novel high resolution and high efficiency dual head detector for molecular breast imaging: New results from clinical trials,” Nucl. Instrum. Methods Phys. Res. A 617, 227229 (2010).
59. P. G. Judy, G. Zongyi, N. L. Dinion, B. L. Welch, T. S. Saviour, D. Kieper, S. Majewski, J. McKisson, B. Kross, J. Proffitt, A. V. Stolin, M. J. More, and M. B. Williams, “Analysis of image combination methods for conjugate breast scintigraphy,” IEEE Trans. Nucl. Sci. 57, 11461154 (2010).
60. C. B. Hruska and M. K. O'Connor, “Quantification of lesion size, depth, and uptake using a dual-head molecular breast imaging system,” Med. Phys. 35, 13651376 (2008).
61. C. J. Thompson, K. Murthy, I. N. Weinberg, and F. Mako, “Feasibility study for positron emission mammography,” Med. Phys. 21, 529538 (1994).
62. I. N. Weinberg, “Applications for positron emission mammography,” Phys. Med. 21(Suppl 1), 132137 (2006).
63. A. Joshi, R. A. Koeppe, and J. A. Fessler, “Reducing between scanner differences in multi-center PET studies,” Neuroimage 46, 154159 (2009).
64. I. Weinberg, “The promise of PEM,” in Advance for Imaging & Radiation Oncology (Merion Matters, 2004), Vol. 14, p. 91.
65. I. Weinberg, S. Majewski, A. Weisenberger, A. Markowitz, L. Aloj, L. Majewski, D. Danforth, J. Mulshine, K. Cowan, J. Zujewski, C. Chow, E. Jones, V. Chang, W. Berg, and J. Frank, “Preliminary results for positron emission mammography: Real-time functional breast imaging in a conventional mammography gantry,” Eur. J. Nucl. Med. 23, 804806 (1996).
66. N. K. Doshi, Y. Shao, R. W. Silverman, and S. R. Cherry, “Design and evaluation of an LSO PET detector for breast cancer imaging,” Med. Phys. 27, 15351543 (2000).
67. R. Freifelder and J. S. Karp, “Dedicated PET scanners for breast imaging,” Phys. Med. Biol. 42, 24632480 (1997).
68. J. S. Huber, W. W. Moses, S. E. Derenzo, M. H. Ho, M. S. Andreaco, M. J. Paulus, and R. Nutt, “Characterization of a 64 channel PET detector using photodiodes for crystal identification,” IEEE Trans. Nucl. Sci. 44, 11971201 (1997).
69. M. B. Williams, R. M. Sealock, S. Majewski, and A. G. Weisenberger, “PET detector using waveshifting optical fibers and microchannel plate PMT with delay line readout,” IEEE Trans. Nucl. Sci. 45, 195205 (1998).
70. W. Worstell, O. Johnson, H. Kudrolli, and V. Zavarzin, “First results with high-resolution PET detector modules using wavelength-shifting fibers,” IEEE Trans. Nucl. Sci. 45, 29932999 (1998).
71. R. R. Raylman, S. Majewski, R. Wojcik, A. G. Weisenberger, B. Kross, V. Popov, and H. A. Bishop, “The potential role of positron emission mammography for detection of breast cancer. A phantom study,” Med. Phys. 27, 19431954 (2000).
72. M. F. Smith, R. R. Raylman, S. Majewski, and A. G. Weisenberger, “Positron emission mammography with tomographic acquisition using dual planar detectors: Initial evaluations,” Phys. Med. Biol. 49, 24372452 (2004).
73. J. Zhang, A. M. K. Foudray, P. D. Olcott, R. Farrell, K. Shah, and C. S. Levin, “Performance Characterization of a novel thin position-sensitive avalanche photodiode for 1 mm resolution positron emission tomography,” IEEE Trans. Nucl. Sci. 54, 415421 (2007).
74. H. Peng and C. S. Levin, “Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors,” Phys. Med. Biol. 55, 27612788 (2010).
75. L. MacDonald, J. Edwards, T. Lewellen, D. Haseley, J. Rogers, and P. Kinahan, “Clinical imaging characteristics of the positron emission mammography camera: PEM Flex Solo II,” J. Nucl. Med. 50, 16661675 (2009).
76. W. Luo, E. Anashkin, and C. G. Matthews, “Performance evaluation of a pem scanner using the NEMA NU 4-2008 small animal PET standards,” IEEE Trans. Nucl. Sci. 57, 94103 (2010).
77. L. Moliner et al., “Design and evaluation of the MAMMI dedicated breast PET,” Med. Phys. 39, 53935404 (2012).
78. L. Moliner, J. M. Benlloch, M. Carles, C. Correcher, A. J. Gonzalez, A. Orero, F. Sanchez, and A. Soriano, “Performance characteristics of the MAMMI PEMT scanner based on NEMA NU 2–2007,” Nuclear Science Symposium Conference Record (NSS/MIC) (IEEE, 2010), pp. 25912594.
79. A. Soriano, A. González, A. Orero, L. Moliner, M. Carles, F. Sánchez, J. M. Benlloch, C. Correcher, V. Carrilero, and M. Seimetz, “Attenuation correction without transmission scan for the MAMMI breast PET,” Nucl. Instrum. Methods Phys. Res. A 648(Suppl 1), S75S78 (2011).
80. Y. Wu, S. L. Bowen, K. Yang, N. Packard, L. Fu, G. Burkett, J. Qi, J. M. Boone, S. R. Cherry, and R. D. Badawi, “PET characteristics of a dedicated breast PET/CT scanner prototype,” Phys. Med. Biol. 54, 42734287 (2009).
81. S. L. Bowen, Y. Wu, A. J. Chaudhari, L. Fu, N. J. Packard, G. W. Burkett, K. Yang, K. K. Lindfors, D. K. Shelton, R. Hagge, A. D. Borowsky, S. R. Martinez, J. Qi, J. M. Boone, S. R. Cherry, and R. D. Badawi, “Initial characterization of a dedicated breast PET/CT scanner during human imaging,” J. Nucl. Med. 50, 14011408 (2009).
82. G. C. Wang, J. S. Huber, W. W. Moses, J. Qi, and W. S. Choong, “Characterization of the LBNL PEM camera,” IEEE Trans. Nucl. Sci. 53, 11291135 (2006).
83. B. Ravindranath, S. H. Maramraju, S. S. Junnarkar, S. S. Southekal, S. P. Stoll, J. F. Pratte, M. L. Purschke, X. Hong, D. Bennett, K. Cheng, D. Tomasi, D. S. Smith, S. Krishnamoorthy, P. Vaska, C. L. Woody, and D. J. Schlyer, “A simultaneous PET/MRI breast scanner based on the RatCAP,” Nuclear Science Symposium Conference Record, 2008. NSS '08 (IEEE, 2008), pp. 46504655.
84. J. Zhang, G. Chinn, A. M. Foudray, F. Habte, P. Olcott, and C. S. Levin, “Evaluation of a dual-panel PET camera design to breast cancer imaging,” Phys. Med. 21(Suppl 1), 9498 (2006).
85. E. L. Rosen, T. G. Turkington, M. S. Soo, J. A. Baker, and R. E. Coleman, “Detection of primary breast carcinoma with a dedicated, large-field-of-view FDG PET mammography device: Initial experience1,” Radiology 234, 527534 (2005).
86. R. R. Raylman, S. Majewski, M. F. Smith, J. Proffitt, W. Hammond, A. Srinivasan, J. McKisson, V. Popov, A. Weisenberger, C. O. Judy, B. Kross, S. Ramasubramanian, L. E. Banta, P. E. Kinahan, and K. Champley, “The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): Design, construction and phantom-based measurements,” Phys. Med. Biol. 53, 637653 (2008).
87. R. R. Raylman, J. Abraham, H. Hazard, C. Koren, S. Filburn, J. S. Schreiman, S. Kurian, S. Majewski, and G. D. Marano, “Initial clinical test of a breast-PET scanner,” J. Med. Imaging Radiat. Oncol. 55, 5864 (2011).
88. Y. Zhang, R. A. Ramirez, L. Hongdi, L. Shitao, A. Shaohui, W. Chao, H. Baghaei, and W. Wai-Hoi, “The system design, engineering architecture, and preliminary results of a lower-cost high-sensitivity high-resolution positron emission mammography camera,” IEEE Trans. Nucl. Sci. 57, 104110 (2010).
89. M. Camarda, N. Belcari, A. D. Guerra, S. Galeotti, F. Morsani, D. J. Herbert, and A. Vaiano, “Development of the YAP-PEM scanner for breast cancer imaging,” Phys. Med. 21(Suppl 1), 114116 (2006).
90. P. Lecoq and J. Varela, “Clear-PEM, a dedicated PET camera for mammography,” Nucl. Instrum. Methods Phys. Res. A 486, 16 (2002).
91. M. C. Abreu, D. Aguiar, E. Albuquerque, F. G. Almeida, P. Almeida, P. Amaral, E. Auffray, P. Bento, P. Bruyndonckx, R. Bugalho, B. Carriço, H. Cordeiro, M. Ferreira, N. C. Ferreira, F. Gonçalves, P. Lecoq, C. Leong, F. Lopes, P. Lousã, J. Luyten, M. V. Martins, N. Matela, P. R. Mendes, R. Moura, J. Nobre, N. Oliveira, C. Ortigão, L. Peralta, J. Rego, R. Ribeiro, P. Rodrigues, A. I. Santos, J. C. Silva, M. M. Silva, S. Tavernier, I. C. Teixeira, J. P. Teixeira, A. Trindade, J. Trummer, and J. Varela, “Clear-PEM: A PET imaging system dedicated to breast cancer diagnostics,” Nucl. Instrum. Methods Phys. Res. A 571, 8184 (2007).
92. J. Varela, “A PET imaging system dedicated to mammography,” Radiat. Phys. Chem. 76, 347350 (2007).
93. K. Kitamura, O. Junichi, T. Hiromichi, Y. Yoshihiro, F. Tetsuo, F. Masafumi, S. Masanobu, T. Tomoaki, N. Masayuki, H. Nobuya, Y. Yoshiyuki, K. Ayako, and K. Yoshihiko, “Development of a C-shaped breast PET scanner equipped with four-layer DOI detectors,” Nuclear Science Symposium Conference Record, 2008, NSS '08 (IEEE, 2008), pp. 56625665.
94. M. Furuta, K. Kitamura, J. Ohi, H. Tonami, Y. Yamada, T. Furumiya, M. Satoh, T. Tsuda, M. Nakazawa, N. Hashizume, Y. Yamakawa, A. Kawashima, and Y. Kumazawa, “Basic evaluation of a C-shaped breast PET scanner,” Nuclear Science Symposium Conference Record (NSS/MIC) (IEEE, 2009), pp. 25482552.
95. M. Iima, Y. Nakamoto, S. Kanao, T. Sugie, T. Ueno, M. Kawada, Y. Mikami, M. Toi, and K. Togashi, “Clinical performance of 2 dedicated PET scanners for breast imaging: Initial evaluation,” J. Nucl. Med. 53, 15341542 (2012).
96. C. Cohade, M. Osman, J. Leal, and R. L. Wahl, “Direct comparison of (18)F-FDG PET and PET/CT in patients with colorectal carcinoma,” J. Nucl. Med. 44, 17971803 (2003).
97. D. Lardinois, W. Weder, T. F. Hany, E. M. Kamel, S. Korom, B. Seifert, G. K. von Schulthess, and H. C. Steinert, “Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography,” N Engl. J. Med. 348, 25002507 (2003).
98. A. M. Bergman, C. J. Thompson, K. Murthy, J. L. Robar, R. L. Clancy, M. J. English, A. Loutfi, R. Lisbona, and J. Gagnon, “Technique to obtain positron emission mammography images in registration with x-ray mammograms,” Med. Phys. 25, 21192129 (1998).
99. L. P. Adler, I. N. Weinberg, M. S. Bradbury, E. A. Levine, N. M. Lesko, K. R. Geisinger, W. A. Berg, and R. I. Freimanis, “Method for combined FDG-PET and radiographic imaging of primary breast cancers,” Breast J. 9, 163166 (2003).
100. K. Murthy, M. Aznar, A. M. Bergman, C. J. Thompson, J. L. Robar, R. Lisbona, A. Loutfi, and J. H. Gagnon, “Positron emission mammographic instrument: Initial results.,” Radiology 215, 280285 (2000).
101. L. R. Coover, G. Caravaglia, and P. Kuhn, “Scintimammography with dedicated breast camera detects and localizes occult carcinoma,” J. Nucl. Med. 45, 553558 (2004).
102. M. B. Williams, M. J. More, D. Narayanan, S. Majewski, A. G. Weisenberger, R. Wojcik, M. Stanton, W. Phillips, and A. Stewart, “Combined structural and functional imaging of the breast,” Technol. Cancer Res. Treat. 1, 3942 (2002).
103. M. B. Williams, P. G. Judy, S. Gunn, and S. Majewski, “Dual-modality breast tomosynthesis,” Radiology 255, 191198 (2010).
104. C. N. Brzymialkiewicz, M. P. Tornai, R. L. McKinley, S. J. Cutler, and J. E. Bowsher, “Performance of dedicated emission mammotomography for various breast shapes and sizes,” Phys. Med. Biol. 51, 50515064 (2006).
105. D. J. Crotty, S. J. Cutler, R. L. McKinley, P. Madhav, K. L. Perez, and M. P. Tornai, “Improved chest wall imaging through combined complex trajectories in dedicated dual modality SPECT-CT breast molecular imaging,” Nuclear Science Symposium Conference Record, 2008, NSS '08 (IEEE, 2008), pp. 26505656.
106. P. Madhav, S. J. Cutler, K. L. Perez, D. J. Crotty, R. L. McKinley, T. Z. Wong, and M. P. Tornai, “Comparison of reduced angle and fully 3D acquisition sequencing and trajectories for dual-modality mammotomography,” Nuclear Science Symposium Conference Record, 2007, NSS '07 (IEEE, 2007), Vol. 6, pp. 40444050.
107. K. K. Lindfors, J. M. Boone, T. R. Nelson, K. Yang, A. L. Kwan, and D. F. Miller, “Dedicated breast CT: initial clinical experience,” Radiology 246, 725733 (2008).
108. E. Albuquerque, F. G. Almeida, P. Almeida, E. Auffray, J. Barbosa, A. L. Bastos, V. Bexiga, R. Bugalho, S. Carmona, B. Carrico, C. S. Ferreira, N. C. Ferreira, M. Ferreira, M. Frade, J. Godinho, F. Goncalves, C. Guerreiro, P. Lecoq, C. Leong, P. Lousa, P. Machado, M. V. Martins, N. Matela, R. Moura, P. Neves, N. Oliveira, C. Ortigao, F. Piedade, J. F. Pinheiro, P. Relvas, A. Rivetti, P. Rodrigues, I. Rolo, J. Sampaio, A. I. Santos, J. Santos, M. M. Silva, S. Tavernier, I. C. Teixeira, J. P. Teixeira, R. Silva, J. C. Silva, A. Trindade, and J. Varela, “An overview of the Clear-PEM breast imaging scanner,” Nuclear Science Symposium Conference Record, 2008. NSS '08 (IEEE, 2008), pp. 56165618.
109. K. Hede, “Preoperative MRI in breast cancer grows contentious,” J. Natl. Cancer Inst. 101, 16671669 (2009).
110. R. Katipamula, A. C. Degnim, T. Hoskin, J. C. Boughey, C. Loprinzi, C. S. Grant, K. R. Brandt, S. Pruthi, C. G. Chute, J. E. Olson, F. J. Couch, J. N. Ingle, and M. P. Goetz, “Trends in mastectomy rates at the Mayo Clinic Rochester: Effect of surgical year and preoperative magnetic resonance imaging,” J. Clin. Oncol. 27, 40824088 (2009).
111. N. Houssami, R. Turner, and M. Morrow, “Preoperative magnetic resonance imaging in breast cancer: meta-analysis of surgical outcomes,” Ann. Surg. 257, 249255 (2013).
112. M. D. Schnall, J. Blume, D. A. Bluemke, G. A. Deangelis, N. Debruhl, S. Harms, S. H. Heywang-Kobrunner, N. Hylton, C. K. Kuhl, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, C. Lehman, P. T. Weatherall, and C. A. Gatsonis, “MRI detection of distinct incidental cancer in women with primary breast cancer studied in IBMC 6883,” J. Surg. Oncol. 92, 3238 (2005).
113. C. D. Lehman, C. Gatsonis, C. K. Kuhl, R. E. Hendrick, E. D. Pisano, L. Hanna, S. Peacock, S. F. Smazal, D. D. Maki, T. B. Julian, E. R. DePeri, D. A. Bluemke, and M. D. Schnall, “MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer,” N. Engl. J. Med. 356, 12951303 (2007).
114. A. N. Khan, M. Hoosein, H. Khan, L. Grosvenor, and M. Al-Attar, “Does breast magnetic resonance imaging measurement correlate with pathology in assessment of primary breast cancer? [abstract],” Breast Cancer Res. 11, P3 (2009).
115. K. A. Caprio, A. B. Chagpar, R. Hooley, F. Tavassoli, H. Honarpishe, D. R. Lannin, B. K. Killelea, and N. R. Horowitz, “Accuracy of breast MRI in predicting pathologic tumor size [abstract],” J. Clin. Oncol. 30, 1109 (2012).
116. J. K. Onesti, B. E. Mangus, S. D. Helmer, and J. S. Osland, “Breast cancer tumor size: Correlation between magnetic resonance imaging and pathology measurements,” Am. J. Surg. 196, 844850 (2008).
117. W. A. Berg, L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, and O. B. Ioffe, “Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer,” Radiology 233, 830849 (2004).
118. S. Malur, S. Wurdinger, A. Moritz, W. Michels, and A. Schneider, “Comparison of written reports of mammography, sonography and magnetic resonance mammography for preoperative evaluation of breast lesions, with special emphasis on magnetic resonance mammography,” Breast Cancer Res. 3, 5560 (2001).
119. B. Bone, M. K. Wiberg, B. K. Szabo, A. Szakos, and R. Danielsson, “Comparison of 99mTc-sestamibi scintimammography and dynamic MR imaging as adjuncts to mammography in the diagnosis of breast cancer,” Acta Radiol. 44, 2834 (2003).
120. L. Liberman, E. A. Morris, D. D. Dershaw, A. F. Abramson, and L. K. Tan, “MR imaging of the ipsilateral breast in women with percutaneously proven breast cancer,” AJR, Am. J. Roentgenol. 180, 901910 (2003).
121. B. K. Killelea, A. Gillego, L. J. Kirstein, J. Asad, M. Shpilko, A. Shah, S. Feldman, and S. K. Boolbol, “George Peters Award: How does breast-specific gamma imaging affect the management of patients with newly diagnosed breast cancer?,” Am. J. Surg. 198, 470474 (2009).
122. M. Zhou, N. Johnson, S. Gruner, G. W. Ecklund, P. Meunier, S. Bryn, M. Glissmeyer, and K. Steinbock, “Clinical utility of breast-specific gamma imaging for evaluating disease extent in the newly diagnosed breast cancer patient,” Am. J. Surg. 197, 159163 (2009).
123. B. Kim, “Usefulness of breast-specific gamma imaging as an adjunct modality in breast cancer patients with dense breast: A comparative study with MRI,” Ann. Nucl. Med. 26, 131137 (2012).
124. A. Spanu, F. Chessa, G. Battista Meloni, D. Sanna, P. Cottu, A. Manca, S. Nuvoli, and G. Madeddu, “Scintimammography with high resolution dedicated breast camera and mammography in multifocal, multicentric and bilateral breast cancer detection: A comparative study,” Q J. Nucl. Med. Mol. Imaging 53, 133143 (2009).
125. M. K. O'Connor, C. B. Hruska, D. J. Rhodes, A. L. Conners, C. L. Tortorelli, R. Maxwell, and J. C. Boughey, “Molecular breast imaging (MBI) in the preoperative evaluation of women with biopsy-proven breast cancer [abstract],” J. Nucl. Med. 52, 660675 (2011).
126. L. Tafra, Z. Cheng, J. Uddo, M. B. Lobrano, W. Stein, W. A. Berg, E. Levine, I. N. Weinberg, D. Narayanan, E. Ross, D. Beylin, S. Yarnall, R. Keen, K. Sawyer, J. Van Geffen, R. L. Freimanis, E. Staab, L. P. Adler, J. Lovelace, P. Shen, J. Stewart, and S. Dolinsky, “Pilot clinical trial of 18F-fluorodeoxyglucose positron-emission mammography in the surgical management of breast cancer,” Am. J. Surg. 190, 628632 (2005).
127. K. Schilling, D. Narayanan, J. E. Kalinyak, J. The, M. V. Velasquez, S. Kahn, M. Saady, R. Mahal, and L. Chrystal, “Positron emission mammography in breast cancer presurgical planning: Comparisons with magnetic resonance imaging,” Eur. J. Nucl. Med. Mol Imaging 38, 2336 (2011).
128. J. S. Eo, I. K. Chun, J. C. Paeng, K. W. Kang, S. M. Lee, W. Han, D.-Y. Noh, J.-K. Chung, and D. S. Lee, “Imaging sensitivity of dedicated positron emission mammography in relation to tumor size,” Breast 21, 6671 (2012).
129. A. B. Chagpar, L. P. Middleton, A. A. Sahin, P. Dempsey, A. U. Buzdar, A. N. Mirza, F. C. Ames, G. V. Babiera, B. W. Feig, K. K. Hunt, H. M. Kuerer, F. Meric-Bernstam, M. I. Ross, and S. E. Singletary, “Accuracy of physical examination, ultrasonography, and mammography in predicting residual pathologic tumor size in patients treated with neoadjuvant chemotherapy,” Ann. Surg. 243, 257264 (2006).
130. M. A. Helvie, L. K. Joynt, R. L. Cody, L. J. Pierce, D. D. Adler, and S. D. Merajver, “Locally advanced breast carcinoma: Accuracy of mammography versus clinical examination in the prediction of residual disease after chemotherapy,” Radiology 198, 327332 (1996).
131. R. Croshaw, H. Shapiro-Wright, E. Svensson, K. Erb, and T. Julian, “Accuracy of clinical examination, digital mammogram, ultrasound, and MRI in determining postneoadjuvant pathologic tumor response in operable breast cancer patients,” Ann. Surg. Oncol. 18, 31603163 (2011).
132. C. L. Maini, A. Tofani, R. Sciuto, A. Semprebene, R. Cavaliere, M. Mottolese, M. Benevolo, F. Ferranti, M. L. Grandinetti, P. Vici, M. Lopez, and C. Botti, “Technetium-99m-MIBI scintigraphy in the assessment of neoadjuvant chemotherapy in breast carcinoma,” J. Nucl. Med. 38, 15461551 (1997).
133. D. A. Mankoff, L. K. Dunnwald, J. R. Gralow, G. K. Ellis, M. J. Drucker, and R. B. Livingston, “Monitoring the response of patients with locally advanced breast carcinoma to neoadjuvant chemotherapy using [technetium 99m]-sestamibi scintimammography,” Cancer 85, 24102423 (1999).
134. R. Tiling, M. Kessler, M. Untch, H. Sommer, R. Linke, K. Brinkbaumer, and K. Hahn, “Breast cancer: monitoring response to neoadjuvant chemotherapy using Tc-99m sestamibi scintimammography,” Onkologie 26, 2731 (2003).
135. L. K. Dunnwald, J. R. Gralow, G. K. Ellis, R. B. Livingston, H. M. Linden, T. J. Lawton, W. E. Barlow, E. K. Schubert, and D. A. Mankoff, “Residual tumor uptake of [99mTc]-sestamibi after neoadjuvant chemotherapy for locally advanced breast carcinoma predicts survival,” Cancer 103, 680688 (2005).
136. D. Fuster, M. Munoz, J. Pavia, A. Palacin, N. Bellet, J. J. Mateos, F. Martin, M. Ortega, F. J. Setoain, and F. Pons, “Quantified 99mTc-MIBI scintigraphy for predicting chemotherapy response in breast cancer patients: Factors that influence the level of 99m Tc-MIBI uptake,” Nucl. Med. Commun. 23, 3138 (2002).
137. I. C. Smith, A. E. Welch, A. W. Hutcheon, I. D. Miller, S. Payne, F. Chilcott, S. Waikar, T. Whitaker, A. K. Ah-See, O. Eremin, S. D. Heys, F. J. Gilbert, and P. F. Sharp, “Positron emission tomography using [(18)F]-fluorodeoxy-D-glucose to predict the pathologic response of breast cancer to primary chemotherapy,” J. Clin. Oncol. 18, 16761688 (2000).
138. S. J. Kim, S. K. Kim, E. S. Lee, J. Ro, and S. Kang, “Predictive value of [18F]FDG PET for pathological response of breast cancer to neo-adjuvant chemotherapy,” Ann. Oncol. 15, 13521357 (2004).
139. A. Spanu, A. Farris, F. Chessa, D. Sanna, M. Pittalis, A. Manca, and G. Madeddu, “Planar scintimammography and SPECT in neoadjuvant chemo or hormonotherapy response evaluation in locally advanced primary breast cancer,” Int. J. Oncol. 32, 12751283 (2008).
140. C. B. Hruska, D. L. Wahner-Roedler, J. C. Boughey, A. L. Conners, C. L. Tortorelli, R. Maxwell, M. K. O'Connor, and D. J. Rhodes, “Molecular breast imaging (MBI) in monitoring treatment response to neoadjuvant chemotherapy [abstract],” J. Nucl. Med. 52, 660675 (2011).
141. W. T. Yang, J. Chang, M. Cristofanilli, W. Wei, S. Krishnamurthy, E. Rohren, N. Ueno, V. Valero, and T. Buchholz, “Evaluation of response to targeted therapy using positron emission mammography (PEM) [abstract],” presented at Radiological Society of North America Annual Meeting (unpublished).
142. A. Ferrero, A. J. Chaudhari, S. L. Bowen, K. Yang, K. K. Lindfors, J. M. Boone, S. R. Martinez, and R. D. Badawi, “Quantification of early response to neoadjuvant chemotherapy in breast cancer: initial studies in humans using a high resolution PET/CT scanner [abstract],” J. Nucl. Med. 52, 660675 (2011).
143. R. F. Brem, I. Petrovitch, J. A. Rapelyea, H. Young, C. Teal, and T. Kelly, “Breast-specific gamma imaging with 99mTc-Sestamibi and magnetic resonance imaging in the diagnosis of breast cancer–A comparative study,” Breast J. 13, 465469 (2007).
144. R. F. Brem, M. Fishman, and J. A. Rapelyea, “Detection of ductal carcinoma in situ with mammography, breast specific gamma imaging, and magnetic resonance imaging: A comparative study,” Acad. Radiol. 14, 945950 (2007).
145. R. F. Brem, M. Ioffe, J. A. Rapelyea, K. G. Yost, J. M. Weigert, M. L. Bertrand, and L. H. Stern, “Invasive lobular carcinoma: Detection with mammography, sonography, MRI, and breast-specific gamma imaging,” AJR, Am. J. Roentgenol. 192, 379383 (2009).
146. J. Keto, L. Kirstein, D. Sanchez, T. Fulop, L. McPartland, I. Cohen, and S. Boolbol, “MRI versus breast-specific gamma imaging (BSGI) in newly diagnosed ductal cell carcinoma insitu: A prospective head-to-head trial,” Ann. Surg. Oncol. 19, 249252 (2012).
147. C. B. Hruska, S. W. Phillips, D. J. Rhodes, and M. K. O'Connor, “Concordance of molecular breast imaging and breast MRI findings: A retrospective review [abstract],” Eur. J. Nucl. Med. Mol. Imaging 35, 199210 (2008).
148. C. I. D'Orsi, L. W. Bassett, and W. A. Berg, Breast Imaging Reporting and Data System, BI-RADS: Mammography (American College of Radiology, Reston, VA, 2003).
149. H. J. de Koning, “Mammographic screening: Evidence from randomised controlled trials,” Ann. Oncol. 14, 11851189 (2003).
150. H. D. Nelson, K. Tyne, A. Naik, C. Bougatsos, B. K. Chan, and L. Humphrey, “Screening for breast cancer: An update for the U.S. Preventive Services Task Force,” Ann. Intern Med. 151, 727737 (2009).
151. M. T. Mandelson, N. Oestreicher, P. L. Porter, D. White, C. A. Finder, S. H. Taplin, and E. White, “Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers,” J. Natl. Cancer Inst. 92, 10811087 (2000).
152. T. M. Kolb, J. Lichy, and J. H. Newhouse, “Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations,” Radiology 225, 165175 (2002).
153. P. A. Carney, D. L. Miglioretti, B. C. Yankaskas, K. Kerlikowske, R. Rosenberg, C. M. Rutter, B. M. Geller, L. A. Abraham, S. H. Taplin, M. Dignan, G. Cutter, and R. Ballard-Barbash, “Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography,” Ann. Intern Med. 138, 168175 (2003).
154. D. S. Buist, P. L. Porter, C. Lehman, S. H. Taplin, and E. White, “Factors contributing to mammography failure in women aged 40-49 years,” J. Natl. Cancer Inst. 96, 14321440 (2004).
155. E. D. Pisano, R. E. Hendrick, M. J. Yaffe, J. K. Baum, S. Acharyya, J. B. Cormack, L. A. Hanna, E. F. Conant, L. L. Fajardo, L. W. Bassett, C. J. D'Orsi, R. A. Jong, M. Rebner, A. N. Tosteson, and C. A. Gatsonis, “Diagnostic accuracy of digital versus film mammography: Exploratory analysis of selected population subgroups in DMIST,” Radiology 246, 376383 (2008).
156. N. Houssami et al., “Accuracy and outcomes of screening mammography in women with a personal history of early-stage breast cancer,” JAMA, J. Am. Med. Assoc. 305, 790799 (2011).
157. R. Z. Bigenwald, E. Warner, A. Gunasekara, K. A. Hill, P. A. Causer, S. J. Messner, A. Eisen, D. B. Plewes, S. A. Narod, L. Zhang, and M. J. Yaffe, “Is Mammography Adequate for Screening Women with Inherited BRCA Mutations and Low Breast Density?,” Cancer Epidem. Biomarkers Prev. 17, 706711 (2008).
158. C. M. Vachon, C. H. van Gils, T. A. Sellers, K. Ghosh, S. Pruthi, K. R. Brandt, and V. S. Pankratz, “Mammographic density, breast cancer risk and risk prediction,” Breast Cancer Res. 9, 217225 (2007).
159. N. F. Boyd, H. Guo, L. J. Martin, L. Sun, J. Stone, E. Fishell, R. A. Jong, G. Hislop, A. Chiarelli, S. Minkin, and M. J. Yaffe, “Mammographic density and the risk and detection of breast cancer,” N Engl. J. Med. 356, 227236 (2007).
160. E. A. Rafferty, J. M. Park, L. E. Philpotts, S. P. Poplack, J. H. Sumkin, E. F. Halpern, and L. T. Niklason, “Assessing radiologist performance using combined digital mammography and breast tomosynthesis compared with digital mammography alone: Results of a multicenter, multireader trial,” Radiology 266, 104113 (2013).
161. P. Skaane, A. I. Bandos, R. Gullien, E. B. Eben, U. Ekseth, U. Haakenaasen, M. Izadi, I. N. Jebsen, G. Jahr, M. Krager, L. T. Niklason, S. Hofvind, and D. Gur, “Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program,” Radiology 267, 4756 (2013).
162. W. A. Berg, Z. Zhang, D. Lehrer, R. A. Jong, E. D. Pisano, R. G. Barr, M. Bohm-Velez, M. C. Mahoney, W. P. Evans 3rd, L. H. Larsen, M. J. Morton, E. B. Mendelson, D. M. Farria, J. B. Cormack, H. S. Marques, A. Adams, N. M. Yeh, and G. Gabrielli, “Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk,” JAMA, J. Am. Med. Assoc. 307, 13941404 (2012).
163. V. Corsetti, N. Houssami, M. Ghirardi, A. Ferrari, M. Speziani, S. Bellarosa, G. Remida, C. Gasparotti, E. Galligioni, and S. Ciatto, “Evidence of the effect of adjunct ultrasound screening in women with mammography-negative dense breasts: Interval breast cancers at 1 year follow-up,” Eur. J. Cancer 47, 10211026 (2011).
164. K. Kelly, J. Dean, W. Comulada, and S.-J. Lee, “Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts,” Eur. Radiol. 20, 734742 (2010).
165. D. Saslow, C. Boetes, W. Burke, S. Harms, M. O. Leach, C. D. Lehman, E. Morris, E. Pisano, M. Schnall, S. Sener, R. A. Smith, E. Warner, M. Yaffe, K. S. Andrews, and C. A. Russell, “American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography,” Ca-Cancer J. Clin. 57, 7589 (2007).
166. R. F. Brem, J. A. Rapelyea, G. Zisman, K. Mohtashemi, J. Raub, C. B. Teal, S. Majewski, and B. L. Welch, “Occult breast cancer: Scintimammography with high-resolution breast-specific gamma camera in women at high risk for breast cancer,” Radiology 237, 274280 (2005).
167. C. B. Hruska, D. J. Rhodes, D. A. Collins, C. L. Tortorelli, J. W. Askew, and M. K. O'Connor, “Evaluation of molecular breast imaging in women undergoing myocardial perfusion imaging with tc-99m sestamibi,” J. Womens Health (Larchmt) 21, 730738 (2012).
168. M. J. Schell, B. C. Yankaskas, R. Ballard-Barbash, B. F. Qaqish, W. E. Barlow, R. D. Rosenberg, and R. Smith-Bindman, “Evidence-based target recall rates for screening mammography,” Radiology 243, 681689 (2007).
169. M. Kriege, C. T. Brekelmans, C. Boetes, S. H. Muller, H. M. Zonderland, I. M. Obdeijn, R. A. Manoliu, T. Kok, E. J. Rutgers, H. J. de Koning, and J. G. Klijn, “Differences between first and subsequent rounds of the MRISC breast cancer screening program for women with a familial or genetic predisposition,” Cancer 106, 23182326 (2006).
170. C. B. Hruska, A. L. Weinmann, and M. K. O'Connor, “Proof of concept for low-dose molecular breast imaging with a dual-head CZT gamma camera. Part I. Evaluation in phantoms,” Med. Phys. 39, 34663475 (2012).
171. C. B. Hruska, A. L. Weinmann, C. M. Tello Skjerseth, E. M. Wagenaar, A. L. Conners, C. L. Tortorelli, R. W. Maxwell, D. J. Rhodes, and M. K. O'Connor, “Proof of concept for low-dose molecular breast imaging with a dual-head CZT gamma camera. Part II. Evaluation in patients,” Med. Phys. 39, 34763483 (2012).
172. D. Rhodes, C. Hruska, A. Conners, C. Tortorelli, R. Maxwell, and M. O'Connor, “Low-dose molecular breast imaging with Tc-99m sestamibi for screening in women with mammographically dense breasts [abstract],” presented at Radiological Society of North America Annual Meeting (unpublished).
173. S. J. Goldsmith, W. Parsons, M. J. Guiberteau, L. H. Stern, L. Lanzkowsky, J. Weigert, T. F. Heston, E. Jones, J. Buscombe, and M. G. Stabin, “SNM practice guideline for breast scintigraphy with breast-specific gamma-cameras 1.0,” J. Nucl. Med. Technol. 38, 219224 (2010).
174. M. J. Silverstein, A. Recht, M. D. Lagios, I. J. Bleiweiss, P. W. Blumencranz, T. Gizienski, S. E. Harms, J. Harness, R. J. Jackman, V. S. Klimberg, R. Kuske, G. M. Levine, M. N. Linver, E. A. Rafferty, H. Rugo, K. Schilling, D. Tripathy, F. A. Vicini, P. W. Whitworth, and S. C. Willey, “Special report: Consensus conference. III. Image-detected breast cancer: state-of-the-art diagnosis and treatment,” J. Am. Coll. Surg. 209, 504520 (2009).
175. W. A. Berg, J. D. Blume, A. M. Adams, R. A. Jong, R. G. Barr, D. E. Lehrer, E. D. Pisano, W. P. Evans, 3rd, M. C. Mahoney, L. Hovanessian Larsen, G. J. Gabrielli, and E. B. Mendelson, “Reasons women at elevated risk of breast cancer refuse breast MR imaging screening: ACRIN 6666,” Radiology 254, 7987 (2010).
176. O. Schillaci and J. R. Buscombe, “Breast scintigraphy today: Indications and limitations,” Eur. J. Nucl. Med. Mol Imaging 31(Suppl 1), S35S45 (2004).
177. M. Zhou, N. Johnson, D. Blanchard, S. Bryn, and J. Nelson, “Real-world application of breast-specific gamma imaging, initial experience at a community breast center and its potential impact on clinical care,” Am. J. Surg. 195, 631635 (2008).
178. R. Kessler, J. B. Sutcliffe, L. Bell, Y. C. Bradley, S. Anderson, and K. P. Banks, “Negative predictive value of breast-specific gamma imaging in low suspicion breast lesions: A potential means for reducing benign biopsies,” Breast J. 17, 319321 (2011).
179. I. Khalkhali, F. S. Mishkin, L. E. Diggles, and S. R. Klein, “Radionuclide-guided stereotactic prebiopsy localization of nonpalpable breast lesions with normal mammograms,” J. Nucl. Med. 38, 10191022 (1997).
180. L. R. Coover and P. J. Malaspina, “Breast tumor localization using sestamibi,” Clin. Nucl. Med. 27, 161164 (2002).
181. A. G. Weisenberger, F. Barbosa, T. D. Green, R. Hoefer, C. Keppel, B. Kross, S. Majewski, V. Popov, R. Wojcik, and D. C. Wymer, “Small field of view scintimammography gamma camera integrated to a stereotactic core biopsy digital x-ray system,” IEEE Trans. Nucl. Sci. 49, 22562261 (2002).
182. B. Welch, R. Brem, B. Kross, V. Popov, R. Wojcik, and S. Majewski, “Gamma-guided stereotactic breast biopsy system,” IEEE Trans. Nucl. Sci. 53, 26902697 (2006).
183. R. M. Moadel, “Breast Cancer Imaging Devices,” Semin Nucl. Med. 41, 229241 (2011).
184. C. Lorino, D. A. Chiarella, B. Welch, T. Hodge, and D. Kieper, “Clinical performance of a stereotactic breast-specific gamma imaging apparatus in the localization of breast lesions for vacuum-assisted needle biopsy procedure [abstract],” presented at Radiological Society of North America Annual Meeting (unpublished).
185. J. E. Kalinyak, K. Schilling, W. A. Berg, D. Narayanan, J. P. Mayberry, R. Rai, E. B. Dupree, D. K. Shusterman, M. A. Gittleman, W. Luo, and C. G. Matthews, “PET-guided breast biopsy,” Breast J. 17, 143151 (2011).
186. C. B. Hruska, A. L. Conners, K. N. Jones, C. L. Tortorelli, R. M. Maxwell, D. J. Rhodes, and M. K. O'Connor, “Diagnostic workup of new findings on screening molecular breast imaging [abstract],presented at Radiological Society of North America Annual Meeting (unpublished).
187. A. L. Weinmann, C. B. Hruska, A. L. Conners, and M. K. O'Connor, “Collimator design for a dedicated molecular breast imaging-guided biopsy system: Proof-of-concept,” Med. Phys. 40, 012503 (12pp.) (2013).
188. National Research Council. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2 (The National Academies Press, 2006).
189. M. J. Yaffe and J. G. Mainprize, “Risk of radiation-induced breast cancer from mammographic screening,” Radiology 258, 98105 (2011).
190. G. Mercier, N. Vassilakis, J. Brennan, F. DeVita, and L. Kachnic, “Clinical performance of low dose positron emission mammography [abstract],” J. Nucl. Med. 53, 1231 (2012).
191. B. B. Koolen, W. V. Vogel, M. J. Vrancken Peeters, C. E. Loo, E. J. Rutgers, and R. A. Valdes Olmos, “Molecular imaging in breast cancer: From whole body PET/CT to dedicated breast PET,” J. Oncol. (2012) (available online).
192. P. Aguiar and C. Lois, “Analytical study of the effect of the system geometry on photon sensitivity and depth of interaction of positron emission mammography,” J. Oncol. 2012, 605076.
193. C. B. Hruska and M. K. O'Connor, “Effect of collimator selection on tumor detection for dedicated nuclear breast imaging systems,” IEEE Trans. Nucl. Sci. 53, 26802689 (2006).
194. J. Maublant, M. de Latour, D. Mestas, A. Clemenson, S. Charrier, V. Feillel, G. Le Bouedec, P. Kaufmann, J. Dauplat, and A. Veyre, “Technetium-99m-sestamibi uptake in breast tumor and associated lymph nodes,” J. Nucl. Med. 37, 922925 (1996).
195. J. C. Maublant, Z. Zhang, M. Rapp, M. Ollier, J. Michelot, and A. Veyre, “In vitro uptake of technetium-99m-teboroxime in carcinoma cell lines and normal cells: comparison with technetium-99m-sestamibi and thallium-201,” J. Nucl. Med. 34, 19491952 (1993).
196. F. L. Kong, E. E. Kim, and D. J. Yang, “Targeted nuclear imaging of breast cancer: status of radiotracer development and clinical applications,” Cancer Biother. Radiopharm. 27, 105112 (2012).
197. Z. Zhu, W. Miao, Q. Li, H. Dai, Q. Ma, F. Wang, A. Yang, B. Jia, X. Jing, S. Liu, J. Shi, Z. Liu, Z. Zhao, and F. Li, “99mTc-3PRGD2 for integrin receptor imaging of lung cancer: a multicenter study,” J. Nucl. Med. 53, 716722 (2012).
198. Z. Liu, S. Liu, F. Wang, and X. Chen, “Noninvasive imaging of tumor integrin expression using (18)F-labeled RGD dimer peptide with PEG (4) linkers,” Eur. J. Nucl. Med. Mol Imaging 36, 12961307 (2009).
199. T. Bach-Gansmo, T. V. Bogsrud, and A. Skretting, “Integrin scintimammography using a dedicated breast imaging, solid-state gamma-camera and (99m)Tc-labelled NC100692,” Clin. Physiol. Funct. Imaging 28, 235239 (2008).
200. R. Axelsson, T. Bach-Gansmo, J. Castell-Conesa, and B. J. McParland, “An open-label, multicenter, phase 2a study to assess the feasibility of imaging metastases in late-stage cancer patients with the alpha v beta 3-selective angiogenesis imaging agent 99mTc-NC100692,” Acta Radiol. 51, 4046 (2010).
201.NC100692 Kit (for the preparation of Technetium (99mTc) NC100692 Injection) [package insert],” (GE Healthcare Limited, Little Chalfont, Buckinghamshire, UK).
202. J. E. Mortimer, F. Dehdashti, B. A. Siegel, J. A. Katzenellenbogen, P. Fracasso, and M. J. Welch, “Positron emission tomography with 2-[18F]Fluoro-2-deoxy-D-glucose and 16alpha-[18F]fluoro-17beta-estradiol in breast cancer: correlation with estrogen receptor status and response to systemic therapy,” Clin. Cancer Res. 2, 933939 (1996).
203. D. E. Kenady, E. J. Pavlik, K. Nelson, J. R. van Nagell, H. Gallion, P. D. DePriest, U. Y. Ryo, and R. J. Baranczuk, “Images of estrogen-receptor-positive breast tumors produced by estradiol labeled with iodine I 123 at 16 alpha,” Arch. Surg. 128, 13731381 (1993).
204. D. F. Preston, J. A. Spicer, C. Baranczuk, C. Fabian, N. L. Baxter, W. R. Martin, and R. G. Jewell, “Clinical results of breast cancer detedtion by imageable estradiol (I-123 E2) [abstract],” Eur. J. Nucl. Med. Mol. Imaging 16, S123 (1990).
205. R. J. Bennink, L. J. Rijks, G. van Tienhoven, L. A. Noorduyn, A. G. Janssen, and G. W. Sloof, “Estrogen receptor status in primary breast cancer: Iodine 123–labeled cis-11β-Methoxy-17α-iodovinyl Estradiol Scintigraphy1,” Radiology 220, 774779 (2001).
206. L. Sundararajan, H. M. Linden, J. M. Link, K. A. Krohn, and D. A. Mankoff, “18F-Fluoroestradiol,” Semin Nucl. Med. 37, 470476 (2007).
207. B. S. Pio, C. K. Park, R. Pietras, W. A. Hsueh, N. Satyamurthy, M. D. Pegram, J. Czernin, M. E. Phelps, and D. H. Silverman, “Usefulness of 3′-[F-18]fluoro-3′-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy,” Mol. Imaging Biol. 8, 3642 (2006).
208. V. J. Papantoniou, M. A. Souvatzoglou, V. J. Valotassiou, A. N. Louvrou, C. Ambela, J. Koutsikos, D. Lazaris, J. K. Christodoulidou, M. G. Sotiropoulou, M. J. Melissinou, A. Perperoglou, S. Tsiouris, and C. J. Zerva, “Relationship of cell proliferation (Ki-67) to 99mTc-(V)DMSA uptake in breast cancer,” Breast Cancer Res. 6, R56R62 (2004).
209. H. Kurihara, D. J. Yang, M. Cristofanilli, W. D. Erwin, D. F. Yu, S. Kohanim, R. Mendez, and E. E. Kim, “Imaging and dosimetry of 99mTc EC annexin V: Preliminary clinical study targeting apoptosis in breast tumors,” Appl. Radiat. Isot. 66, 11751182 (2008).
210. M. L. Thakur, “Genomic biomarkers for molecular imaging: Predicting the future,” Semin. Nucl. Med. 39, 236246 (2009).
211. C. L. Maini, F. de Notaristefani, A. Tofani, F. Iacopi, R. Sciuto, A. Semprebene, T. Malatesta, F. Vittori, F. Frezza, C. Botti, S. Giunta, and P. G. Natali, “99mTc-MIBI scintimammography using a dedicated nuclear mammograph,” J. Nucl. Med. 40, 4651 (1999).
212. M. K. O'Connor, S. W. Phillips, C. B. Hruska, D. J. Rhodes, and D. A. Collins, “Molecular breast imaging: Advantages and limitations of a scintimammographic technique in patients with small breast tumors,” Breast J. 13, 311 (2007).
213. A. Spanu, P. Cottu, A. Manca, F. Chessa, D. Sanna, and G. Madeddu, “Scintimammography with dedicated breast camera in unifocal and multifocal/multicentric primary breast cancer detection: A comparative study with SPECT,” Int. J. Oncol. 31, 369377 (2007).
214. R. F. Brem, A. C. Floerke, J. A. Rapelyea, C. Teal, T. Kelly, and V. Mathur, “Breast-specific gamma imaging as an adjunct imaging modality for the diagnosis of breast cancer,” Radiology 247, 651657 (2008).
215. A. Spanu, F. Chessa, G. B. Meloni, D. Sanna, P. Cottu, A. Manca, S. Nuvoli, and G. Madeddu, “The role of planar scintimammography with high-resolution dedicated breast camera in the diagnosis of primary breast cancer,” Clin. Nucl. Med. 33, 739742 (2008).
216. K. Murthy, M. Aznar, C. J. Thompson, A. Loutfi, R. Lisbona, and J. H. Gagnon, “Results of preliminary clinical trials of the positron emission mammography system PEM-I: A dedicated breast imaging system producing glucose metabolic images using FDG,” J. Nucl. Med. 41, 18511858 (2000).
217. E. A. Levine, R. I. Freimanis, N. D. Perrier, K. Morton, N. M. Lesko, S. Bergman, K. R. Geisinger, R. C. Williams, C. Sharpe, V. Zavarzin, I. N. Weinberg, P. Y. Stepanov, D. Beylin, K. Lauckner, M. Doss, J. Lovelace, and L. P. Adler, “Positron emission mammography: initial clinical results,” Ann. Surg. Oncol. 10, 8691 (2003).
218. W. A. Berg, I. N. Weinberg, D. Narayanan, M. E. Lobrano, E. Ross, L. Amodei, L. Tafra, L. P. Adler, J. Uddo, W. Stein 3rd, and E. A. Levine, “High-resolution fluorodeoxyglucose positron emission tomography with compression (“positron emission mammography”) is highly accurate in depicting primary breast cancer,” Breast J. 12, 309323 (2006).
219. A. L. Conners, C. B. Hruska, C. L. Tortorelli, R. W. Maxwell, D. J. Rhodes, J. C. Boughey, and W. A. Berg, “Lexicon for standardized interpretation of gamma camera molecular breast imaging: observer agreement and diagnostic accuracy,” Eur. J. Nucl. Med. Mol. Imaging 39, 971982 (2012).
220. A. L. Conners, R. W. Maxwell, C. L. Tortorelli, C. B. Hruska, D. J. Rhodes, J. C. Boughey, and W. A. Berg, “Gamma camera molecular breast imaging lexicon: A pictoral essay,” AJR, Am. J. Roentgenol. 199, W76774 (2012).
221. D. Narayanan, K. S. Madsen, J. E. Kalinyak, and W. A. Berg, “Interpretation of positron emission mammography and MRI by experienced breast imaging radiologists: Performance and observer reproducibility,” AJR, Am. J. Roentgenol. 196, 971981 (2011).


Image of FIG. 1.

Click to view

FIG. 1.

A cadmium zinc telluride (CZT)-based detector. Collimator and cover plate have been removed to show the 5 × 5 array of CZT modules giving a 20 × 20 cm imaging detector. Each CZT module comprises 16 × 16 array of 2.5 × 2.5 mm pixels.

Image of FIG. 2.

Click to view

FIG. 2.

Lateral view of a benign breast cyst with inflammation. Images were acquired using a conventional gamma camera (scintimammography) (left) and a dedicated breast imaging gamma camera (right).

Image of FIG. 3.

Click to view

FIG. 3.

Dilon 6800 gamma camera for breast specific gamma imaging (BSGI). (courtesy of Dilon Diagnostics)

Image of FIG. 4.

Click to view

FIG. 4.

(a) Gamma Medica Lumagem 3200s system (courtesy of Gamma Medica, Inc.). (b) GE Discovery NM750b system (courtesy of GE Healthcare).

Image of FIG. 5.

Click to view

FIG. 5.

Naviscan PEM-FLEX Solo II system (courtesy of Naviscan).

Image of FIG. 6.

Click to view

FIG. 6.

Oncovision Mammi-PEM system. Cover has been removed to show the 12 detector modules in a ring geometry (courtesy of Oncovision).

Image of FIG. 7.

Click to view

FIG. 7.

Multimodality single-photon systems. (a) Dual-modality breast tomosynthesis (DMT) system combining digital x-ray tomosynthesis and limited-angle SPECT. A small high-resolution gamma camera is mounted on a translation stage attached to the gantry arm. The configuration during gamma imaging is shown here. The camera is positioned anteriorly out of the x-ray beam during x-ray imaging. Image courtesy of Dr. Mark Williams, University of Virginia. (b) Combined SPECT/CT system developed at Duke University. Patient is positioned prone and breast is imaged with a small CZT based detector and CT system. Image courtesy of Dr. Martin Tornai, Duke University Medical Center.

Image of FIG. 8.

Click to view

FIG. 8.

Images of a patient with an invasive ductal carcinoma with lobular features obtained using a dedicated LYSO PET/CT system. The contrast enhanced CT, shown at top (coronal view at left and axial view at right), has been window to enhance appearance of benign cysts. The fused PET/CT image, at bottom, demonstrates F-18 FDG uptake in the extensive tumor. Image courtesy of Dr. Ramsey Badawi, University of California Davis.

Image of FIG. 9.

Click to view

FIG. 9.

A patient with a 2.2 cm invasive breast cancer was imaged with MBI prior to initiation of neoadjuvant chemotherapy (panel a) and again at 3 weeks after initiation (panel b). MBI performed at 3 weeks showed nearly complete resolution of the tumor, indicating a functional response to neoadjuvant chemotherapy. Surgery performed after four months of therapy showed complete pathological response (pCR), i.e., no residual or invasive disease.

Image of FIG. 10.

Click to view

FIG. 10.

Two separate MBI studies performed in the same patient with a 10-mm invasive ductal carcinoma. MBI was performed using 150 MBq with a resolution recovery algorithm applied (panel a) and 300 MBq (panel b) Tc-99m sestamibi on a dual-head CZT-based gamma camera.

Image of FIG. 11.

Click to view

FIG. 11.

Images from a patient with two areas of confirmed ductal carcinoma who had MBI performed with 300 MBq Tc-99m sestamibi (panel a) and 300 MBq Tc-99m alphaV beta 3 integrin (panel b).


Generic image for table

Click to view


Findings from independent “diagnostic accuracy” studies of dedicated gamma cameras and PEM in which the primary enrollment criteria for subjects was a suspicious lesion identified by physical exam, mammography, or other imaging.

Generic image for table

Click to view


Radiotracers that have been used in human studies to detect breast cancer. Listed by tumor-specific target humans [adapted from Kong (Ref. )].

Generic image for table

Click to view


Comparison of single-photon and coincidence-detection nuclear medicine technologies as applied to breast imaging.


Article metrics loading...



Approaches to imaging the breast with nuclear medicine and/or molecular imaging methods have been under investigation since the late 1980s when a technique called scintimammography was first introduced. This review charts the progress of nuclear imaging of the breast over the last 20 years, covering the development of newer techniques such as breast specific gamma imaging, molecular breast imaging, and positron emission mammography. Key issues critical to the adoption of these technologies in the clinical environment are discussed, including the current status of clinical studies, the efforts at reducing the radiation dose from procedures associated with these technologies, and the relevant radiopharmaceuticals that are available or under development. The necessary steps required to move these technologies from bench to bedside are also discussed.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Nuclear imaging of the breast: Translating achievements in instrumentation into clinical use